JPS62100287A - Granulation apparatus for immobilized microorganism - Google Patents
Granulation apparatus for immobilized microorganismInfo
- Publication number
- JPS62100287A JPS62100287A JP24016885A JP24016885A JPS62100287A JP S62100287 A JPS62100287 A JP S62100287A JP 24016885 A JP24016885 A JP 24016885A JP 24016885 A JP24016885 A JP 24016885A JP S62100287 A JPS62100287 A JP S62100287A
- Authority
- JP
- Japan
- Prior art keywords
- rotating body
- hollow rotating
- nozzle
- droplets
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は固定化微生物の造粒装置に係り、特に径が均一
で球状の固定化微生物を生産するのに適した造粒装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a granulation device for immobilized microorganisms, and particularly to a granulation device suitable for producing spherical immobilized microorganisms with uniform diameter.
固定化微生物は、微生物をポリアクリルアミドなどの高
分子ゲ゛ル内に包括固定したものである。Immobilized microorganisms are microorganisms that are encircled and immobilized within a polymer gel such as polyacrylamide.
この固定化微生物は、包括固定した微生物の生化学作用
てよって、被処理物に対して所望の反応を促進させる目
的で使用される。この目的のためては、固定化微生物が
反応器内で被処理物と効率よく接触する必要があり、強
度、流動性などの観点から、固定化微生物は均一な径を
備えた球状のものが特に要望されている。The immobilized microorganisms are used for the purpose of promoting a desired reaction in the object to be treated through the biochemical action of the immobilized microorganisms. For this purpose, it is necessary for the immobilized microorganisms to efficiently contact the material to be treated in the reactor, and from the viewpoint of strength and fluidity, the immobilized microorganisms should be spherical with a uniform diameter. Especially requested.
球状の固定化微生物を製造する方法としては、液相造粒
法が知られている。この方法は、微生物と固定化剤の混
合液を液滴として、ゲル化剤溶液中に滴下し、ゲ゛ル化
剤の作用によって、前記液滴をゲル化し造粒する。A liquid phase granulation method is known as a method for producing spherical immobilized microorganisms. In this method, droplets of a mixed solution of microorganisms and a fixative are dropped into a gelling agent solution, and the droplets are gelled and granulated by the action of the gelling agent.
ところで、この液相造粒法においては、所望の径を備え
た均一な球状の液滴を形成することが難しく、結果とし
て、ゲ゛ル化剤溶液中で造粒される固定化微生物は寸法
形状にバラつきが太き(、工集的規模での量産が困誰で
あるという問題点があった。By the way, in this liquid phase granulation method, it is difficult to form uniform spherical droplets with a desired diameter, and as a result, the immobilized microorganisms granulated in the gelling agent solution have a small size. There was a problem that there was wide variation in shape (and it was difficult to mass-produce on an industrial scale).
すなわち、固定化微生物は、その用途、使用態様によっ
て直径が1〜6フの範囲から選ばれた所定の均一な径の
真球状のものが要求される。例えば、微生物と固定化剤
の混合液を一定の静圧を付与しながらノズル先端から自
然落下させる場合には、比較的真球に近い液滴を形成で
きる。しかし、この方法では生産能率が悪く、また、所
望の直径の液滴を形成するためには、ノズルの孔径をそ
の都度最適なものに変える必要があり、各種サイズのノ
ズルを準備しなければならない。さらに、前記、混合液
の組成によって、粘度や表面張力が変化するので、同一
のノズルを用いれば同一の径の液滴を形成できる保証も
ない。That is, the immobilized microorganism is required to have a perfect spherical shape with a predetermined uniform diameter selected from a range of 1 to 6 ft depending on its purpose and manner of use. For example, when a liquid mixture of microorganisms and a fixative is allowed to fall naturally from the tip of a nozzle while applying a constant static pressure, droplets that are relatively close to perfect spheres can be formed. However, this method has poor production efficiency, and in order to form droplets with the desired diameter, the nozzle hole diameter must be changed to the optimum size each time, and nozzles of various sizes must be prepared. . Furthermore, since the viscosity and surface tension vary depending on the composition of the liquid mixture, there is no guarantee that droplets of the same diameter can be formed using the same nozzle.
また、回転式のノズルを用いて遠心力の作用で液滴を噴
射する場合には、生産能率もよく、回転速度を調節する
ことによって、液滴の径を任意に選択することができる
。しかし、この方法ではノズル先端から流出する混合液
を分断して液滴とするためには、大きな遠心力が必要と
なり、液滴には大きな初速妾が与えられる。Furthermore, when a rotary nozzle is used to spray droplets by the action of centrifugal force, production efficiency is good, and the diameter of the droplets can be arbitrarily selected by adjusting the rotational speed. However, in this method, a large centrifugal force is required to break up the liquid mixture flowing out from the nozzle tip into droplets, and the droplets are given a large initial velocity force.
このため、液滴は偏平状に変形して、メパ″ル化剤溶液
中に着水する。したがって、回転ノズルを用いる方法に
よって製造した固定化微生物は真球状を保つことが難し
い。For this reason, the droplets are deformed into a flat shape and land in the mepalizing agent solution. Therefore, it is difficult for the immobilized microorganisms produced by the method using a rotating nozzle to maintain a true spherical shape.
本発明の目的は、前記従来技術の問題点を解消し、均一
な径を備えた球状の固定化微生物を能率よく造粒するこ
とができる装置を提供すること:・こある。An object of the present invention is to solve the problems of the prior art described above and to provide an apparatus capable of efficiently granulating spherical immobilized microorganisms having a uniform diameter.
本発明に係る固定化微生物の造粒装置は、液滴の滴下手
段として混合液を収容する中空回転体の外周に複数本の
ノズルを取り付け、この中空回転体を水平面で断続的に
回転させるように1−たことを特徴とする。The granulation device for immobilized microorganisms according to the present invention includes a plurality of nozzles attached to the outer periphery of a hollow rotary body that accommodates a mixed liquid as droplet dropping means, and the hollow rotary body is intermittently rotated in a horizontal plane. It is characterized by:
中空回転体を断続的に回転させると始動、停止の瞬間に
ノズル先端に大きな加速度が作用し、ノズル先端に流出
した混合液が分断される。分断された混合液のl液滴に
は、遠心力がほとんど作用していないので、初速度が小
さい。このため、液滴が偏平状に変形することがなく、
球状を保持して下方のゲル化剤溶液中に滴下される。When the hollow rotating body is rotated intermittently, a large acceleration is applied to the nozzle tip at the moment of starting and stopping, and the liquid mixture flowing out to the nozzle tip is divided. Since almost no centrifugal force acts on the separated droplets of the mixed liquid, their initial velocity is small. Therefore, the droplet does not deform into a flat shape,
It is dropped into the gelling agent solution below while maintaining its spherical shape.
本発明の実施例装置を第1図、第2図に示す。 An embodiment of the present invention is shown in FIGS. 1 and 2.
10は本発明に係る液滴の滴下手段であり、中空回転体
12の上部中心には中空の回転軸14が取付けてあり、
この回転軸14は軸受16によって支承されている。回
転軸14の中空部13には、混合液の供給管18が挿通
しており、その開口端が、中空回転体12の中空部13
に達している。10 is a droplet dropping means according to the present invention, and a hollow rotating shaft 14 is attached to the center of the upper part of the hollow rotating body 12.
This rotating shaft 14 is supported by a bearing 16. A mixed liquid supply pipe 18 is inserted into the hollow part 13 of the rotating shaft 14 , and its open end is connected to the hollow part 13 of the hollow rotating body 12 .
has reached.
また、供給管18の上端には混合液の注入罐20が設げ
である。中空回転体10の下方には、その外周位置に複
数本のノズル22が同心円に等間隔で取付けである。ま
た、中空回転体12の所定位置には、ビン24を支点と
して回動自在とされたクランク26の一端が連結し、ク
ランク26の他端は回転アーム28に連結している。こ
の同転アーム28は無段変速機構を備えたモータ30に
よって、水平面で一方向に回転する。Further, an injection can 20 for the mixed liquid is provided at the upper end of the supply pipe 18. A plurality of nozzles 22 are attached to the lower part of the hollow rotating body 10 at equal intervals on the outer periphery thereof in a concentric circle. Further, one end of a crank 26 that is rotatable about the bin 24 is connected to a predetermined position of the hollow rotating body 12, and the other end of the crank 26 is connected to a rotating arm 28. This rotary arm 28 is rotated in one direction on a horizontal plane by a motor 30 equipped with a continuously variable transmission mechanism.
前記、中空回転体12の下方には、ダル化槽32が配置
されており、その内容にゲル化剤溶液34が張り込んで
ある。A dulling tank 32 is arranged below the hollow rotating body 12, and a gelling agent solution 34 is filled in the tank.
上記の構成において、モータ3oを駆動すると、回転ア
ーム28が一方向に水平回転し、クランク26が作動す
ることによって、中空回転体12が正逆方向に交互に回
動する。この状態で、注入罐20に微生物と固定化剤の
混合液を注入すると、混合液は供給W2B内を落下し、
中空回転体12の中空部】3に達する。中空部13内に
達した混合液は、中空回転体120回動作用によって遠
心力を付与され、外周方向に移動し5、Ai前記、ノズ
ル22から外部に排出されようとする。この際、中空回
転体120回動によって、ノズル22の先端の混合液に
水平力が作用し、混合液は分断され、液滴となる。この
分断は、中空回転体120回転方向が変る瞬間に主とし
て行われる。In the above configuration, when the motor 3o is driven, the rotary arm 28 horizontally rotates in one direction, and the crank 26 is operated, thereby causing the hollow rotating body 12 to alternately rotate in forward and reverse directions. In this state, when a mixed solution of microorganisms and fixative is injected into the injection can 20, the mixed solution falls inside the supply W2B,
The hollow part of the hollow rotating body 12 reaches ]3. The liquid mixture that has reached the inside of the hollow portion 13 is subjected to centrifugal force by the 120-time operation of the hollow rotating body, moves toward the outer circumference, and is about to be discharged to the outside from the nozzle 22. At this time, horizontal force is applied to the mixed liquid at the tip of the nozzle 22 by the rotation of the hollow rotating body 120, and the mixed liquid is divided into droplets. This division is mainly performed at the moment when the rotation direction of the hollow rotating body 120 changes.
以下、その詳細を第3図および第4図:で基づき説明す
る。The details will be explained below with reference to FIGS. 3 and 4.
第3図は中空回転体12の正逆回動状況を示したもので
ある。図中、34はクランク26が中空回転体12と連
結する支点を、36はクランク26が回転アーム28と
連結する支点を意味する。FIG. 3 shows the forward and reverse rotation of the hollow rotating body 12. In the figure, 34 means a fulcrum at which the crank 26 is connected to the hollow rotating body 12, and 36 is a fulcrum at which the crank 26 is connected to the rotating arm 28.
支点36の回転軌跡Aに相応して、支点34は軌跡Bの
範囲で移動し、中空回転体12が回動する。Corresponding to the rotation locus A of the fulcrum 36, the fulcrum 34 moves within the range of a locus B, and the hollow rotating body 12 rotates.
このときの、支点36の回転角度θと支点34の回動角
度θ1、角速度ω1、角加速度a1 との関係を第4
図(イ)(ロ)(ハ)に示す。第4図C)で明らかなよ
うに、支点360回転角度θが0(2π)、またはπの
ときに、角加速度oL1 の絶対値が最大となる。At this time, the relationship between the rotation angle θ of the fulcrum 36, the rotation angle θ1 of the fulcrum 34, the angular velocity ω1, and the angular acceleration a1 is expressed as
Shown in Figures (a), (b), and (c). As is clear from FIG. 4C), the absolute value of the angular acceleration oL1 is maximum when the rotation angle θ of the fulcrum 360 is 0 (2π) or π.
したがって、この角加速度が、水平衝撃力として作用し
、前記ノズル22の先端の混合液が分断され、液滴とな
る。Therefore, this angular acceleration acts as a horizontal impact force, and the liquid mixture at the tip of the nozzle 22 is divided into droplets.
このときの角速度ω1 は第4図(ロ)で明らかなよう
に、はぼ0であるため、液滴には遠心力がほとんど作用
しない。このため、落下する液滴の初速度はきわめて小
さく、液滴はほぼ真球状を保持して落丁する。Since the angular velocity ω1 at this time is approximately 0, as is clear from FIG. 4(b), almost no centrifugal force acts on the droplet. For this reason, the initial velocity of the falling droplet is extremely small, and the droplet falls while maintaining a substantially perfect spherical shape.
以上のように、本実施例では中空回転体12力−所定角
度の範囲で回動する際、その回転方向が変る・瞬間の角
υ口速度a、1が最大で、角速)fω1が0となるタイ
ミングに真球状の液滴を効率よく形成するものである。As described above, in this embodiment, when the hollow rotary body 12 rotates within a predetermined angle range, the direction of rotation changes; the instantaneous angular velocity a is the maximum, and the angular velocity) fω1 is 0. This method efficiently forms spherical droplets at the timing of .
ノズル22の先端からの液滴ば、下方のメル化槽32内
に落下し、ゲ゛ル化剤溶液34の作用によって真球状を
保持tまたまま安定な固定化微生物となる。The droplets from the tip of the nozzle 22 fall into the melting tank 32 below, and become stable immobilized microorganisms that maintain their true spherical shape due to the action of the gelling agent solution 34.
下肥の条件によって実験を行った。 Experiments were conducted depending on the conditions of the manure.
微生物・・・活性汚泥(微生物濃度20,000my/
l、)
固定化剤・・・0.6%アルギン酸ナトリウム混合液・
・・微生物5096、固定化剤50%ゲ′ル化剤溶液・
・・ 2%CaCl2中空回転体 回転半径・・・・・
・ 20喘回動角度・・・・・・ 80゜
、ノズルの長す・・・・・・ 51
実験1
0ユ2雪のノズルを用い、回転アームの回転数を0,3
00.500.700 rpmと変化させて1、固定化
微生物のベレットを造粒した。回転アームの回転数に対
するベレットの径の関係を第5図、ベレットの変形率の
関係を第6図に示す。なお、ベレットの変形率は下式に
よって求めた。Microorganisms...activated sludge (microbial concentration 20,000my/
l,) Fixing agent: 0.6% sodium alginate mixture.
・・Microorganism 5096, fixing agent 50% gelling agent solution・
・・2%CaCl2 hollow rotating body Rotation radius・・・・・・
・20 rotation angle... 80 degrees, nozzle length... 51 Experiment 1 Using a 0 Yu 2 snow nozzle, the number of rotations of the rotating arm was 0,3
The pellets of immobilized microorganisms were granulated at 0.500.700 rpm. FIG. 5 shows the relationship between the diameter of the pellet and the number of rotations of the rotary arm, and FIG. 6 shows the relationship between the deformation rate of the pellet. Note that the deformation rate of the pellet was determined by the following formula.
実験2
回転アームの回転数を50 Orpmとし、ノズルの口
径を、1.1.5.2.2,51と変化させて、固定化
微生物のベレットを造粒した。ノズルの口径に対するベ
レットの径の関係を第7図に示す。Experiment 2 The number of rotations of the rotating arm was set to 50 Orpm, and the diameter of the nozzle was changed to 1, 1, 5, 2, 2, 51, and pellets of immobilized microorganisms were granulated. FIG. 7 shows the relationship between the diameter of the pellet and the diameter of the nozzle.
実験3
比較のために、中空回転体を連続的に回転させ、遠心力
の作用により、液滴を形成する実情を行った。その他の
実験条件は実、験Iと同じ条件で行った。中空回転体の
回転数【対するベレットの径の関係を第8図、ベレット
の変形率の関係を@9図に示す。Experiment 3 For comparison, a hollow rotating body was rotated continuously and droplets were formed by the action of centrifugal force. The other experimental conditions were actually the same as those in Experiment I. The relationship between the rotation speed of the hollow rotating body and the diameter of the pellet is shown in Figure 8, and the relationship between the deformation rate of the pellet is shown in Figure 9.
なお、第5図〜第9図において、各ポイントは各実験に
おける平均値を示し、各ポイントの上下に付した線幅は
、信頼率95%の信頼区間を示したものである。In FIGS. 5 to 9, each point indicates an average value in each experiment, and the line widths above and below each point indicate a confidence interval with a confidence rate of 95%.
第5図と第8図を比較すると、中空回転体の可動または
回転数が増大するにつれて、ベレットの径が小さくなる
傾向は同じであるが、本発明に係る第5図の場合には、
回転アームの回転数が一定の場合にベレットの径のバラ
つきが小さいことカーわかる。Comparing FIG. 5 and FIG. 8, it can be seen that as the movable or rotational speed of the hollow rotating body increases, the diameter of the pellet decreases in the same manner, but in the case of FIG. 5 according to the present invention,
It can be seen that when the rotation speed of the rotating arm is constant, the variation in the diameter of the pellet is small.
また、第6図と第9図を比較すると、本発明に係る第6
図の場合、回転アームの回転数の変ずヒに関係なく、ベ
レットの変形率は1.0〜1.3の範囲にちり、安定し
た真球状のベレットが得られることがわかる。一方、従
来技術に係る第9図の場合、中空回転体の回転数が増大
するにつれて、変形率が大きくなり偏平状のベレットが
多くなることを示している。Moreover, when comparing FIG. 6 and FIG. 9, it is found that
In the case of the figure, it can be seen that the deformation rate of the pellet is within the range of 1.0 to 1.3 regardless of the change in the rotational speed of the rotary arm, and a stable, perfectly spherical pellet can be obtained. On the other hand, in the case of FIG. 9 according to the prior art, it is shown that as the rotational speed of the hollow rotating body increases, the deformation rate increases and the number of flat pellets increases.
第7図から(げ、ノズルの口径が小さいほど、べレット
の径が小さくなり、そのパラつきも小さくなることがわ
かる。From FIG. 7, it can be seen that the smaller the diameter of the nozzle, the smaller the diameter of the pellet, and the smaller its fluctuation.
したがって、本実施例の実施に当っては、混合液の粘度
、表面張力を考、憲しつつ、回転アームの回転数や、ノ
ズルの口径を適宜選択することによって、ばらつきが小
さい所望の径の真球状の固定化微生物を造粒することが
できる。Therefore, in carrying out this example, the desired diameter with small variations can be achieved by appropriately selecting the rotational speed of the rotating arm and the diameter of the nozzle while taking into consideration the viscosity and surface tension of the mixed liquid. It is possible to granulate perfectly spherical immobilized microorganisms.
前記、実施例においては、中空回転体12に取り付ける
ノズル22の方向を鉛直方向としたが、第io図に示す
ように水平方向に取り付けてもよい。また、第11図に
示すように、中空回転体12の中心部から周囲のノズル
22に向かって円錐状の斜面を設け、混合液が各ノズル
に均一に移動しやすくするようにしてもよい。In the embodiment described above, the nozzle 22 attached to the hollow rotating body 12 was installed in the vertical direction, but it may be attached in the horizontal direction as shown in FIG. io. Further, as shown in FIG. 11, a conical slope may be provided from the center of the hollow rotating body 12 toward the surrounding nozzles 22 to facilitate uniform movement of the mixed liquid to each nozzle.
中空回転体を正逆方向に交互に回動させる駆動機構は、
前記回転アームとクランクを用いたり/り機構に限らず
、例えば、中空回転体にモータを直結し、電気的制御に
よって中空回転体を回動させる機構であってもよい。The drive mechanism that rotates the hollow rotating body alternately in forward and reverse directions is
The present invention is not limited to the mechanism using the rotary arm and crank, but may be a mechanism in which a motor is directly connected to the hollow rotary body and the hollow rotary body is rotated by electrical control.
また、中空回転体は前記正逆方向に交互に回動させる場
合に限らず、ステッピングモータなトラ用いて、例えば
45°ずつ一方向に断続的に回転させるようにしてもよ
い。Further, the hollow rotating body is not limited to being rotated alternately in the forward and reverse directions, but may be rotated intermittently in one direction, for example, by 45 degrees, using a stepping motor.
本発明によれば、均一な径を備えた球状の固定化微生物
を能率よ(造粒することができる。According to the present invention, spherical immobilized microorganisms having a uniform diameter can be efficiently (granulated).
第1図は本発明の実施例と示す斜視図、第2図は本発明
に係る中空回転体を例示する側断面図、第3図は中空回
転体の回動状態を示す説明図、第4図(イ)(ロ)(ハ
)はそれぞれ回転アームの回転に対応する中空回転体の
回動角度θ1、角速度ω1、角加速度a1 の関係を
示すグラフ、第5図ないし第7図は本発明に係る装置を
用いた場合の実験結果を示すグラフ、第8図、第9図は
従来技術に係る連続回転体を用いた場合の実験結果を示
すグラフ、第10図、第11図は本発明に係る中空回転
体の他の構造例を示す側断面図である。
10・・・滴下手段、 12・・・中空回転体18
・・・混合液供給管、 22・・・ノズル26・・・ク
ランク、 28・・・回転アーム32・・・ゲル化
槽、 34・・・ゲル化剤溶液。
第1図
第2図
第3図
「2
第4図
第8図 第9図
中90啼ム1本の0転数(rpm) 中
空ロ膏ム体の口机数(rprn)第10図
第11図FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a side cross-sectional view illustrating a hollow rotating body according to the present invention, FIG. 3 is an explanatory view showing the rotating state of the hollow rotating body, and FIG. Figures (a), (b), and (c) are graphs showing the relationship between the rotation angle θ1, angular velocity ω1, and angular acceleration a1 of the hollow rotating body corresponding to the rotation of the rotary arm, respectively, and Figures 5 to 7 are graphs showing the relationship between 8 and 9 are graphs showing the experimental results when using a continuous rotating body according to the prior art, and FIGS. 10 and 11 are graphs showing the experimental results when using the device according to the present invention. FIG. 3 is a side sectional view showing another structural example of the hollow rotating body according to the invention. 10...Dripping means, 12...Hollow rotating body 18
... Mixed liquid supply pipe, 22 ... Nozzle 26 ... Crank, 28 ... Rotating arm 32 ... Gelling tank, 34 ... Gelling agent solution. Fig. 1 Fig. 2 Fig. 3 2 Fig. 4 Fig. 8 Fig. 9 Zero rotation number (rpm) of one 90 mm in the figure Number of openings of the hollow gypsum body (rprn) Fig. 10 Fig. 11 figure
Claims (1)
する手段と、この滴下した液滴をゲル化剤溶液中で反応
させゲル化するゲル化槽とを備えた固定化微生物の造粒
装置において、前記液滴の滴下手段は、外周に複数本の
ノズルを備え、内部に前記混合液を収容可能な中空回転
体と、この中空回転体を水平面で断続的に回転させる駆
動機構とによつて構成されたことを特徴とする固定化微
生物の造粒装置。An apparatus for granulating immobilized microorganisms, comprising a means for dropping a liquid mixture of microorganisms and an immobilizing agent as droplets from a nozzle, and a gelling tank for reacting and gelling the dropped droplets in a gelling agent solution. In the above, the droplet dropping means includes a hollow rotary body having a plurality of nozzles on the outer periphery and capable of accommodating the mixed liquid inside, and a drive mechanism that intermittently rotates the hollow rotary body in a horizontal plane. A granulation device for immobilized microorganisms, characterized in that it is configured as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24016885A JPS62100287A (en) | 1985-10-28 | 1985-10-28 | Granulation apparatus for immobilized microorganism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24016885A JPS62100287A (en) | 1985-10-28 | 1985-10-28 | Granulation apparatus for immobilized microorganism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62100287A true JPS62100287A (en) | 1987-05-09 |
JPH038758B2 JPH038758B2 (en) | 1991-02-06 |
Family
ID=17055502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24016885A Granted JPS62100287A (en) | 1985-10-28 | 1985-10-28 | Granulation apparatus for immobilized microorganism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62100287A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02290233A (en) * | 1989-04-28 | 1990-11-30 | Mitsubishi Kakoki Kaisha Ltd | Manufacturing device for granular gel |
JPH0334800U (en) * | 1989-08-10 | 1991-04-04 | ||
JP2012020223A (en) * | 2010-07-14 | 2012-02-02 | Seiko Epson Corp | Apparatus for manufacturing gel particle and method for manufacturing gel particle |
-
1985
- 1985-10-28 JP JP24016885A patent/JPS62100287A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02290233A (en) * | 1989-04-28 | 1990-11-30 | Mitsubishi Kakoki Kaisha Ltd | Manufacturing device for granular gel |
JPH0334800U (en) * | 1989-08-10 | 1991-04-04 | ||
JP2012020223A (en) * | 2010-07-14 | 2012-02-02 | Seiko Epson Corp | Apparatus for manufacturing gel particle and method for manufacturing gel particle |
Also Published As
Publication number | Publication date |
---|---|
JPH038758B2 (en) | 1991-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1169125B1 (en) | Rotating surface of revolution reactor with shearing mechanisms | |
US3310612A (en) | Encapsulating method and apparatus | |
CN1620340A (en) | Material coating device | |
JP2002537091A (en) | Method and apparatus for producing solid particles from a liquid medium | |
JPS62100287A (en) | Granulation apparatus for immobilized microorganism | |
CN1140099A (en) | Method of, and apparatus for, agitating treatment liquid | |
US20050238746A1 (en) | Apparatus, system and method for making hydrogel particles | |
KR900005497B1 (en) | An arrangment in a mixing machine | |
JPS6232882A (en) | Production of immobilized enzyme and apparatus used therefor | |
US3987021A (en) | Process utilizing a stirring reactor | |
US3594277A (en) | Process for fermenting hydrocarbons | |
EP0216182A2 (en) | Apparatus and process for producing gel beads of microbial cells or enzyme | |
US2232444A (en) | Catalyst carrier forming machine | |
US4022820A (en) | Solidification and crystallization of materials | |
CN215028228U (en) | Batching jar with reciprocating swing mechanism | |
JPS62179387A (en) | Granulator for immobilized microorganism | |
IE40259B1 (en) | Process and device for spraying molten material | |
US3357798A (en) | Centrifugal apparatus for obtaining chemical reactions | |
JP2006305441A (en) | Agitation defoaming apparatus | |
JP2508609Y2 (en) | Mixer | |
CN211725663U (en) | Shaking feeding stirrer | |
CN209968270U (en) | Heating and mixing device | |
JPH0542294B2 (en) | ||
RU2826440C1 (en) | Apparatus for granulating loose components | |
JPS62100288A (en) | Production apparatus for microorganism-containing capsule |