JPS6244687A - Nuclear reactor containing facility - Google Patents
Nuclear reactor containing facilityInfo
- Publication number
- JPS6244687A JPS6244687A JP60184305A JP18430585A JPS6244687A JP S6244687 A JPS6244687 A JP S6244687A JP 60184305 A JP60184305 A JP 60184305A JP 18430585 A JP18430585 A JP 18430585A JP S6244687 A JPS6244687 A JP S6244687A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- pressure
- vessel
- suppression chamber
- dry well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 [発明の技術分野1 本発明は、原子炉格納設備に関する。[Detailed description of the invention] [Technical field of invention 1 The present invention relates to nuclear reactor containment equipment.
[′Q明の技術的背橙1
沸騰水型原子炉等の軽水炉では、従来圧力抑制型と呼ば
れる格納容器が設けられている。以下にその一例を第4
図に示し、原子炉格納設備の従来例を説明する。ここで
第1図に従来例に係る原子炉格納設備の概略縦断面図を
示ず。第1図において、原子炉格納設備の上部を形成し
、かつ気密性及び耐圧性を有するドライウェル1内には
原子炉圧力容器3が設置され、この原子炉圧力容器3は
原子炉ペデスタル2の上部に据付けられている。またこ
のドライウェル1内には原子炉圧力容器3への接続配管
4とこれに付属する弁その他の機器等(図示せず)が収
容されている。また、このドライウェル1に隣接して圧
力抑制室5が設けられており、この中には多聞の冷却材
(以下プール水と呼ぶ)6が貯溜されている。そして、
前記ドライウェル1と圧力抑制室5はベント管7で連通
されており、このベント管7の下端はプール水6の中に
解放されている。['Q Ming's technical background 1 Light water reactors such as boiling water reactors are conventionally equipped with a containment vessel called a pressure suppression type. An example is shown below.
A conventional example of nuclear reactor containment equipment will be explained with reference to the figure. Here, FIG. 1 does not show a schematic vertical cross-sectional view of a conventional nuclear reactor containment facility. In FIG. 1, a reactor pressure vessel 3 is installed in a dry well 1 that forms the upper part of the reactor containment facility and has airtightness and pressure resistance. installed at the top. Further, the dry well 1 accommodates a connecting pipe 4 to the reactor pressure vessel 3 and associated valves and other equipment (not shown). Further, a pressure suppression chamber 5 is provided adjacent to this dry well 1, and a large amount of coolant (hereinafter referred to as pool water) 6 is stored in this chamber. and,
The dry well 1 and the pressure suppression chamber 5 are communicated through a vent pipe 7, the lower end of which is open into the pool water 6.
以上の構成において、前記ドライウェル1内における原
子炉圧力容器3への接続配管4に被断が生じ冷却材喪失
事故が発生した場合、まずドライウェル1内に封入され
ている窒素等の非凝縮性ガスがベント管7の下端から圧
力抑fiI11室5内のプール水6中に放出される。こ
れに引き続いて破断口から流出した冷却材及び蒸気が同
様にベント管7を介して、プール水6中に噴出されるが
、蒸気は凝縮され、格納容器内の圧力上昇は防止され、
また流出した冷却材も格納容器内に封じ込められ環境へ
の放出が防止されるようになっている。In the above configuration, if a break occurs in the connecting pipe 4 to the reactor pressure vessel 3 in the dry well 1 and a loss of coolant accident occurs, first the non-condensation of nitrogen etc. sealed in the dry well 1 occurs. The gas is released from the lower end of the vent pipe 7 into the pool water 6 in the pressure suppression chamber 5. Subsequently, the coolant and steam flowing out from the fracture port are similarly ejected into the pool water 6 through the vent pipe 7, but the steam is condensed and the pressure within the containment vessel is prevented from increasing.
In addition, leaked coolant is also contained within the containment vessel to prevent it from being released into the environment.
ここで、前記非凝縮性ガスはプール水6中で、+
* M ′1’L ’:K ’i’ (7)
”l” JEE力!Ii’l M 5 (7) % @
?A IL 8 ■
することになる。そして、冷却材喪失事故時に破断口か
ら冷却材の流出が続き蒸気を連続的に供給するため比較
的短時間でドライウェル1内の非凝縮性ガスが殆ど圧力
抑制室5の気相部へ移行した状態となりこの圧力抑制室
5内はかなり高圧となる。さらにこの圧力抑制窯内圧力
にベント管7の水頭差を加えたものがドライウェル圧力
となる。従って冷却材喪失事故時の格納容器内圧力はド
ライウェル1と圧力抑制室5の気相部の体積比に強く支
配されることになる。Here, the non-condensable gas is +
*M '1'L': K'i' (7)
"l" JEE power! Ii'l M 5 (7) % @
? AIL 8 ■ I will do it. In the event of a loss of coolant accident, coolant continues to flow out from the fracture opening and steam is continuously supplied, so that most of the non-condensable gas in the dry well 1 is transferred to the gas phase of the pressure suppression chamber 5 in a relatively short time. As a result, the pressure inside the pressure suppression chamber 5 becomes quite high. Furthermore, the dry well pressure is obtained by adding the water head difference of the vent pipe 7 to this pressure suppression kiln internal pressure. Therefore, the pressure inside the containment vessel at the time of a loss of coolant accident is strongly controlled by the volume ratio of the gas phase portions of the dry well 1 and the pressure suppression chamber 5.
即ら、ドライウェル1内の自由空間体積に対して圧力抑
制室5の気相部の体積が大きければ大きい程、冷却材喪
失事故後の原子炉格納容器の内圧を低く抑えることが可
能となる。That is, the larger the volume of the gas phase portion of the pressure suppression chamber 5 relative to the free space volume within the dry well 1, the lower the internal pressure of the reactor containment vessel after a loss of coolant accident can be suppressed. .
[背頭技術の問題点]
以上の構成において、冷却材喪失事故時の格納容器内圧
力はドライウェルと圧力抑制室の気相部の体積比に強く
依存するため原子炉の大型化に伴なってドライウェル体
積が増大した場合これに見合うだけの圧力抑ill室の
気相部体積を確保する必要があり、蒸気凝縮を安定に行
うためのプール水母も増加することが、考慮される。[Problems with dorsal head technology] In the above configuration, the pressure inside the containment vessel in the event of a loss of coolant accident strongly depends on the volume ratio of the dry well and the gas phase of the pressure suppression chamber. When the volume of the dry well increases, it is necessary to ensure a volume of the gas phase in the pressure suppression chamber corresponding to this increase, and it is considered that the pool water base for stably condensing steam will also increase.
よって、格納容器の大型化もしくは最高使用圧力の上昇
につながるためこれが設計上の問題となる恐れがあった
。This may lead to an increase in the size of the containment vessel or an increase in the maximum operating pressure, which may pose a design problem.
[発明の目的]
本発明の目的は原子炉格納容器の圧力抑制室空間部を圧
力開放型とすることにより従来のドライウェル対圧力抑
制室空間部の体積比に拘束されない格納設備を提供し格
納容器及び原子炉建屋の縮小と格納容器の耐H−条件の
緩和を同時に可能とすることにある。[Object of the Invention] The object of the present invention is to provide a containment facility that is not restricted by the conventional volume ratio of the dry well to the pressure suppression chamber space by making the pressure suppression chamber space of the reactor containment vessel a pressure open type. The objective is to simultaneously reduce the size of the vessel and reactor building and to ease the H-resistance conditions of the containment vessel.
[発明の概要〕
本発明は、原子炉圧力容器と、この原子炉圧力容器を格
納する原子炉格納容器と、この原子炉格納容器の底部に
固定されかつ原子炉圧力よあきを支持する原子炉ペデス
タルと、前記原子炉圧力容器の下部に形成され内部に冷
却材を保有する圧力抑制室と、前記原子炉圧力容器の上
部に形成されたドライウェルと、このドライウェルに上
方を開放しかつ下方を圧力抑制室内の冷却材中に開放し
たベント管とから成る原子炉格納設備において、前記圧
力抑制室内と前記原子炉格納容器外とを連通させる連通
配管を原子炉格納容器の下部に設け、この連通配管には
前記圧力抑制室内の圧力が設51圧以上になった場合に
開動作する逃し弁と、この逃し弁が開動作した後設定時
間が経過した場合に閉動作する閉鎖弁とを設けて成るこ
とを特徴とする原子炉格納設備にある。[Summary of the Invention] The present invention provides a nuclear reactor pressure vessel, a reactor containment vessel that stores the reactor pressure vessel, and a nuclear reactor that is fixed to the bottom of the reactor containment vessel and supports the reactor pressure. a pedestal, a pressure suppression chamber formed at the lower part of the reactor pressure vessel and containing a coolant therein, a dry well formed at the upper part of the reactor pressure vessel, and an upper part open to the dry well and a lower part opened to the dry well. In reactor containment equipment consisting of a vent pipe that opens into the coolant in a pressure suppression chamber, a communication pipe that communicates the pressure suppression chamber with the outside of the reactor containment vessel is provided in the lower part of the reactor containment vessel, and this The communication piping is provided with a relief valve that opens when the pressure in the pressure suppression chamber exceeds the set pressure, and a closing valve that closes when a set time elapses after the relief valve opens. A nuclear reactor containment facility is characterized by comprising:
[発明の実施例1
以下、本発明の第1実施例を第1図を参照して説明する
。第1図は本発明の第1の実施例を示す概略系統図であ
り、原子炉圧力容器13及び接続配管14とこれに付属
する弁その他の機器等(図示せず)を収容したドライウ
ェル11に隣接してプール水16を貯溜した圧力抑制室
15が設けれている。圧力抑制室15の空間部には排気
η110へ通じる連通配管18が接続され、さらにこの
連通配管18には冷却材喪失事故直後、圧力抑制室15
の空間部へ移行した非凝縮性ガスを急速に放出するため
の逃し弁19及び格納容器内の雰囲気が事故侵艮期間に
わたって環境へ開放されるのを防止するための閉鎖弁2
0が備えられている。[Embodiment 1 of the Invention A first embodiment of the invention will be described below with reference to FIG. 1. FIG. 1 is a schematic system diagram showing a first embodiment of the present invention, in which a dry well 11 houses a reactor pressure vessel 13, a connecting pipe 14, and associated valves and other equipment (not shown). A pressure suppression chamber 15 in which pool water 16 is stored is provided adjacent to. A communication pipe 18 leading to the exhaust η110 is connected to the space of the pressure suppression chamber 15, and the communication pipe 18 is connected to the pressure suppression chamber 15 immediately after the coolant loss accident.
a relief valve 19 for rapidly releasing the non-condensable gas that has migrated into the space; and a closing valve 2 for preventing the atmosphere inside the containment vessel from being released to the environment during the accident invasion period.
0 is provided.
なお逃し弁19はラブチャーディスク等であっても目的
は達することができる。Note that the purpose can be achieved even if the relief valve 19 is a loveture disk or the like.
冷却剤喪失事故が発生した場合、ドライウェル11内に
封入されていた窒素等の非凝縮性ガスと破断口から流出
した冷却材及び蒸気がベント管17を介してプール水1
6中に放出され蒸気は凝縮されるが非凝縮性ガスは凝縮
されない。このため、圧力抑制室15の空間部へ非凝縮
性ガスは移行し圧力抑制室15内の圧力は上昇を続ける
。If a coolant loss accident occurs, the non-condensable gas such as nitrogen sealed in the dry well 11 and the coolant and steam flowing out from the fracture port will flow through the vent pipe 17 into the pool water 1.
6, the vapor is condensed, but the non-condensable gas is not condensed. Therefore, the non-condensable gas moves into the space of the pressure suppression chamber 15, and the pressure within the pressure suppression chamber 15 continues to rise.
その模圧力が逃し弁19の設定開放圧力まで上昇すると
圧力抑制室空間部の非凝縮性ガスは排気塔10を経て放
出されるため格納容器内の圧力はこれ以上上界すること
はない。従って、全ての非凝縮性ガスが圧力抑制室空間
部へ移行した状態に相当する耐圧性を確保する必要はな
く耐圧] 条件の緩和をはかることができる。When the simulated pressure rises to the set opening pressure of the relief valve 19, the non-condensable gas in the pressure suppression chamber space is discharged through the exhaust tower 10, so that the pressure inside the containment vessel does not rise any further. Therefore, it is not necessary to ensure pressure resistance corresponding to the state in which all the non-condensable gas has migrated to the pressure suppression chamber space, and the pressure resistance conditions can be relaxed.
また、このような事故後短時間のうらには、燃料棒から
の大量の核分裂生成ガスの放出はあり得ないことが明ら
かになっており、非凝縮性ガスを環境へ放出しても公衆
の安全をおびやかす恐れはない。Furthermore, it has become clear that a large amount of fission product gas could not be released from the fuel rods in the short time after such an accident, and releasing non-condensable gases into the environment would not harm the public. There is no risk of jeopardizing safety.
次に第2図を参照して本発明の第2の実施例を示す。こ
の第2の実施例は第1の実施例に示した原子炉格納容器
が複数基(図では2基)で共用する格納m設を具備した
ことを特徴としている。第2図において原子炉格納設備
の上部を形成し、かつ気密性及び耐圧性を有するドライ
ウェル41.4i内には原子炉圧力容器43.43が設
置され、この原子炉圧力容器43.43は原子炉ペデス
タル42.42の上部に据付けられている。またこのド
ライウェル41.41内には原子炉圧力容器43.43
への接続配管44.44とこれにイ1属する弁その他の
機器等(図示せず)が収容されている。またこのドライ
ウェル41.41に隣接して圧力抑制室45.45が設
けられており、この中には多量のプール水46.46が
貯部されている。そして前記ドライウェル41.41と
圧力抑制室45.45はベント管47.47で連通され
ておりこのベント管47.47の下端はプール水46.
46の中に開放されている。そして圧力抑制室25.2
5の空12!1部から排気塔10aへ通じている連通配
管28.28の途中には格納Mpi31へ分岐する配管
が弁32を介して設けられている。そしてこの連通配管
28.28には冷却材喪失事故直後、圧力抑制室25.
25の空間部へ移行した非凝縮性ガスを急速に放出する
ための逃し弁29.及び格納容器内の雰囲気が事故後長
期間にわたって環境へ開放されるのを防止するための閉
鎖弁30が設けられている。また、前記格納施設31は
非数基の格納施設の間に設置された共用建屋36内に収
容されている。そして、この共用建屋36には非常用ガ
ス処理装置であるブロア33.フィルタ34及びこれら
に給電する非常用電源(図示せず)が収納されている。Next, a second embodiment of the present invention will be described with reference to FIG. This second embodiment is characterized in that the reactor containment vessels shown in the first embodiment are equipped with containment facilities that are shared by a plurality of reactor containment vessels (two reactor containment vessels in the figure). In FIG. 2, a reactor pressure vessel 43.43 is installed in a dry well 41.4i that forms the upper part of the reactor containment facility and has airtightness and pressure resistance. It is installed on top of the reactor pedestal 42.42. Also, inside this dry well 41.41 is a reactor pressure vessel 43.43.
The connecting pipes 44, 44 and valves and other equipment (not shown) belonging thereto are accommodated. Further, a pressure suppression chamber 45.45 is provided adjacent to this dry well 41.41, and a large amount of pool water 46.46 is stored in this chamber. The dry well 41.41 and the pressure suppression chamber 45.45 are connected by a vent pipe 47.47, and the lower end of this vent pipe 47.47 is connected to the pool water 46.45.
It is open in 46. and pressure suppression chamber 25.2
A pipe branching to the storage Mpi 31 is provided via a valve 32 in the middle of the communication pipe 28.28 leading from the empty part 12!1 of the exhaust tower 10a. Immediately after the loss of coolant accident, the pressure suppression chamber 25.
A relief valve for rapidly releasing the non-condensable gas that has migrated into the space of 25. 29. A closing valve 30 is also provided to prevent the atmosphere inside the containment vessel from being released to the environment for a long period of time after the accident. Further, the storage facility 31 is housed in a common building 36 installed between several storage facilities. This common building 36 includes a blower 33, which is an emergency gas processing device. A filter 34 and an emergency power source (not shown) for feeding power thereto are housed.
以上の構成によって設計基準事故の範囲内における各機
器の作用は第1の実施例と同様となる。仮に何らかの原
因により設計基準事故を越えるような事故が発生し炉心
の損傷が進行して大量の核分裂生成ガスの放出と水・金
属反応による水素の発生及び格納容器内圧力の上昇が持
続するような場合には、配管28を通して排気塔から格
納容器内の雰囲気を放出し続けることは望ましくない。With the above configuration, the actions of each device within the scope of a design basis accident are the same as in the first embodiment. If for some reason an accident that exceeds the design basis accident occurs, damage to the reactor core progresses, and a large amount of fission gas is released, hydrogen is generated by water-metal reaction, and the pressure inside the containment vessel continues to rise. In some cases, it is not desirable to continue discharging the atmosphere inside the containment vessel from the exhaust tower through the pipe 28.
そこで原子炉格納容器内の放射能の存在を放射線モニタ
により監視しtIltJJ能高となった場合には弁30
を閉とし、ざらに弁32を間とし格納1A設31へ開放
することによって格納容器内圧力の上昇を緩和し核分裂
生成ガスの環境放出も抑止することができる。格納施設
1内は隣接する原子炉の運転停止にかかわりなく常に不
活性化しておくことが可能であり、蒸気炉心損傷時に又
大!1発生した水素を流入させてもそれだけでは可燃限
界に至ることはない。(水素分圧が上昇するのみ)一方
事故後艮期間にわたって水の放射線分解により発生する
Mlに対しては予め格納容器及び格納M設31内に設け
られたイグナイタ(可燃性ガスを電気的に燃焼させる装
置!f)35あるいは通常の可燃性ガス濃度制御系によ
り低濃度のうちに燃焼さゼることができるため格納容器
の健全性がおびやかされるおそれはない。Therefore, the presence of radioactivity in the reactor containment vessel is monitored by a radiation monitor, and if the level of radiation becomes high, the valve 30
By closing the valve 32 and opening it to the containment 1A facility 31 with the valve 32 in between, it is possible to alleviate the increase in the pressure inside the containment vessel and prevent the release of fission product gas to the environment. The inside of the containment facility 1 can be kept inert at all times regardless of the shutdown of the adjacent reactor, which can be used even if the steam reactor core is damaged. 1. Even if generated hydrogen is allowed to flow in, it will not reach the flammability limit by itself. (Hydrogen partial pressure only increases.) On the other hand, for the Ml generated by radiolysis of water during the period after the accident, an igniter (electrical combustion of flammable gas Since the combustible gas can be combusted at a low concentration using a 35 or ordinary combustible gas concentration control system, there is no risk of jeopardizing the integrity of the containment vessel.
このように格納施設31及びイグナイタ35は設計基準
事故を越えるような炉心111傷事故への対応能力を飛
躍的に向上させるものであるがその性格上安全グレード
とする必要がないため保安規定等の厳しい制約を受ける
こともなく施設間共用が容易でありさしたるコストの増
大なく設置可能である。In this way, the containment facility 31 and the igniter 35 will dramatically improve the ability to respond to core 111 damage accidents that exceed design basis accidents, but due to their nature, there is no need to make them safety grade, so safety regulations etc. It is not subject to severe restrictions, can be easily shared between facilities, and can be installed without a significant increase in cost.
また本実施例では格納施設31のみならず非常用ガス処
理装置33.34及びこれらに給電する非常用電源(図
示せず)等プラント間で共用可能な機器を収容する共用
建屋36を設けることによって共用による建屋容積の縮
小及び建設コスト・期間の低減が可能になる。In addition, in this embodiment, a common building 36 is provided to house not only the containment facility 31 but also equipment that can be shared between plants, such as emergency gas processing equipment 33, 34 and emergency power sources (not shown) that supply power to these equipment. Shared use makes it possible to reduce building volume and reduce construction costs and time.
ここで第3図に本発明の第3の実施例を示す概略系統図
を示す。第3図において原子炉格納設備の上部を形成し
、かつ気密性及び耐圧性を有するドライウェル41.4
1内には原子炉圧内容1 器43.43が設
置され、この原子炉圧力容器43゜43は原子炉ペデス
タル42.42の上部に据付けられている。またこのド
ライウェル41.4i内には原子炉圧力容器43.43
への接続配管44.44とこれに付属する弁その他の機
器等(図示せず)が収容されている。また、このドライ
ウェル41゜41に隣接して圧力抑制室45.45が設
けられており、この中には多量のプール水46.46が
貯溜されている。そして前記ドライウェル41.41と
圧力抑制室45.45はベント管47.47で連通され
ており、このベント管47.47の下端はプール水46
゜46の中に開放されている。そして、圧力抑制室45
、45の空間部から排気塔10bへ通じている連通配管
48.48の途中には各連通配管に接続する配管が弁5
2.52を介して分岐されている。そして、この連通配
管48.48には冷却材喪失事故直後、圧力抑制室45
の空間部へ移行して来た非凝縮性ガスを急速に放出する
ための逃し弁49及び格納容器内の雰囲気が事故後長期
間にわたって環境へ開放されるのを防止するための口】
4弁50が設けられている。Here, FIG. 3 shows a schematic system diagram showing a third embodiment of the present invention. In Fig. 3, a dry well 41.4 forms the upper part of the reactor containment facility and has airtightness and pressure resistance.
A reactor pressure vessel 43.43 is installed inside the reactor pressure vessel 43.43, and this reactor pressure vessel 43.43 is installed on top of the reactor pedestal 42.42. Also, inside this dry well 41.4i is a reactor pressure vessel 43.43.
The connecting pipes 44, 44 and associated valves and other equipment (not shown) are accommodated therein. Further, a pressure suppression chamber 45.45 is provided adjacent to this dry well 41.41, and a large amount of pool water 46.46 is stored in this chamber. The dry well 41.41 and the pressure suppression chamber 45.45 are communicated with each other by a vent pipe 47.47, and the lower end of this vent pipe 47.47 is connected to the pool water 46.
It is open to 46°. And the pressure suppression chamber 45
, 45 to the exhaust tower 10b, there is a valve 5 in the middle of the communication pipe 48, 48 that connects to each communication pipe.
2.52. Immediately after the coolant loss accident, the pressure suppression chamber 45 was installed in this communication pipe 48.48.
A relief valve 49 for rapidly discharging non-condensable gas that has migrated into the space, and a port for preventing the atmosphere inside the containment vessel from being released to the environment for a long period of time after the accident]
Four valves 50 are provided.
また、共用建屋56は被数基の格納施設の間に設置され
ている。そして、この共用建屋56には非常用ガス処理
装置であるブロア53.フィルタ54及びこれらに給電
する非常用電源(図示せず)が収納されている。Further, the common building 56 is installed between the storage facilities for the number of units. This common building 56 has a blower 53 which is an emergency gas processing device. A filter 54 and an emergency power source (not shown) for supplying power to the filter 54 are housed.
以上の構成によって、本発明の第3実施例ではプラント
間で共用する格納施設を設けるかわりに他プラントの原
子炉格納容器内へ事故発生プラントの原子炉格納容器内
雰囲気を放出することを特徴としている。これにより前
記第2の実施例と同様の安全上の機能が得られると同時
に共用の格納施設を設置する必要がなくなりより低廉な
コストにより設計が行えるという利点が(qられる。With the above configuration, the third embodiment of the present invention is characterized in that instead of providing a containment facility that is shared between plants, the atmosphere inside the reactor containment vessel of the plant where the accident occurred is released into the reactor containment vessel of another plant. There is. This provides the same safety functions as the second embodiment, and at the same time has the advantage that it is not necessary to install a shared storage facility, and the design can be made at a lower cost.
[1明の効果]
以上説明したように本発明によれば、原子炉格納容器の
圧力抑制室に大気に開放する連通管を設けたので、ドラ
イウェル対圧力抑制室空間部の体積比に拘束されない原
子炉格納設備を提供し、格納容器及び原子炉建屋の縮小
と格納容器の耐圧条件を緩和することができる。[1. Advantageous Effects] As explained above, according to the present invention, since the pressure suppression chamber of the reactor containment vessel is provided with a communication pipe that is open to the atmosphere, the volume ratio of the dry well to the pressure suppression chamber space is restricted. It is possible to reduce the size of the containment vessel and reactor building, and to ease the pressure resistance conditions of the containment vessel.
第1図から第3図はそれぞれ本発明の第1実施例から第
3実施例を示す原子炉格納容器の構成を示f概略系統図
であり、第4図は従来の原子炉格納容器の構成を示す概
略系統図である。
1 、11.21.41・・・ドライウェル2 、12
.22.42・・・原子炉ペデスタル3 、13.23
.43・・・原子炉圧力容器5、15.25.45・・
・圧力抑$り室6、1G、 26.46・・・プール水
7 、17.27.47.・・・ベント管18、28.
48・・・連通配管
19、29.49・・・逃し弁
20、30.50・・・閉鎖弁
代理人 弁理士 則 近 憲 佑
同 三 俣 弘 文第1図
〜) マ
第4図1 to 3 are schematic system diagrams showing the configuration of the reactor containment vessel showing the first to third embodiments of the present invention, respectively, and FIG. 4 is the configuration of the conventional reactor containment vessel. FIG. 1, 11.21.41...Drywell 2, 12
.. 22.42...Reactor pedestal 3, 13.23
.. 43...Reactor pressure vessel 5, 15.25.45...
・Pressure suppression chamber 6, 1G, 26.46...Pool water 7, 17.27.47. ...Vent pipes 18, 28.
48...Communication piping 19, 29.49...Relief valve 20, 30.50...Closing valve Agent Patent attorney Noriyuki Chika Yudo Hiroshi Mimata (Fig. 1~) Ma Fig. 4
Claims (1)
る原子炉格納容器と、この原子炉格納容器の底部に固定
されかつ原子炉圧力容器を支持する原子炉ペデスタルと
、前記原子炉圧力容器の下部に形成され内部に冷却材を
保有する圧力抑制室と、前記原子炉圧力容器の上部に形
成されたドライウェルと、このドライウェルに上方を開
放しかつ下方を圧力抑制室内の冷却材内に開放したベン
ト管とから成る原子炉格納設備において、前記圧力抑制
室内と前記原子炉格納容器外とを連通させる連通配管を
原子炉可能容器の下部に設け、この連通配管には前記圧
力抑制室内の圧力が設計圧以上になった場合に開動作す
る逃し弁と、この逃し弁が開動作した後設定時間が経過
した場合に閉動作する閉鎖弁とを設けて成ることを特徴
とする原子炉格納設備。(1) A reactor pressure vessel, a reactor containment vessel that stores the reactor pressure vessel, a reactor pedestal fixed to the bottom of the reactor containment vessel and supporting the reactor pressure vessel, and the reactor pressure vessel A pressure suppression chamber formed at the bottom of the vessel and containing a coolant therein, a dry well formed at the top of the reactor pressure vessel, and an upper part open to the dry well and a lower part containing the coolant in the pressure suppression chamber. In a reactor containment facility consisting of a vent pipe open to the inside, a communication pipe that communicates the pressure suppression chamber with the outside of the reactor containment vessel is provided at the lower part of the reactor vessel, and this communication pipe includes the pressure suppression chamber and the outside of the reactor containment vessel. An atom characterized by being provided with a relief valve that opens when the pressure in the room exceeds the design pressure, and a closing valve that closes when a set time has elapsed after the relief valve opened. Furnace containment equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184305A JPH0675110B2 (en) | 1985-08-23 | 1985-08-23 | Reactor containment facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184305A JPH0675110B2 (en) | 1985-08-23 | 1985-08-23 | Reactor containment facility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6244687A true JPS6244687A (en) | 1987-02-26 |
JPH0675110B2 JPH0675110B2 (en) | 1994-09-21 |
Family
ID=16151007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60184305A Expired - Lifetime JPH0675110B2 (en) | 1985-08-23 | 1985-08-23 | Reactor containment facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0675110B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229390A (en) * | 1987-03-18 | 1988-09-26 | 株式会社日立製作所 | Nuclear reactor |
US4927596A (en) * | 1988-08-12 | 1990-05-22 | Electric Power Research Institute, Inc. | Self-actuating pressure relief device and method for nuclear containment |
US5106571A (en) * | 1989-03-20 | 1992-04-21 | Wade Gentry E | Containment heat removal system |
JPH10260293A (en) * | 1997-03-17 | 1998-09-29 | Shimizu Corp | Reactor facility |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59184887A (en) * | 1983-04-06 | 1984-10-20 | 株式会社東芝 | Depressing device of reactor container |
JPS60127495A (en) * | 1983-12-13 | 1985-07-08 | 日本原子力事業株式会社 | Decompression device for pressure inhibiting chamber in multi-plant |
-
1985
- 1985-08-23 JP JP60184305A patent/JPH0675110B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59184887A (en) * | 1983-04-06 | 1984-10-20 | 株式会社東芝 | Depressing device of reactor container |
JPS60127495A (en) * | 1983-12-13 | 1985-07-08 | 日本原子力事業株式会社 | Decompression device for pressure inhibiting chamber in multi-plant |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229390A (en) * | 1987-03-18 | 1988-09-26 | 株式会社日立製作所 | Nuclear reactor |
US5087408A (en) * | 1987-03-18 | 1992-02-11 | Kenji Tominaga | Nuclear power facilities |
US4927596A (en) * | 1988-08-12 | 1990-05-22 | Electric Power Research Institute, Inc. | Self-actuating pressure relief device and method for nuclear containment |
US5106571A (en) * | 1989-03-20 | 1992-04-21 | Wade Gentry E | Containment heat removal system |
JPH10260293A (en) * | 1997-03-17 | 1998-09-29 | Shimizu Corp | Reactor facility |
Also Published As
Publication number | Publication date |
---|---|
JPH0675110B2 (en) | 1994-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3984282A (en) | Passive containment system for a nuclear reactor | |
US3865688A (en) | Passive containment system | |
US4050983A (en) | Passive containment system | |
US4210614A (en) | Passive containment system | |
JP2004333357A (en) | Reactor containment vessel | |
JPH08248166A (en) | Reactor container cooling facility | |
JPS6244687A (en) | Nuclear reactor containing facility | |
JP2011252837A (en) | Heat removal system and method for reactor container | |
EP4047618A1 (en) | Nuclear power plant | |
Bertini | Descriptions of selected accidents that have occurred at nuclear reactor facilities | |
JPS6375691A (en) | Natural circulation type reactor | |
JP2823984B2 (en) | Containment vessel cooling system | |
JPH0377096A (en) | Vent device of reactor container | |
JPS63289488A (en) | Pressure controller for containment vessel of nuclear reactor | |
JP2685902B2 (en) | Primary containment vessel | |
JPS61241698A (en) | Combustible gas concentration controller for nuclear reactorcontainer | |
JPS61213795A (en) | Controller for concentration of combustible gas of reactor containment vessel | |
JPH0371091A (en) | Nuclear reactor facilities | |
JPH05172980A (en) | Reactor container | |
JPH05215886A (en) | Emergency reactor core cooling system | |
JPS61191995A (en) | Containment facility for nuclear reactor | |
JPH07151891A (en) | Nuclear reactor containment vessel | |
JPS6298293A (en) | Containing facility for nuclear reactor | |
Sato et al. | iB1350: Part 1—A Generation III. 7 Reactor iB1350 and Defense in Depth (DiD) | |
JPS63109394A (en) | Reactor-container protective device |