JPS62177166A - Laser beam thermal spraying method - Google Patents
Laser beam thermal spraying methodInfo
- Publication number
- JPS62177166A JPS62177166A JP61018980A JP1898086A JPS62177166A JP S62177166 A JPS62177166 A JP S62177166A JP 61018980 A JP61018980 A JP 61018980A JP 1898086 A JP1898086 A JP 1898086A JP S62177166 A JPS62177166 A JP S62177166A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- sprayed
- thermally sprayed
- thermal spraying
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007751 thermal spraying Methods 0.000 title claims description 22
- 238000000034 method Methods 0.000 title claims description 17
- 239000007789 gas Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 23
- 239000010419 fine particle Substances 0.000 claims abstract description 3
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 150000004767 nitrides Chemical class 0.000 claims abstract 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 2
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 238000007664 blowing Methods 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 claims 1
- 238000005507 spraying Methods 0.000 abstract description 8
- 150000002739 metals Chemical class 0.000 abstract description 3
- 239000004215 Carbon black (E152) Substances 0.000 abstract 1
- 230000008018 melting Effects 0.000 abstract 1
- 238000002844 melting Methods 0.000 abstract 1
- 239000002923 metal particle Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 7
- 239000007921 spray Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分!IF ]
本発明は、レーザを利用した素材表面の高機能化を行う
溶射方法に関ずろ。本溶射方法1よ、金属線を溶射材と
して用い、素材表面に金属又はその化合物若しくはそれ
らの混合物を溶射することができる。[Detailed description of the invention] [Industrial use! IF ] The present invention relates to a thermal spraying method for highly functionalizing the surface of a material using a laser. In this thermal spraying method 1, a metal wire is used as a thermal spraying material, and a metal, a compound thereof, or a mixture thereof can be thermally sprayed onto the surface of a material.
[従来の技術]
近年、材料開発は、機能性を求めた新素材開発の傾向に
ある。その対象は広範囲であるが、金属、高分子、セラ
ミックスが主流を占めろ。一方、加工技術の方面では、
′δ資源の立場から、素材の表面のみを加工し、高性能
化並びに機能性を持たせろ表面(処理)加工技術が重要
視されている。溶射技術は各種表面(処理)加工技術の
中でも、最も簡便な方法として、近年注目されている。[Prior Art] In recent years, there has been a trend in material development toward developing new materials that seek functionality. The targets are wide-ranging, but metals, polymers, and ceramics dominate. On the other hand, in terms of processing technology,
From the standpoint of ``δ resources, surface (treatment) processing technology that processes only the surface of materials to improve performance and functionality is emphasized. Thermal spraying technology has been attracting attention in recent years as the simplest method among various surface (treatment) processing technologies.
今までに、ガス溶射法、プラズマ溶射法、線爆溶射法等
種々の溶射法が開発され、実用化にむけて研究がなされ
ている。しかし、いずれの方法においても、それぞれ適
用される溶射材料は限定されておす、シかも溶射材の微
粒子化及び溶射材の高温化に限度があるために溶射膜と
被溶射物との間の密着度の(コ頼性の面では十分とはい
えず、この簡便かつ(Z頼性のある密着度を得る溶射方
法の開発は今後の1!要な研究課題である。Until now, various thermal spraying methods such as gas thermal spraying, plasma thermal spraying, and wire bombardment spraying have been developed, and research is being conducted toward their practical application. However, in either method, the types of thermal spray materials that can be applied are limited, and there are limits to the atomization of the thermal spray materials and the high temperature of the thermal spray materials, which may reduce the adhesion between the thermal spray film and the object to be sprayed. However, the development of a simple thermal spraying method that achieves Z-reliable adhesion is an important future research topic.
[本発明の目的]
本発明は、かかる実情に鑑みなされたものであり、その
目的とするところは、信頼性のある密着度を持つ溶射膜
を簡便に製作し得る実用的に優れた溶射方法を促供する
ことにある。[Object of the present invention] The present invention was made in view of the above circumstances, and its purpose is to provide a practically excellent thermal spraying method that can easily produce a thermal sprayed film with reliable adhesion. The aim is to encourage
[発明の構成コ
との目的を達成するために本発明者等!よ密着度の優れ
た溶射膜を得るのに適した溶射方法及び溶射装置につい
て鋭意研究を重ねた結果、溶射条件のうち最も重要であ
る溶射材の高’IW化が、高エネルギ密度ビームである
レーザ光線を用いることにより可能であり、かつ、その
雰囲気を調整することにより、レーザで高温に活性化さ
れた金属を非金属化することも可能であることを見出し
、この知見に基づいて本発明を完成するに至った。即ち
、本発明の要旨は、金属線(ワイヤ)がミラーの穴を通
してレーザ光線の収れん部に向けて連続送給される間に
、レーザ光線によって加熱され、レーザ光線の収れん部
に達したときにワイヤ先端が最高温度に達して溶融し、
生成する溶融金属を、各種ガスを用いて粒子状にして被
溶射物に向けて吹きとばし、又は金属成分とガスとを反
応させながら被溶射物に向けて吹きとばし、ミラーで反
射させたレーザ光線によって加熱された被溶射物表面゛
に、各種成分の溶射膜を得る、レーザによる溶射法に存
する。[In order to achieve the purpose of composition of the invention, the inventors et al. As a result of extensive research into thermal spraying methods and thermal spraying equipment suitable for obtaining thermal spray coatings with excellent adhesion, we have found that the most important thermal spraying conditions are high IW of the thermal spray material, and a high energy density beam. We have discovered that it is possible to non-metalize metals that have been activated at high temperatures by lasers by using laser beams, and by adjusting the atmosphere, and based on this knowledge, we have developed the present invention. I was able to complete it. That is, the gist of the present invention is that the metal wire is heated by the laser beam while being continuously fed through the hole of the mirror toward the convergence area of the laser beam, and when it reaches the convergence area of the laser beam, The tip of the wire reaches the maximum temperature and melts,
The generated molten metal is made into particles using various gases and blown toward the object to be sprayed, or the metal components and gas are reacted while being blown toward the object to be sprayed, and the laser beam is reflected by a mirror. It consists in a thermal spraying method using a laser to obtain a thermal spray film of various components on the surface of the object to be thermally sprayed, which is heated by a laser beam.
[発明の明細]
第1図は、本発明のレーザ溶射法の実施例の概略図であ
る。この図面によって、本方法を詳述する。[Details of the Invention] FIG. 1 is a schematic diagram of an embodiment of the laser spraying method of the present invention. This figure explains the method in detail.
レーザ発生装置から導かれたレーザ光線■を集光レンズ
■で収れんさせ、高エネルギ密度のレーザ光線の収れん
部■ を得る。これをはさんでレンズと反対側にミラー
■を設置する。ミラーの一部に穴■ を設け、この穴か
ら金属線(ワイヤ)■を上記収れん部に向けて連続的に
送給する。ワイヤは、レーザ光線の低エネルギ密度部か
ら高エネルギ密度の上記収れん部■へ移動する間に、レ
ーザ光線によって加熱され、ワイヤ先端部が、上記収れ
ん部に至ったとき、ワイヤ先端部は最高温度に達し溶融
する。溶融金属は、上記収れん部■の近傍に設けたガス
ノズル■から送給されるガス■によって微粒子状にされ
て吹きとばされ、飛行粒子Oとなってガス流Oによって
、被溶射物に向けて運ばれてこれに衝突する。A laser beam (2) guided from a laser generator is converged by a condensing lens (2) to obtain a convergent portion (2) of a high energy density laser beam. Place a mirror ■ on the opposite side of the lens across this. A hole (2) is provided in a part of the mirror, and a metal wire (2) is continuously fed through this hole toward the convergence section. The wire is heated by the laser beam as it moves from the low energy density area of the laser beam to the high energy density convergence area (■), and when the wire tip reaches the above convergence area, the wire tip reaches the highest temperature. reaches and melts. The molten metal is made into fine particles and blown away by the gas ■ supplied from the gas nozzle ■ provided near the convergence part ■, and becomes flying particles O that are directed toward the object to be sprayed by the gas flow O. It is carried and collides with this.
上記ミラーによって反射されたレーザ光線0が被溶射物
■の表面を加熱するために、これに衝突した飛行粒子O
ば、被溶射物に強く密着し、被溶射物表面の溶射膜Oを
形成する。図は被溶射物を矢印の方向に移動した場合の
例であり、また、ミラーとしてパラボラミラーを用い、
これで反射されたレーザ光mQ)が、飛行粒子Oと被溶
射物■の衝突する付近を照射している場合を示している
。照射位置は、溶射膜する時の条件によって被溶射物の
予熱または、溶射膜の再加熱等に使用できろよう調整す
ることができ、照射するエネルギ密度を、レーザ光線■
の強度及び被溶射物Oの位置を変えることによって調整
するととも可能である。The laser beam 0 reflected by the mirror heats the surface of the object to be sprayed, and the flying particles O collide with it.
For example, it adheres strongly to the object to be thermally sprayed and forms a sprayed film O on the surface of the object to be thermally sprayed. The figure shows an example when the object to be sprayed is moved in the direction of the arrow, and a parabolic mirror is used as the mirror.
A case is shown in which the laser beam mQ) reflected by this irradiates the vicinity where the flying particle O and the object to be sprayed (2) collide. The irradiation position can be adjusted so that it can be used for preheating the object to be sprayed or reheating the sprayed film, etc., depending on the conditions when spraying the film, and the irradiation energy density can be adjusted depending on the conditions when spraying the sprayed film.
It is possible to adjust the intensity by changing the strength of the flame spraying object O and the position of the object O to be thermally sprayed.
ガスノズル■は、他の部分と独立しているため、いかな
る仕様のものでも選択できる。従って、飛行粒子Oの速
度と方向を任意に決めろことができろ。Gas nozzle ■ is independent from other parts, so you can choose any specification. Therefore, the speed and direction of the flying particle O can be determined arbitrarily.
使用するガス■は、アルゴン等の不活性ガス、、酸素、
窒素、炭化水素等の反応性ガス又はそれらの混合ガス等
を任意に選ぶことができるので、溶融金5筑及び飛行粒
子を、ガスと反応させずに又(ま反応させながら溶射を
行うことができる。従って、金属線(ワイヤ)を用いて
、得られる溶射膜は、金属及び非金属又はそれらの屁合
物となり、既存の技術で1ま実現不可能な溶射、膜を簡
便に得ろことができる。The gas used is an inert gas such as argon, oxygen,
Since reactive gases such as nitrogen and hydrocarbons, or mixed gases thereof can be arbitrarily selected, thermal spraying can be carried out without (or while) reacting the molten metal and flying particles with the gas. Therefore, the thermal sprayed film obtained by using a metal wire can be a metal, a nonmetal, or a combination thereof, and it is possible to easily obtain a thermal sprayed film that is impossible to achieve with existing technology. can.
3発明の実施例フ
第2図は、板厚4■の軟鋼板表面に形成された溶射膜の
断面組織を示す一例で、同図(alはチタンワイヤとア
ルゴンによって、純チタンの溶射膜を得た例であり、同
図(b)ば、チタンワイヤと窒素によって、窒化チタン
の溶射膜を1qだ例である。3. Embodiments of the Invention Figure 2 shows an example of the cross-sectional structure of a sprayed film formed on the surface of a mild steel plate with a thickness of 4 cm. This is an example in which 1q of titanium nitride was sprayed using a titanium wire and nitrogen.
ブローホールのない良質な溶射膜であることが明らかで
ある。その他の溶射条件は、以下の通りである。It is clear that this is a high-quality sprayed film with no blowholes. Other thermal spraying conditions are as follows.
溶射条件
CO□レーザ出カニ4kW
KCIレンズ焦点距離: 300s+mミ ラ −
二 A可 製 平 板ミラーで反射されたレーザ光
線によろ被溶射物表面の照射位ゴ、第】図に同じ
ガスノズル直径・ 8mm
ガス元圧: 6 kg/Cm2
ワイヤ:直径0.9+a+mの溶接用純チタン線ワイヤ
送り速度: 2 +m/winレーザ光線の収れん部
と被溶射物間の距gl:300m胸
被溶射物の移動速度; 50+mm/sinガス流と被
溶射物とのなす角度:90度(垂直)[発明の効果]
前述のとおり、本発明のレーザ溶射法によれば、各種素
材の金a線(ワイヤ)及び各種ガスを泪いて、高強度の
密着力と従来の溶射法では不可能な、多様な機能を有す
る溶射膜を簡便に得ることができ る 。Thermal spraying conditions CO□Laser output 4kW KCI lens focal length: 300s+m mirror -
The irradiation position of the surface of the object to be sprayed is determined by the laser beam reflected by the A-made flat mirror.Gas nozzle diameter: 8mm Gas source pressure: 6 kg/cm2 Wire: For welding with a diameter of 0.9+a+m Pure titanium wire wire feeding speed: 2 + m/win Distance gl between the convergence part of the laser beam and the object to be thermally sprayed: 300 m Chest Traveling speed of the object to be thermally sprayed: 50 + mm/sin Angle between the gas flow and the object to be thermally sprayed: 90 degrees (Vertical) [Effects of the Invention] As mentioned above, according to the laser spraying method of the present invention, gold a-wire (wire) made of various materials and various gases can be coated with high adhesion strength and that cannot be achieved with conventional thermal spraying methods. It is possible to easily obtain a thermal sprayed film having various functions.
第1図は、本発明のレーザ溶射法についての概1!p説
明図である。図面において、■はレーザ光線、■は集光
レンズ、■ばレーザ光線の収れん部、■はミラー、■は
ミラーに設けた金属線(ワイヤン送り用の穴、■は金属
線(ワイヤ)、■はガスノズル、■はガス、■は被溶射
物、olま飛tテ粒子 Q +よガス流、Q +r溶射
膜、Oはミラーで反射されたレーザ光線、Oの矢印は被
溶射物の移動方向を示す。
第2図は、軟鋼板上に得た溶射膜の断面組織を示す。同
図(alは、純チタンの溶射膜と被溶射物との境界部を
、同図(bl+よ、窒化チタンの溶射膜と被溶射物との
境界部を示す。
特許出願人 工業技術院長 等々力 達指定代理人
工業技術院四国工業技術試験所長曳降
循 2
」
(b)
因
手続ネ甫正書 (方式) 6昭和2/年f
月//y−日 7
特許庁長官 宇 賀 道 部 殿
、: ’、”11、事件の表示
昭和61年特許願第18980号
2、発明の名称
レーザ溶射法
3、補正をする者
事件との関係 特許出願人
東京都千代田区霞が関1丁目3番1号
(114)工業技術院長 等 々 力 達4、工業技
術院長の指定代理人
昭和61年3月5日
、補正の対象
図面「第1図」
、補正の内容
別紙のとおりFIG. 1 shows an outline of the laser spraying method of the present invention. p explanatory diagram. In the drawing, ■ is the laser beam, ■ is the condensing lens, ■ is the convergence part of the laser beam, ■ is the mirror, ■ is the metal wire (hole for wire feed) provided in the mirror, ■ is the metal wire (wire), is the gas nozzle, ■ is the gas, ■ is the object to be thermally sprayed, the particles are being sprayed, Q is the gas flow, Q is the sprayed film, O is the laser beam reflected by the mirror, and the arrow in O is the direction of movement of the object to be thermally sprayed. Figure 2 shows the cross-sectional structure of the sprayed film obtained on a mild steel plate. The boundary between the titanium sprayed film and the object to be sprayed is shown. Patent applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Designated agent: Director of the Shikoku Institute of Industrial Science and Technology, Agency of Industrial Science and Technology ) 6 Showa 2/year f
Month//y-day 7 Mr. Michibe Uga, Commissioner of the Patent Office
, : ', "11. Indication of the case Patent Application No. 18980 of 1989 2. Name of the invention Laser thermal spraying method 3. Person making the amendment Relationship to the case Patent applicant 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114) Director-General of the Agency of Industrial Science and Technology, etc., designated agent of the Director-General of the Agency of Industrial Science and Technology, March 5, 1986, drawing ``Figure 1'' subject to amendment, contents of the amendment as shown in the attached sheet.
Claims (3)
設置し、ミラーに設けた穴から金属線(ワイヤ)をレン
ズの焦点方向に送給するとともに、焦点を通って被溶射
物の方向へガスを流すためのノズルを設けた装置により
、集光レンズで収れんさせたレーザ光線の高エネルギ密
度部に金属線(ワイヤ)を送給して加熱・溶融させ、ノ
ズルから吹き出すガスによって溶融金属を微粒子状にし
て吹きとばし、被溶射物表面に溶射膜を得ることを特徴
とするレーザ溶射方法。(1) A mirror is installed on the optical axis near the focal point of the condensing lens, and a metal wire is fed through the hole in the mirror in the direction of the focal point of the lens, passing through the focal point to the object to be sprayed. Using a device equipped with a nozzle to flow gas in a direction, a metal wire is fed to the high energy density part of the laser beam converged by a condensing lens to heat and melt it, and the gas blown out from the nozzle melts it. A laser thermal spraying method characterized by blowing metal into fine particles to form a sprayed film on the surface of the object to be sprayed.
酸素、窒素、アンモニア、炭化水素等の反応性ガス若し
くはそれ等の混合ガスを用い、上記金属の溶射膜又は上
記金属の成分の酸化物、窒化物、炭化物等の溶射膜若し
くは、上記金属線の成分とその化合物の混合した組成を
有する溶射膜を得ることを特徴とする特許請求の範囲第
1項記載のレーザ溶射方法。(2) As the above gas, a non-reactive gas such as argon, a reactive gas such as oxygen, nitrogen, ammonia, hydrocarbons, or a mixture thereof is used, and a sprayed film of the above metal or an oxide of the component of the above metal is used. 2. The laser thermal spraying method according to claim 1, wherein a thermal sprayed coating is obtained that has a composition of a nitride, a carbide, etc., or a mixture of the components of the metal wire and a compound thereof.
けて反射させ、被溶射物表面のレーザ光線のエネルギ密
度を変化させることによって被溶射物表面の加熱状態を
制御しつつ溶射することを特徴とする特許請求の範囲第
1項記載のレーザ溶射方法。(3) The laser beam reflected by the mirror is reflected toward the object to be thermally sprayed, and the energy density of the laser beam on the surface of the object to be thermally sprayed is changed, thereby controlling the heating state of the surface of the object to be thermally sprayed. A laser thermal spraying method according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61018980A JPS62177166A (en) | 1986-01-30 | 1986-01-30 | Laser beam thermal spraying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61018980A JPS62177166A (en) | 1986-01-30 | 1986-01-30 | Laser beam thermal spraying method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62177166A true JPS62177166A (en) | 1987-08-04 |
JPS642187B2 JPS642187B2 (en) | 1989-01-13 |
Family
ID=11986760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61018980A Granted JPS62177166A (en) | 1986-01-30 | 1986-01-30 | Laser beam thermal spraying method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62177166A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01215961A (en) * | 1988-02-24 | 1989-08-29 | Agency Of Ind Science & Technol | Laser thermal spraying method |
FR2642673A1 (en) * | 1989-02-08 | 1990-08-10 | Gen Electric | LASER SPRAY NOZZLE WITH TRANSVERSE FLOW AND CORRESPONDING METHOD |
JPH05271898A (en) * | 1992-02-17 | 1993-10-19 | Ind Technol Res Inst | Surface treatment method of injection screw in injection molding machine |
FR2743819A1 (en) * | 1996-01-19 | 1997-07-25 | Deutsche Forsch Luft Raumfahrt | DEVICE FOR APPLYING A POWDER COATING |
WO1998032891A1 (en) * | 1995-05-23 | 1998-07-30 | Mcdonnell Douglas Corporation | Method and apparatus for coating a substrate |
US5814152A (en) * | 1995-05-23 | 1998-09-29 | Mcdonnell Douglas Corporation | Apparatus for coating a substrate |
JP2002544387A (en) * | 1999-05-05 | 2002-12-24 | オプトメック・デザイン・カンパニー | Electronic component manufacturing by direct writing process using high precision spray and laser irradiation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61163258A (en) * | 1985-01-11 | 1986-07-23 | Shinagawa Refract Co Ltd | Laser thermal spraying method |
-
1986
- 1986-01-30 JP JP61018980A patent/JPS62177166A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61163258A (en) * | 1985-01-11 | 1986-07-23 | Shinagawa Refract Co Ltd | Laser thermal spraying method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01215961A (en) * | 1988-02-24 | 1989-08-29 | Agency Of Ind Science & Technol | Laser thermal spraying method |
US4947463A (en) * | 1988-02-24 | 1990-08-07 | Agency Of Industrial Science & Technology | Laser spraying process |
FR2642673A1 (en) * | 1989-02-08 | 1990-08-10 | Gen Electric | LASER SPRAY NOZZLE WITH TRANSVERSE FLOW AND CORRESPONDING METHOD |
JPH02247369A (en) * | 1989-02-08 | 1990-10-03 | General Electric Co <Ge> | Cross flow nozzle for laser-coating in molten state |
JPH05271898A (en) * | 1992-02-17 | 1993-10-19 | Ind Technol Res Inst | Surface treatment method of injection screw in injection molding machine |
WO1998032891A1 (en) * | 1995-05-23 | 1998-07-30 | Mcdonnell Douglas Corporation | Method and apparatus for coating a substrate |
US5814152A (en) * | 1995-05-23 | 1998-09-29 | Mcdonnell Douglas Corporation | Apparatus for coating a substrate |
FR2743819A1 (en) * | 1996-01-19 | 1997-07-25 | Deutsche Forsch Luft Raumfahrt | DEVICE FOR APPLYING A POWDER COATING |
JP2002544387A (en) * | 1999-05-05 | 2002-12-24 | オプトメック・デザイン・カンパニー | Electronic component manufacturing by direct writing process using high precision spray and laser irradiation |
Also Published As
Publication number | Publication date |
---|---|
JPS642187B2 (en) | 1989-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7108893B2 (en) | Spray system with combined kinetic spray and thermal spray ability | |
US4947463A (en) | Laser spraying process | |
US6623796B1 (en) | Method of producing a coating using a kinetic spray process with large particles and nozzles for the same | |
US5847357A (en) | Laser-assisted material spray processing | |
US6743468B2 (en) | Method of coating with combined kinetic spray and thermal spray | |
US6197386B1 (en) | Method for applying a coating by means of plasma spraying while simultaneously applying a continuous laser beam | |
US4200669A (en) | Laser spraying | |
JP2683134B2 (en) | Laser plasma spraying apparatus and method | |
US4377735A (en) | Laser working treatment process capable of controlling the form of heated portion of a steel material | |
US4958058A (en) | Transverse flow laser spray nozzle | |
US6221175B1 (en) | Method for the production of a ceramic layer on a metallic base material | |
GB2439934A (en) | Laser-assisted spray system and nozzle | |
JPH02501049A (en) | Laser bonding device and method | |
CN109837497A (en) | A kind of central coaxial powder feeding formula supersonic speed laser spraying method | |
JPS5852023B2 (en) | Thermospray method for the production of aluminum porous boiling surfaces | |
JPS62177166A (en) | Laser beam thermal spraying method | |
US20110229665A1 (en) | Thermal spray coating for track roller frame | |
US7244466B2 (en) | Kinetic spray nozzle design for small spot coatings and narrow width structures | |
JPH0450381B2 (en) | ||
WO2008119696A1 (en) | Composite aluminium or aluminium alloy porous structures | |
RU2735688C1 (en) | Method of forming coating on metal with electron-beam surfacing of ceramic powder | |
US7351450B2 (en) | Correcting defective kinetically sprayed surfaces | |
JPH11350107A (en) | Method for forming high-temperature wear-resistant film | |
JPS5827036B2 (en) | Laser welding method | |
CN115233141B (en) | Novel laser spraying device and spraying method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |