JPS62179387A - Granulator for immobilized microorganism - Google Patents

Granulator for immobilized microorganism

Info

Publication number
JPS62179387A
JPS62179387A JP2034786A JP2034786A JPS62179387A JP S62179387 A JPS62179387 A JP S62179387A JP 2034786 A JP2034786 A JP 2034786A JP 2034786 A JP2034786 A JP 2034786A JP S62179387 A JPS62179387 A JP S62179387A
Authority
JP
Japan
Prior art keywords
microorganisms
disk
droplets
solution
rotating disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2034786A
Other languages
Japanese (ja)
Other versions
JPH0246196B2 (en
Inventor
Jiichi Nishimoto
西本 滋一
Hironori Nakamura
裕紀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2034786A priority Critical patent/JPS62179387A/en
Publication of JPS62179387A publication Critical patent/JPS62179387A/en
Publication of JPH0246196B2 publication Critical patent/JPH0246196B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain spherical immobilized microorganisms having uniform particle diameters, by dripping a mixture of microorganims and a water-soluble organic high polymer compound from a rotary disc type dropping means having a specific structure to an insolubilizer solution. CONSTITUTION:A mixed solution of microorganisms and a water-soluble organic high polymer compound is dripped in liquid drops from a dropping means to an insolubilizer solution. The dropping means consists of a disc 32 equipped with a great number of peak teeth 68 on its outer periphery, a driving mechanism (electric motor 54, rotary driving force transmission mechanism 64, etc.,) to rotate the disc in a horizontal plane continuously and a mechanism to feed a mixed solution to the surface of the disc 32.

Description

【発明の詳細な説明】 〔童秦上の利用分野〕 本発明は固定化微生物の造粒装置に係り、特に径が均一
で球状の固定化微生物を生産するのに適した造粒装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application by Dohata] The present invention relates to a granulation device for immobilized microorganisms, and particularly to a granulation device suitable for producing spherical immobilized microorganisms with uniform diameter.

〔従来の技術〕[Conventional technology]

固定化微生物は、微生物をポリアクリルアミドなどの有
機高分子化合物の内部に包括固定したものである。この
固定化微生物は、包括固定した微生物の生化学作用によ
って、被処理物に対して所望の反応を促進させる目的で
使用される。この目的のためには、固定化微生物が反応
容器内で被処理物と効率よく接触する必要があり、強度
、流動性などの観点から、固定化微生物は均一な径を備
えた球状のものであることが望ましい。
Immobilized microorganisms are microorganisms that are encircled and immobilized inside an organic polymer compound such as polyacrylamide. This immobilized microorganism is used for the purpose of promoting a desired reaction in the object to be treated through the biochemical action of the entrapment-immobilized microorganism. For this purpose, it is necessary for the immobilized microorganisms to efficiently contact the material to be treated within the reaction vessel, and from the viewpoint of strength and fluidity, the immobilized microorganisms must be spherical with a uniform diameter. It is desirable that there be.

球状の固定化微生物を製造する方法としては、液相造粒
法が知られている。この方法は、微生物と水溶性有機高
分子化合物の混合液を液滴として、不溶化剤溶液中に滴
下し、不溶化剤の作用によって、前記液滴を固定化し造
粒する。
A liquid phase granulation method is known as a method for producing spherical immobilized microorganisms. In this method, droplets of a liquid mixture of microorganisms and a water-soluble organic polymer compound are dropped into an insolubilizing agent solution, and the droplets are fixed and granulated by the action of the insolubilizing agent.

ところで、この液相造粒法においては、所望の径を備え
た均一な球状の液滴を形成することが難しく、工業的規
模での量産が困難であるという問題点があった。
However, this liquid phase granulation method has a problem in that it is difficult to form uniform spherical droplets with a desired diameter, making mass production on an industrial scale difficult.

例えば、前記混合液を一定の静圧を付与しながらノズル
先端から自然落下させる場合には、比較的真球に近い液
滴を形成できる。しかし、この方法では生産能率が悪く
、また、所望の直径の液滴を形成するためには、ノズル
の孔径をその都度最適なものに変える必要があり、各種
サイズのノズルを準備しなげればならない。
For example, when the liquid mixture is allowed to fall naturally from the tip of the nozzle while applying a constant static pressure, droplets that are relatively close to perfect spheres can be formed. However, this method has poor production efficiency, and in order to form droplets with the desired diameter, it is necessary to change the nozzle hole diameter to the optimal one each time, and it is necessary to prepare nozzles of various sizes. It won't happen.

また、回転式のノズルを用いて遠心力の作用で液滴を分
断する場合には前記静圧のみによるノズルに比べて生産
能率は向上し、回転速度を調節することによって、液滴
の径を任意に選択できるという利点がある。しかし、こ
の方法では、多数のノズルを円周上に配置する装置構造
が複雑となり、生産能率も十分ではない。また、内径1
〜3+mma度のノズルには、混合液や、混合液中の異
物が閉塞しやすいので、ノズルの保守に頻繁な手間が必
要となり、このことが生産能率をさらに低下させる原因
となっていた。
In addition, when using a rotating nozzle to break up droplets using centrifugal force, production efficiency is improved compared to a nozzle that uses only static pressure, and by adjusting the rotational speed, the diameter of the droplets can be adjusted. It has the advantage that it can be selected arbitrarily. However, in this method, the device structure in which a large number of nozzles are arranged on the circumference becomes complicated, and the production efficiency is not sufficient. Also, inner diameter 1
A nozzle of ~3+mm degree is easily clogged by the mixed liquid and foreign matter in the mixed liquid, so frequent maintenance of the nozzle is required, which further reduces production efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明の目的は、前記従来技術の問題点を解消し、均
一な径を備えた球状の固定化微生物を、簡単な構造で、
かつ能率よく造粒することができる装置を堤供すること
にある。
An object of the present invention is to solve the problems of the prior art, and to produce spherical immobilized microorganisms with a uniform diameter in a simple structure.
Another object of the present invention is to provide an apparatus that can perform granulation efficiently.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、装置構造が簡単で、生産能率がよく、かつ
、保守にも手間を必要としない方法として、回転円板法
を試みた。この方法は、水平に回転する円板上に前記混
合液を供給し、回転円板の遠心力によって、混合液を円
板の周縁部から液滴として飛散させることを基本とする
。この方法によれば、多数のノズルを必要としないので
、装置構造が簡単であり、生産能率もよい。また、保守
も容易である。しかし、実験によれば、円板の周縁部か
ら飛散する液滴の粒径にばらつきが大きく、均一な径を
得ることが困難であることが判明した。
The present inventor tried the rotating disk method as a method that has a simple device structure, high production efficiency, and requires no maintenance. This method is based on supplying the liquid mixture onto a horizontally rotating disk, and scattering the liquid mixture as droplets from the periphery of the disk by the centrifugal force of the rotating disk. According to this method, since a large number of nozzles are not required, the device structure is simple and production efficiency is high. Also, maintenance is easy. However, according to experiments, it has been found that the particle sizes of the droplets scattered from the peripheral edge of the disk vary widely and it is difficult to obtain a uniform diameter.

この原因は、回転円板上に供給した混合液が、円板周縁
部の無数の不特定位置から、慣性力と遠心力の相互作用
により、円周に対してほぼ接線方向に離散するため、混
合液の表面張力や円板表面の条件がきわめて微妙に影響
するためと考えられた。
The reason for this is that the liquid mixture supplied onto the rotating disk is dispersed from countless unspecified positions around the circumference of the disk approximately in the tangential direction to the circumference due to the interaction of inertial force and centrifugal force. This is thought to be due to the extremely subtle effects of the surface tension of the liquid mixture and the conditions of the disk surface.

したがって、本発明は上記回転円板法の長所を生かしつ
つ、液滴径の均一化を図るために、回転円板の外周に多
数の尖頭歯を備えるようにしたことを特徴とする。
Therefore, the present invention is characterized in that, while taking advantage of the advantages of the rotating disk method, a large number of pointed teeth are provided on the outer periphery of the rotating disk in order to make the droplet diameter uniform.

〔作 用〕[For production]

円板上に供給された混合液は、円板の回転によって、遠
心力を受け、円板上で外周方向に移動する。この混合液
は外周に設けた尖頭歯に達し、その先端から液滴として
飛散する。尖頭歯の先端は蜆角状に形成されているので
、液離れが良好である。また、多数の尖頭歯の先端は相
互に離間しているので、飛散する液滴は整列して落下し
、落下途中で合体して、粒径にばらつきが生じることも
少ない。
The liquid mixture supplied onto the disk is subjected to centrifugal force due to the rotation of the disk, and moves toward the outer circumference on the disk. This liquid mixture reaches the pointed teeth provided on the outer periphery and scatters as droplets from the tip. Since the tip of the pointed tooth is formed into a serpentine shape, liquid separation is good. Furthermore, since the tips of the many pointed teeth are spaced apart from each other, the scattered droplets fall in an aligned manner, and are less likely to coalesce in the middle of falling, resulting in variations in particle size.

〔実施 例〕〔Example〕

本発明の実施例を図面に基いて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図は装置系統図を示し、微生物を多電に含んだ下水
処理場からの活性汚泥を有機高分子化合物内に固定化す
る場合を示す。管路10から供給した活性汚泥と管路1
2かも供給した凝集剤とを混合機14で混合し、凝集に
よってフロック化した活性汚泥を管路16から恒温槽1
8に導き、温度を一定にしたのち、管路20からライン
ミキサ22に供給する。また、管路24からは、固定化
剤として用いるアクリルアミドモノマを主体に、添加物
としてのアルギン酸ソーダ、架橋剤、重合促進剤の溶液
を前記恒温槽18に導き、温度を一定にしたのち、管路
26からラインミキサ22に供給する。ラインミキサ2
2で攪拌混合した活性汚泥と固定化微生物の混合液は管
路28から、固定化槽30内に設けた回転円板32上に
供給する。
FIG. 1 shows a system diagram of an apparatus, in which activated sludge from a sewage treatment plant containing microorganisms is immobilized in an organic polymer compound. Activated sludge supplied from pipe 10 and pipe 1
The activated sludge, which is flocculated by flocculation, is mixed with the flocculant supplied by 2.
8 and after making the temperature constant, it is supplied to a line mixer 22 through a conduit 20. Further, from the pipe line 24, a solution containing mainly acrylamide monomer used as a fixing agent, sodium alginate as additives, a crosslinking agent, and a polymerization accelerator is led to the constant temperature bath 18, and after keeping the temperature constant, the solution is from line 26 to line mixer 22. line mixer 2
The mixed solution of activated sludge and immobilized microorganisms stirred and mixed in step 2 is supplied from the pipe 28 onto a rotating disk 32 provided in the immobilization tank 30.

固定化槽30内には前記アクリルアミドモノマを重合さ
せる重合開始剤と、アルギン酸ソーダと反応する塩化カ
ルシウムの不溶化剤溶液34が張り込んである。重合開
始剤溶液は管路36から補給し、塩化カルシウム溶液は
管路38から補給する。
The immobilization tank 30 is filled with a polymerization initiator for polymerizing the acrylamide monomer and an insolubilizer solution 34 of calcium chloride that reacts with sodium alginate. The polymerization initiator solution is supplied through conduit 36, and the calcium chloride solution is supplied through conduit 38.

固定化槽30には前記回転円板32が不溶化剤溶液の液
面よりも高い位置に設けられ水平回転する。
The rotating disk 32 is provided in the immobilization tank 30 at a position higher than the liquid level of the insolubilizing agent solution and rotates horizontally.

また、固定化槽30内には攪拌機40を設け、不溶化剤
溶液を攪拌する。
Further, a stirrer 40 is provided in the immobilization tank 30 to stir the insolubilizing agent solution.

前記、回転円板32上に供給された混合液は、円板の回
転遠心力によって、円板の外周から液滴として飛散し、
固定化槽30内の不溶化剤溶液34中に滴下される。滴
下した液滴は不溶化剤との反応によって不溶化し造粒さ
れる。造粒された固定化微生物は、攪序機40の1駆動
によって、不溶化剤溶液34とともに流動、同伴して、
管路42かも溢流して回収槽44に送られる。回収槽4
4にはスクリーンパケット46が設けられ、このパケッ
ト46に固定化微生物が回収される。不溶化剤溶液は回
収槽44と固定化槽30とを連絡する管路48の途中に
設けたポンプ50によって固定化槽30に戻し、循環利
用する。回収槽44には冷却器52が付設されており、
前記固定化槽30内での重合反応等によって昇温した不
溶化剤溶液を冷却して一定の温度に保つ。  。
The liquid mixture supplied onto the rotating disk 32 is scattered as droplets from the outer periphery of the disk due to the rotational centrifugal force of the disk,
It is dropped into the insolubilizing agent solution 34 in the immobilization tank 30. The dropped droplets are insolubilized and granulated by reaction with the insolubilizing agent. The granulated immobilized microorganisms flow and are entrained together with the insolubilizer solution 34 by one drive of the stirring device 40,
The conduit 42 also overflows and is sent to the collection tank 44. Collection tank 4
4 is provided with a screen packet 46, into which the immobilized microorganisms are collected. The insolubilizing agent solution is returned to the immobilization tank 30 by a pump 50 provided in the middle of the pipe 48 connecting the recovery tank 44 and the immobilization tank 30, and is recycled. A cooler 52 is attached to the recovery tank 44,
The insolubilizing agent solution whose temperature has been raised due to a polymerization reaction or the like in the immobilization tank 30 is cooled and maintained at a constant temperature. .

第2図に固定化槽30の細部構造を示す。槽下部には、
回転円板32を回転させる電動機54および攪拌機40
を回転させる電動機56が配置されている。また、槽中
央部に立設した支柱58内に2!!tl構造で回転軸6
0.62が設けられ、スプロケットチェーン64.66
を介して、回転円板32、攪拌機40が回転、嘔動する
FIG. 2 shows the detailed structure of the immobilization tank 30. At the bottom of the tank,
Electric motor 54 and stirrer 40 that rotate rotary disk 32
An electric motor 56 is arranged to rotate the. In addition, 2! ! Rotation axis 6 with tl structure
0.62 is provided, sprocket chain 64.66
The rotating disk 32 and the agitator 40 rotate and oscillate through the .

回転円板32は第3図(イ)に示すように、外周に多数
の尖頭歯68を備えており、一定方向に連続回転する。
As shown in FIG. 3(A), the rotating disk 32 has a large number of pointed teeth 68 on its outer periphery, and continuously rotates in a fixed direction.

したがって、円板上のほぼ中央位置に供給された混合液
は、円板の回転遠心力によって外周方向に移動し、尖頭
歯68の先端から液滴として離散する。その離散状況は
回転円板が矢印Aの右廻りの場合、矢印Bの1IlIL
等を示す。液滴の径は、混合液の比重、粘度、供給量、
回転円板の外・径、回転数、尖頭歯の形状寸法などによ
って、微妙に変化する。したがって、これらのファクタ
ーを適宜選択し、統一することによって所望の均一な径
の液滴を形成させることができる。第3図(ロ)に示す
尖頭歯68の拡大図において、尖頭歯の元部@pと先端
部の角度θが、均一な液滴径を得る上で重要なファクタ
ーとなる。実、験によれば、元部幅pは所望液滴径の2
〜lO倍、角度θは30゜〜60°が好ましいことが判
明している。
Therefore, the mixed liquid supplied to the approximately central position on the disk moves toward the outer circumference due to the rotational centrifugal force of the disk, and is dispersed as droplets from the tips of the pointed teeth 68. The discrete situation is that when the rotating disk rotates clockwise as indicated by arrow A, 1IlIL as indicated by arrow B
etc. The droplet diameter depends on the specific gravity, viscosity, supply amount, and
It varies slightly depending on the outer diameter of the rotating disc, the number of revolutions, the shape and dimensions of the pointed teeth, etc. Therefore, by appropriately selecting and unifying these factors, droplets with a desired uniform diameter can be formed. In the enlarged view of the pointed tooth 68 shown in FIG. 3(b), the angle θ between the base @p and the tip of the pointed tooth is an important factor in obtaining a uniform droplet diameter. In fact, according to experiments, the base width p is 2 times the desired droplet diameter.
It has been found that the angle θ is preferably 30° to 60°.

@4図に回転円板32の各種側断面形状を示す。Figure @4 shows various side cross-sectional shapes of the rotating disk 32.

図中(イ)は、円板上面が平坦である標準形状を示す。In the figure, (A) shows a standard shape in which the top surface of the disk is flat.

(ロ)は尖頭歯68の上面が傾斜し先端に向うにつれて
側断面が先細りとなる形状である。実験によれば(イ)
に示したものより、(ロ)に示したものが均一な粒径を
得る上で有利であることが確認できた。eうは円板上面
が凸に傾斜している形状であり、混合液の尖頂歯68へ
の移動に遠心力以外に混合液自体の自重による移動作用
があるので回転円板の回転速度を小さくでき、消費動力
を節減できる。に)は円板上面が凹に傾斜している形状
であり、中央凹部に混合液の液溜め機能がある。したが
って、回転円板への混合液の供給量が微少変動しても、
この変動を吸収する作用があり、均一な粒径を得る上で
有利である。第5図に上記第4図で示した各種側断面形
状の回転円板における液滴の落下状況を垂直投影面にモ
デル化して示す。第5図(イ)eつに)はそれぞれ、第
4図の(イ)(うに)に同一符号で対応する。(イ)の
場合には液滴の飛散方向は水平であり、不溶化剤溶液の
液面70に到達する時点では、残存する小さな水平分力
Hと重力による垂直分力Gとの合力Fによって液面に衝
突する。(ハ)の場合には液滴の飛散方向は斜め下方で
あり、液面70に到達した時点でも、かなり大きな水平
分力Hを残存しており、垂直分力Gも(うの場合よりも
大きい。
(B) has a shape in which the upper surface of the pointed tooth 68 is inclined and the side cross section tapers toward the tip. According to the experiment (a)
It was confirmed that the method shown in (b) is more advantageous in obtaining a uniform particle size than the method shown in (b). e is a shape in which the upper surface of the disk is sloped convexly, and in addition to the centrifugal force, the movement of the mixed liquid toward the apex tooth 68 is caused by the weight of the mixed liquid itself, so the rotational speed of the rotating disk is reduced. It is possible to reduce power consumption. 2) has a shape in which the top surface of the disk is sloped concavely, and the central concave part functions as a reservoir for the mixed liquid. Therefore, even if the amount of mixed liquid supplied to the rotating disk changes slightly,
It has the effect of absorbing this variation and is advantageous in obtaining uniform particle diameters. FIG. 5 shows a model of droplet falling on a rotating disk having various side cross-sectional shapes shown in FIG. 4 on a vertical projection plane. 5 (a) e uni) respectively correspond to (a) (uni) in FIG. 4 with the same reference numerals. In the case of (a), the scattering direction of the droplets is horizontal, and at the time of reaching the liquid level 70 of the insolubilizing agent solution, the liquid drops due to the resultant force F of the remaining small horizontal component force H and the vertical component force G due to gravity. collide with a surface. In case (c), the direction of droplet scattering is diagonally downward, and even when it reaches the liquid level 70, there remains a fairly large horizontal component H, and the vertical component G is also higher than in case (c). big.

したがって、その合力Fがかなり大きい状態で液面に衝
突する。に)の場合には、液滴の飛散方向は斜め上方で
あり、滞空の段階で水平分力がOとなり、液面70に到
達する時点では(イ)と同一の垂直分力Gのみとなる。
Therefore, it collides with the liquid surface in a state where the resultant force F is quite large. In the case of (A), the scattering direction of the droplet is diagonally upward, and the horizontal component force becomes O at the stage of staying in the air, and when it reaches the liquid level 70, only the vertical component force G is the same as in (A). .

液滴は滞空時間が長いほど、その表面張力によって真球
になろうとする性質があり、また、液面との衝突時には
慣性力が小さいほど衝撃力が少なく、液滴の変形も小さ
くなる。
The longer a droplet stays in the air, the more it tends to become a perfect sphere due to its surface tension, and when it collides with the liquid surface, the smaller the inertial force, the less impact force and the smaller the deformation of the droplet.

したがって、真球に近い形状の液滴を不溶化剤化溶液中
に落下させるためには、滞空時間が長く、清液時の慣性
力も最も小さい第4図に)に示した側断面形状の回転円
板が理論上は好適である。第5図に)の別位置に示した
液面70A近傍に液面を維持するならば、水平分力、垂
直分力とも小さい時点で、かつ、滞空時間も比較的長い
状態で液滴を液面に到達させることができるので、より
一層、液滴の球状化が期待できる。
Therefore, in order to make a droplet with a shape close to a perfect sphere fall into the insolubilizing solution, it is necessary to have a rotating circle with a side cross-sectional shape shown in Fig. A plate is theoretically preferred. If the liquid level is maintained near the liquid level 70A shown at a different position in Fig. 5), the droplet will be released when both the horizontal component force and the vertical component force are small and the residence time is relatively long. Since the droplets can reach the surface, it is expected that the droplets will become even more spherical.

第6図に本発明に係る固定化槽の他の実施例を示す。本
実施例においては、回転円板32の上面側に回転軸60
を取り付け、電@機54によって回転円板32を回転さ
せる。回転@60の中間には、混合液の供給筒72を設
け、この供給筒72に管路28からの混合液を供給する
。不溶化剤溶液34の攪拌は固定化槽30の上方から挿
入した攪拌機74によって行う。本実施例によれば、固
定化槽30の構造を簡略化することができる。
FIG. 6 shows another embodiment of the immobilization tank according to the present invention. In this embodiment, a rotating shaft 60 is provided on the upper surface side of the rotating disk 32.
is attached, and the rotating disk 32 is rotated by the electric @ machine 54. A supply cylinder 72 for the mixed liquid is provided in the middle of the rotation @60, and the mixed liquid from the pipe line 28 is supplied to this supply cylinder 72. The insolubilizing agent solution 34 is stirred by a stirrer 74 inserted from above the immobilization tank 30. According to this embodiment, the structure of the immobilization tank 30 can be simplified.

実験例 下記の条件によって実験を行った。Experimental example The experiment was conducted under the following conditions.

微 生 物・・・活性汚泥(微生物濃度20,000η
/l)有機高分子化合物・・・アクリルアミドモノマ溶
液(添加剤としてアルギン酸ソーダ、架橋剤、 重合促進剤を添加したもの) 混 合 液・・・微生物50%、有機高分子化合物50
% 不溶化剤溶液・・・2%CaC/!、2  、重合開始
剤回転円板・・・直径200mm、尖頭歯の先端角、変
45°、尖頭歯の元部幅10朋、歯数 64、回転数120 rl)m 混合液供給量・・・480mJ/min上記の条件で造
粒した固定化微生物を下記式の定義てよって求めた変形
係数の総平均は1.18であった。
Microorganisms...activated sludge (microbial concentration 20,000η
/l) Organic polymer compound...Acrylamide monomer solution (added with sodium alginate, crosslinking agent, and polymerization accelerator as additives) Mixed solution...50% microorganisms, 50% organic polymer compound
% Insolubilizer solution...2% CaC/! , 2. Polymerization initiator rotating disk...diameter 200 mm, tip angle of pointed tooth, angle of 45°, base width of pointed tooth 10 mm, number of teeth 64, number of rotations 120 rl) m Mixed liquid supply amount ...480 mJ/min The total average of the deformation coefficients of the immobilized microorganisms granulated under the above conditions using the definition of the following formula was 1.18.

また、長径が平均長径2.6咽に対して±30%の範囲
内にある固定化微生物の累計総重量は、造粒した全固定
化微生物の総重量に対して82%であった。
Further, the cumulative total weight of the immobilized microorganisms whose major axis was within ±30% of the average major axis of 2.6 mm was 82% of the total weight of all the granulated immobilized microorganisms.

一方、比較のために回転円板として尖頭歯を備えない真
円板を用いた以外は上記と同一の条件で造粒した固定化
微生物の変形係数の総平均1.32であった。また、長
径が平均長径2−9 rmに対して±30%の範囲内に
ある固定化微生物の累計総重量は造粒した全固定化微生
物の総重量に対して61%であった。
On the other hand, for comparison, the total average deformation coefficient of the immobilized microorganisms granulated under the same conditions as above was 1.32, except that a true circular plate without pointed teeth was used as the rotating disk. Further, the cumulative total weight of the immobilized microorganisms whose major axis was within ±30% of the average major axis of 2-9 rm was 61% of the total weight of all the granulated immobilized microorganisms.

以上の実検結果からも明らかなように、本発明に係る外
周に多数の尖頭歯を備えた回転円板を用いた造粒装置に
よれば、変形係数が小さく(すなわち、真球に近<)、
かつ、粒径の比較的均一な固定化微生物を造粒すること
ができる。
As is clear from the above actual test results, according to the granulating device according to the present invention using a rotating disk equipped with a large number of pointed teeth on the outer periphery, the deformation coefficient is small (that is, close to a true sphere). <),
In addition, immobilized microorganisms with relatively uniform particle size can be granulated.

なお、前記実施例装置では、重合開始剤を不溶化剤溶液
の一部として用いるように説明したが、これに限らず、
重合開始剤溶液を例えば第1図に示すラインミキサ22
に全量又は一部供給し、あらかじめ混合液と混合したの
ち、回転円板に供給してもよい。このようにすれば、液
滴が形成される過程でも有機高分子化合物の重合反応が
進行するので、均一な径の球状を造粒するという本発明
の目的をより一層達成しやすい。ただし、重合開始剤を
混合液に添加するタイミングが早かったり、添加量が多
い場合には、重合反応が過大に進行し、ラインミキサや
回転円板に重合物が付着、固形化して正常な運転を持続
することができなくなる場合があるので注意が必要であ
る。
In addition, in the above-mentioned example apparatus, it was explained that the polymerization initiator was used as a part of the insolubilizing agent solution, but the invention is not limited to this.
For example, the line mixer 22 shown in FIG.
It is also possible to supply all or a portion of the mixture to the rotating disk after mixing it with the liquid mixture in advance. In this way, the polymerization reaction of the organic polymer compound proceeds even during the process of forming droplets, so that the object of the present invention, which is to form spherical particles with a uniform diameter, can be more easily achieved. However, if the timing of adding the polymerization initiator to the mixed liquid is too early or the amount added is too large, the polymerization reaction will proceed excessively, and the polymer will adhere to the line mixer and rotating disk and solidify, resulting in normal operation. Care must be taken, as it may become impossible to maintain the

〔発明の効果〕〔Effect of the invention〕

本発明に係る造粒装置は混合液の液滴を滴下する手段の
構造が簡単であり、固定化微生物の生産能率がよい。ま
た、造粒した固定化微生物は径が均一であり、形状も真
球に近いので取扱い性にすぐれている。
The granulation device according to the present invention has a simple structure of the means for dropping droplets of the mixed liquid, and has good production efficiency of immobilized microorganisms. In addition, the granulated immobilized microorganisms have a uniform diameter and a shape close to a perfect sphere, so they are easy to handle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す装置系統図、第2図は本
発明に係る固定化槽の側断面図、第3図は本発明に係る
回転円板を示す平面図、第4図は回転円板の各種形状を
例示する側断面図、第5図は各種回転円板から飛散する
液滴の落下状況を垂直投影面にモデル化して示した説明
図、第6図は本発明に係る固定化槽の他の実施例を示す
側断面図である。 22・・・ラインミキサ、  28・・・混合液の供給
管路30・・・固定化槽、   32・・・回転円板3
4・・・不溶化剤溶液、 40・・・攪拌機44・・・
回収槽、      46・・・スクリーンバケット5
0・・・ポンプ、    54・・・電動機68・・・
尖頭歯。 第1図 14゜ 30−・−■定を槽 第2図 第3図
FIG. 1 is a system diagram of an apparatus showing an embodiment of the present invention, FIG. 2 is a side sectional view of an immobilization tank according to the present invention, FIG. 3 is a plan view showing a rotating disk according to the present invention, and FIG. 5 is a side sectional view illustrating various shapes of rotating disks, FIG. 5 is an explanatory diagram showing the fall situation of droplets scattered from various rotating disks modeled on a vertical projection plane, and FIG. 6 is an illustration of the present invention. FIG. 7 is a side sectional view showing another example of such an immobilization tank. 22... Line mixer, 28... Mixed liquid supply pipe line 30... Immobilization tank, 32... Rotating disk 3
4... Insolubilizer solution, 40... Stirrer 44...
Collection tank, 46...screen bucket 5
0...Pump, 54...Electric motor 68...
pointed teeth. Fig. 1 14゜30-・- ■ tank Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 微生物と水溶性有機高分子化合物の混合液を液滴として
滴下する手段と、この滴下した液滴を不溶化剤溶液中で
反応させ不溶化する固定化槽とを備えた固定化微生物の
造粒装置において、前記液滴の滴下手段は、外周に多数
の尖頭歯を備えた円板と、この円板を水平面で連続回転
させる駆動機構とを備え、回転する円板上に前記混合液
を供給するようにしたことを特徴とする固定化微生物の
造粒装置。
An apparatus for granulating immobilized microorganisms, comprising a means for dropping a liquid mixture of microorganisms and a water-soluble organic polymer compound in the form of droplets, and an immobilization tank for reacting and insolubilizing the dropped droplets in an insolubilizing agent solution. , the droplet dropping means includes a disk having a large number of pointed teeth on the outer periphery, and a drive mechanism that continuously rotates this disk in a horizontal plane, and supplies the liquid mixture onto the rotating disk. A granulation device for immobilized microorganisms, characterized in that:
JP2034786A 1986-02-03 1986-02-03 Granulator for immobilized microorganism Granted JPS62179387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2034786A JPS62179387A (en) 1986-02-03 1986-02-03 Granulator for immobilized microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2034786A JPS62179387A (en) 1986-02-03 1986-02-03 Granulator for immobilized microorganism

Publications (2)

Publication Number Publication Date
JPS62179387A true JPS62179387A (en) 1987-08-06
JPH0246196B2 JPH0246196B2 (en) 1990-10-15

Family

ID=12024592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2034786A Granted JPS62179387A (en) 1986-02-03 1986-02-03 Granulator for immobilized microorganism

Country Status (1)

Country Link
JP (1) JPS62179387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395520A (en) * 1992-06-12 1995-03-07 Kyosan Denki Co., Ltd. Fuel filter contained in a fuel tank

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232882A (en) * 1985-08-06 1987-02-12 Mitsui Toatsu Chem Inc Production of immobilized enzyme and apparatus used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232882A (en) * 1985-08-06 1987-02-12 Mitsui Toatsu Chem Inc Production of immobilized enzyme and apparatus used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395520A (en) * 1992-06-12 1995-03-07 Kyosan Denki Co., Ltd. Fuel filter contained in a fuel tank

Also Published As

Publication number Publication date
JPH0246196B2 (en) 1990-10-15

Similar Documents

Publication Publication Date Title
JP3691768B2 (en) Sludge treatment method
KR100709946B1 (en) Mixing apparatus
JP2002537091A (en) Method and apparatus for producing solid particles from a liquid medium
EP0510675B1 (en) Method of producing aqueous solution of slaked lime and apparatus therefor
KR20010013116A (en) Device for mixing and dissolving solid granules in a liquid, in particular for producing nitrophosphate fertilisers
KR101197543B1 (en) Container for mixing and degassing equipment, and mixing and degassing equipment
CA2589462C (en) Apparatus and method for aerating waste water
EP0338967A1 (en) Apparatus for treating slurry by gas-liquid contact method
JPS62179387A (en) Granulator for immobilized microorganism
CN107901263A (en) A kind of plastic cement glue mixing defoaming device
KR890001288B1 (en) Process of preparing immobilized enzymes and apparatus for preforming the process
US4828997A (en) Apparatus and process for producing gel beads of microbial cells or enzymes
CN206746541U (en) A kind of chemical reaction kettle exchanged beneficial to levels material
CN207591684U (en) A kind of high-speed mixer
CN208759779U (en) A kind of dual horizontal vibration blender
JPS62100287A (en) Granulation apparatus for immobilized microorganism
CN2280553Y (en) Powder-liquid centrifugal atomizing attach-gathering garnulator
CN112123568A (en) Production process of concrete
US4255391A (en) Apparatus for introducing and mixing a liquid in an essentially liquid medium
CN205323719U (en) Sprocket drive formula reactor mixing device
SU1693051A1 (en) Method of producing granulated biocatalyst
CN107745457A (en) A kind of plastic cement glue mixing debubbling method
CN220300544U (en) Softening structure of full-automatic integrated equipment for industrial water pretreatment
CN213533210U (en) Concrete mixing device is used in construction
CN210022122U (en) Printing ink reaction device