JPH0450381B2 - - Google Patents

Info

Publication number
JPH0450381B2
JPH0450381B2 JP60105664A JP10566485A JPH0450381B2 JP H0450381 B2 JPH0450381 B2 JP H0450381B2 JP 60105664 A JP60105664 A JP 60105664A JP 10566485 A JP10566485 A JP 10566485A JP H0450381 B2 JPH0450381 B2 JP H0450381B2
Authority
JP
Japan
Prior art keywords
thermal spraying
laser beam
laser
gas
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60105664A
Other languages
Japanese (ja)
Other versions
JPS61264168A (en
Inventor
Munehide Katsumura
Akihiro Uchiumi
Jun Matsuda
Shigeyuki Nagata
Kazuhiko Sugasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60105664A priority Critical patent/JPS61264168A/en
Publication of JPS61264168A publication Critical patent/JPS61264168A/en
Publication of JPH0450381B2 publication Critical patent/JPH0450381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/228Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using electromagnetic radiation, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、レーザを利用した素材表面の高機能
化を行う溶射方法及びその装置に関する。本発明
の装置は金属あるいは非金属を溶射材として、素
材表面の高機能化のための溶射に用いることがで
きる。 なお溶射とは、被覆材料を連続的に加熱溶融し
つゝ、これを噴射気流により吹き散らし、霧化飛
行させて被覆すべき面に、広く均等に微粒液を吹
付ける周知の技術用語で、溶融と噴射の二語から
来ている。 <従来の技術> 近年、材料開発は、機能性を求めた新素材開発
の傾向にある。金属は勿論のこと、高分子、セラ
ミツクスもその範疇にある。一方、加工技術の方
面では、省資源の立場から、素材の表面のみを加
工し、機能性を持たせる表面(処理)加工技術が
重要視されている。溶射技術は各種表面(処理)
加工技術の中でも、最も簡便な方法として、近年
注目されている。今までに、ガス溶射法、プラズ
マ溶射法、線爆溶射法等種々の溶射法が開発さ
れ、実用化にむけて研究がなされている。しか
し、いずれの方法においても、それぞれ適用され
る溶射材料は限定されており、しかも溶射膜と被
溶射物との間の密着度の信頼性の面では十分とは
いえず、この簡便かつ信頼性のある密着度を得る
溶射方法及び溶射装置等の開発は今後の重要な研
究課題である。 <発明が解決しようとする課題> 本発明は、かかる実情に鑑みなされたものであ
り、その目的とするところは、信頼性のある密着
度を持つ溶射膜を簡便に作成し得る実用的に優れ
た溶射方法及び溶射装置を提供することにある。 <課題を解決するための手段> 本発明のレーザ溶射法は、被溶射面へ向かうレ
ーザ光線を、保護ガスで守られた集光レンズによ
り、上記被溶射面の手前、吹付け距離だけ離れた
位置に収斂させて、高エネルギー密度部を作り、
上記レンズ用保護ガスの導入部とは仕切られた別
個の導入部から送られた溶射材料のワイヤ又は粉
末を、上記高エネルギー密度部へ連続送給して、
そこで次々と高温液化し、上記高エネルギー密度
部に達する直前のレーザ光線の外周の噴射口か
ら、上記被溶射面へ向けて高圧ガスを噴射して、
上記高エネルギー密度部で高温液化した材料を吹
散らし微粒化飛行させて、収斂後拡散したレーザ
光線により加熱されている上記被溶射面に吹付
け、上記高エネルギー密度部から被溶斜面までの
吹付け距離を、上記微粒化飛行する液化材料が凝
固する前に到達する距離にした。 実施態様として、溶射材料は金属であり、噴射
ガスは上記金属に対し反応性又は非反応性のもの
を適宜使用すること、またその金属は溶射雰囲気
中の化学反応により酸化物、窒化物等の非金属溶
射膜を作り得るものとすることも提示している。 本発明のレーザ溶射装置は、レーザ光線集光レ
ンズの照射側を包む室であつて、細くなつた収斂
部直前のレーザ光線を囲む光線出口の主ノズル及
びレンズ保護ガス導入用接続部のほかは密閉され
た溶射筒と、上記溶射筒の主ノズルの外周にあつ
て、溶射方向へ向けて開口した高圧ガスノズル
と、上記レーザ光線収斂部へ、上記溶射筒の外部
から溶射材料を連続送給する装置とを備え、上記
溶射筒へレンズ保護ガスを送り込んで上記主ノズ
ルから流出させ、上記高圧ガスノズルから高圧ガ
スを噴射させて、上記レーザ光線収斂部で高温液
化した溶射材料を微粒化飛行させ、上記レーザ光
線収斂部から、微粒化飛行する液化材料が凝固す
る前に到達する距離にあつて収斂後拡散したレー
ザ光線により加熱されている被溶射面に、吹付け
るようにした事を特徴とする。 いま一つの本発明のレーザ溶射装置は、レーザ
光線集光レンズの照射側を包む室であつて、細く
なつた収斂部直前のレーザ光線を囲む光線出口の
主ノズル、レンズ保護ガス用接続部及び粉末用接
続部のほかは密閉された溶射筒と、上記溶射筒を
二分してレンズ保護ガス室と粉末供給室とに仕切
る、中央にレーザ光線通路をもつ隔壁と、上記溶
射筒の主ノズルの外周にあつて、溶射方向へ向け
て開口した高圧ガスノズルと、上記粉末用接続部
から粉末供給室を経て、上記レーザ光線収斂部へ
溶射材料粉末をキヤリヤガスに載せて連続送給す
る装置とを備え、上記レンズ保護ガス室へ上記接
続部から保護ガスを送り込んで上記主ノズルから
流出させ、上記高圧ガスノズルから高圧ガスを噴
射させて、上記レーザ光線収斂部で高温液化した
溶射材料を微粒化飛行させ、上記レーザ光線収斂
部から、微粒化飛行する液化材料が凝固する前に
到達する距離にあつて収斂後拡散したレーザ光線
により加熱されている被溶射面に、吹付けるよう
にした事を特徴とする。 これらの溶接装置の実施態様として、その溶射
筒は溶射雰囲気保護筒の着脱可能なものとするこ
とができる。 <作用> 本発明者等は密着度の優れた溶射膜を得るのに
適した溶射方法及び溶射装置について鋭意研究を
重ねた結果、溶射条件のうち最も重要である溶射
材の高温化が、高エネルギー密度ビームであるレ
ーザ光線を用いることにより可能であり、かつ、
その雰囲気を調整することにより、レーザで高温
に活性化された金属を非金属化することも可能で
あることを見出し、この知見に基づいて本発明を
完成するに至つた。即ち、本発明は、レーザ光線
を集光レンズで収斂し、溶射材としての金属又は
非金属のワイヤーに照射し、連続送給する上記金
属又は非金属のワイヤーの先端を溶融し、あるい
は、レーザ光線の収斂部に金属又は無機物の溶射
粉末を送給して、これを加熱して、被溶射物に向
けて吹き付けられるガスの圧力で上記ワイヤーの
溶融性もしくは、加熱、溶融した溶射粉末を吹き
飛ばして、収斂後拡散したレーザ光線で加熱され
ている被溶射物表面に溶射すること、並びに金属
ワイヤー又は金属粉末を雰囲気調整によつて非金
属化し、非金属溶射膜形成をも可能にする。 (実施例) 第1図は、本発明のレーザ溶射装置の実施例
で、溶射材料として、ワイヤでも粉末でも使える
兼用装置の概略図を示す。レーザ発生装置′か
ら導いたレーザ光線をレンズホルダー′に固
定した集光レンズに用いて収斂させる。レンズ
ホルダー′は後述の溶射筒とネジ部で一体化
していて、レンズホルダーの固定位置を変えるこ
とによつて、レーザ光線の焦点の位置を動かす
ことができる。集光レンズはOリングを介し
て固定されているので、後述のレンズ保護ガス等
の漏れを防ぐとともに、溶射ノズル等を介して伝
わつてくる熱から、集光レンズを保護している。
溶射筒はレンズ保護ガス送給装置′からくる
ガスを導くレンズ保護ガス用接続部、粉末送給
装置7a′からくる粉末及びそのキヤリヤガスを導
く粉末及びそのキヤリヤガス用接続部7a、高圧
ガス送給装置′からくるガスを導く高圧ガス用
接続部、レンズ保護ガス、粉末及びそのキヤリ
ヤガスを噴出するとともにレーザ光線の出口にも
なつている主ノズル、高圧ガスを噴出する高圧
ガスノズル等を有し、溶射筒5は、隔壁5aに
よつてレンズ保護ガス室6aと粉末供給室8aに
仕切られ、主ノズルの中心が集光レンズの光軸
上にくる。第1図では、高圧ガスノズルは、
高圧ガスがレーザの光軸に沿つて流れる場合を
例示してあるが、この場合には、溶射材が、被溶
射物表面上でレーザが照射されている部分に溶射
されるので、被溶射物を加熱しながら溶射すると
いう、他の溶射法にはない、本発明によるレーザ
溶射の特徴である。この高圧ガスノズルを使用し
ないで、溶射ノズルの外側に別にノズルを設け
て、このノズルからガスを噴出させて溶射するこ
とも可能である。隔壁5aの上方に充満するレン
ズ保護ガスは粉末等がレンズに付着するのを防止
する。主ノズルの外側に、ワイヤー送給装置
′から送られてくるワイヤーをレーザ光線へ導
くワイヤー送給用チツプ又は、粉末送給装置7
b′から送られてくる粉末及びそのキヤリヤガスを
レーザ光線へ導く粉末送給用ノズル7bを設け
る。第1図には、ワイヤー送給用チツプを用いて
大気中で下向きに溶射し、後述する被溶射物が
移動する場合を例示している。ワイヤ送給用チツ
プの設置方法は、ワイヤーが光軸に向けて
送給される位置に、ワイヤーと光軸のなす角度が
90度以下で、第1図のように下向きに溶射する場
合には、ワイヤーもできるだけ下向きになるよう
に固定することが望ましいが、ワイヤーの先端が
レーザ光線に照射されるときのエネルギー密度
が、被溶射物の移動速度、溶射膜の厚さ、ワイヤ
ー送給速度、ワイヤーの直径などのパラメータを
考慮して、十分大なることを要するので、溶射条
件に合わせてワイヤー送給用チツプを固定する必
要がある。ワイヤーを使用せずに、粉末を用いる
場合の粉末送給用ノズル7bの設置についても、
ワイヤー送給用チツプの設置方法と同様であ
る。 ワイヤーを用いる溶射法の原理は、ワイヤーの
先端を、高エネルギー密度に収斂したレーザ光線
で加熱、溶融し、高圧ガスノズルより噴出させ
たガスによつて被溶射物に向けて、溶滴を吹き
付けて、溶射膜を得ることである。 溶滴となつて吹きとばされたワイヤーの消耗分
は、ワイヤー送給装置′から連続的に補給され、
被溶射物の移動速度等を変えることにより、任
意の厚さの溶射膜が得られる。被溶射物に到達
するレーザ光線のエネルギー密度は、主ノズル
と被溶射物の間隔とレーザ出力を変えることに
より、任意に調整でき、被溶射物表面を適度に加
熱しながら溶射できるので、被溶射物と溶射膜の
密着度を高めることも可能である。 ワイヤーとして金属を用い、レンズ保護ガス及
び高圧ガスとしてアルゴン等の不活性ガスを用い
ると、ワイヤーの成分と同じ金属溶射膜として得
られるし、不活性ガスに代えて、酸素、窒素等を
用いると、溶融金属が酸素、窒素等と反応して化
合物を生じるので、その金属の酸化物、窒化物等
の組成を有する溶射膜が得られる。溶射装置を雰
囲気チヤンバ内に設置して、不活性雰囲気又は窒
素雰囲気中で溶射すれば、金属又はその金属窒化
物の溶射は完壁となる。粉末を用いる溶射法の原
理は、ワイヤーを用いる場合と同様であるが、粉
末の送給は、粉末送給ノズル7bからも、溶射筒
に設けた粉末用接続部7aからも、同時に又は
それぞれ単独に行える。粉末送給用のキヤリアガ
スは高圧ガスと同じものを用いる。粉末は、金属
粉末も非金属粉末も使用でき、前述の方法で、金
属粉末による非金属(酸化物、窒化物等)の溶射
膜を得ることも可能である。なお、溶射材料を溶
射筒の外部からのみ送給する場合、粉末用接続部
7a及び隔壁5a及び粉末供給室8aは略してよ
い。 第2図は溶射ノズルの先端に溶射雰囲気保護
筒を取り付け、単純な平面状のワイヤーを用
いる溶射に適応するようにしたものの一例であ
る。溶射に際しては、レンズの保護ガス、高圧ガ
スは同種類のガスを使用して、溶射直前にこれら
のガスを噴出させることにより、溶射雰囲気保護
筒内のほとんどの空気は排出させることができ
る。 第3図は、大気中において、ワイヤーと粉末と
を同時に用いて溶射する場合の一例である。 次に実験データの一例を示す。母材とあるのは
被溶射材のことである。
<Industrial Application Field> The present invention relates to a thermal spraying method and apparatus for improving the functionality of a material surface using a laser. The apparatus of the present invention can be used for thermal spraying to improve the functionality of the surface of a material using a metal or non-metal as a thermal spraying material. Thermal spraying is a well-known technical term in which the coating material is continuously heated and melted, and then dispersed by a jet air stream to atomize and fly, spraying fine particles widely and evenly over the surface to be coated. It comes from two words: melting and jetting. <Conventional technology> In recent years, there has been a trend in material development to develop new materials that seek functionality. Not only metals, but also polymers and ceramics fall into this category. On the other hand, in terms of processing technology, from the standpoint of resource conservation, emphasis is placed on surface (treatment) processing technology that processes only the surface of the material and imparts functionality. Thermal spraying technology can be applied to various surfaces (treatments)
It has recently attracted attention as one of the simplest processing techniques. Until now, various thermal spraying methods such as gas thermal spraying, plasma thermal spraying, and wire bombardment spraying have been developed, and research is being conducted toward their practical application. However, in either method, the thermal spray materials that can be applied are limited, and the reliability of the adhesion between the sprayed film and the object to be sprayed is not sufficient. The development of thermal spraying methods and thermal spraying equipment that achieve a certain degree of adhesion will be an important future research topic. <Problems to be Solved by the Invention> The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a practically excellent method for easily creating a sprayed film with reliable adhesion. An object of the present invention is to provide a thermal spraying method and a thermal spraying apparatus. <Means for Solving the Problems> The laser thermal spraying method of the present invention directs the laser beam toward the surface to be thermally sprayed using a condensing lens protected by a protective gas, at a point in front of the surface to be thermally sprayed, at a distance corresponding to the spraying distance. By converging on the position, creating a high energy density area,
Continuously feeding a wire or powder of a thermal spray material sent from a separate introduction part separated from the introduction part of the protective gas for the lens to the high energy density part,
There, the gas is liquefied at high temperature one after another, and high-pressure gas is injected toward the surface to be thermally sprayed from the injection port on the outer periphery of the laser beam just before reaching the high-energy density part.
The high-temperature liquefied material is blown off in the high-energy density area, atomized, and then sprayed onto the surface to be thermally sprayed, which is heated by the laser beam that has been converged and diffused. The attachment distance was set to the distance that the atomized and flying liquefied material would reach before solidifying. In one embodiment, the spraying material is a metal, and the injection gas is appropriately reactive or non-reactive with respect to the metal, and the metal is free from oxides, nitrides, etc. due to chemical reactions in the spraying atmosphere. It is also proposed that a non-metal sprayed film can be produced. The laser thermal spraying apparatus of the present invention is a chamber that encloses the irradiation side of the laser beam condensing lens, except for the main nozzle at the beam exit that surrounds the laser beam just before the narrowed convergence part, and the connection part for introducing lens protective gas. Thermal spraying material is continuously fed from the outside of the thermal spraying tube to the sealed thermal spraying tube, a high-pressure gas nozzle opened toward the thermal spraying direction on the outer periphery of the main nozzle of the thermal spraying tube, and the laser beam converging section. feeding a lens protective gas into the thermal spray tube and causing it to flow out from the main nozzle, injecting high pressure gas from the high pressure gas nozzle to atomize and fly the thermal spray material liquefied at high temperature in the laser beam converging section; The method is characterized in that the laser beam is sprayed from the laser beam converging part onto the surface to be thermally sprayed, which is heated by the laser beam which is spread out after convergence at a distance that the atomized and flying liquefied material reaches before solidifying. . Another laser thermal spraying apparatus of the present invention is a chamber that surrounds the irradiation side of the laser beam condensing lens, and includes a main nozzle at the beam exit that surrounds the laser beam just before the narrowed convergence part, a lens protective gas connection, and A thermal spray tube that is sealed except for the powder connection, a partition wall that divides the thermal spray tube into a lens protection gas chamber and a powder supply chamber and has a laser beam passage in the center, and a main nozzle of the thermal spray tube. A high-pressure gas nozzle on the outer periphery that opens toward the thermal spraying direction, and a device that continuously feeds thermal spray material powder on a carrier gas from the powder connection section to the laser beam convergence section via the powder supply chamber. , sending a protective gas into the lens protective gas chamber from the connecting part and causing it to flow out from the main nozzle, and injecting high-pressure gas from the high-pressure gas nozzle to atomize and fly the high-temperature liquefied thermal spray material in the laser beam converging section. , the laser beam is sprayed from the laser beam converging part onto the surface to be thermally sprayed which is heated by the laser beam which is spread after convergence at a distance that the atomized and flying liquefied material reaches before solidifying. do. As an embodiment of these welding apparatuses, the thermal spraying tube may have a thermal spraying atmosphere protection tube that can be attached to and removed from the thermal spraying tube. <Function> As a result of extensive research into thermal spraying methods and thermal spraying equipment suitable for obtaining thermal sprayed films with excellent adhesion, the inventors have found that the most important thermal spraying conditions, the high temperature of the thermal spraying material, This is possible by using a laser beam that is an energy density beam, and
The inventors have discovered that by adjusting the atmosphere, it is also possible to nonmetalize metals that have been activated at high temperatures by laser, and have completed the present invention based on this knowledge. That is, the present invention converges a laser beam with a condensing lens, irradiates it onto a metal or non-metallic wire as a thermal spraying material, and melts the tip of the metal or non-metallic wire that is continuously fed. Thermal spraying powder of metal or inorganic material is fed to the convergence part of the light beam, heated, and the pressure of the gas blown toward the object to be sprayed is used to melt the wire or to heat and blow off the molten spraying powder. This makes it possible to thermally spray the surface of the object to be thermally sprayed which is heated by the laser beam that has been diffused after convergence, and to make the metal wire or metal powder non-metallic by adjusting the atmosphere, thereby making it possible to form a non-metallic thermal sprayed film. (Embodiment) FIG. 1 is an embodiment of the laser thermal spraying apparatus of the present invention, and is a schematic diagram of a dual-purpose apparatus that can use either wire or powder as the thermal spraying material. A laser beam guided from a laser generator' is converged using a condensing lens fixed to a lens holder'. The lens holder' is integrated with a thermal spraying cylinder, which will be described later, through a threaded portion, and by changing the fixed position of the lens holder, the position of the focal point of the laser beam can be moved. Since the condensing lens is fixed via an O-ring, it prevents leakage of lens protection gas, which will be described later, and protects the condensing lens from heat transmitted via the thermal spray nozzle and the like.
The thermal spray tube has a lens protective gas connection part 7a for introducing the gas coming from the lens protection gas supply device 7a', a powder and carrier gas connection part 7a for introducing the powder and its carrier gas coming from the powder supply device 7a', and a high-pressure gas supply device. The main nozzle serves as an outlet for the laser beam as well as ejects the lens protection gas, powder and its carrier gas, and the high-pressure gas nozzle ejects the high-pressure gas. 5 is partitioned by a partition wall 5a into a lens protection gas chamber 6a and a powder supply chamber 8a, and the center of the main nozzle is located on the optical axis of the condenser lens. In Figure 1, the high pressure gas nozzle is
In this example, the high-pressure gas flows along the optical axis of the laser. This is a feature of the laser thermal spraying according to the present invention that is not found in other thermal spraying methods. Instead of using this high-pressure gas nozzle, it is also possible to provide a separate nozzle outside the thermal spray nozzle and spray the gas by jetting the gas from this nozzle. The lens protective gas filling the upper part of the partition wall 5a prevents powder etc. from adhering to the lens. Outside the main nozzle, there is a wire feeding tip or powder feeding device 7 that guides the wire fed from the wire feeding device' to the laser beam.
A powder feeding nozzle 7b is provided which guides the powder sent from b' and its carrier gas to the laser beam. FIG. 1 illustrates a case in which thermal spraying is performed downward in the atmosphere using a wire feeding tip, and the object to be thermally sprayed, which will be described later, moves. The method of installing the wire feeding chip is to place the wire at the position where it is fed toward the optical axis, and the angle between the wire and the optical axis is
When spraying downward at an angle of 90 degrees or less as shown in Figure 1, it is desirable to fix the wire so that it points downward as much as possible, but the energy density when the tip of the wire is irradiated with the laser beam is It is necessary to consider parameters such as the moving speed of the object to be sprayed, the thickness of the sprayed film, the wire feeding speed, and the diameter of the wire, and fix the wire feeding tip according to the spraying conditions. There is a need. Regarding the installation of the powder feeding nozzle 7b when using powder without using a wire,
The installation method is the same as the wire feeding tip. The principle of thermal spraying using a wire is that the tip of the wire is heated and melted by a laser beam converging with high energy density, and then the gas ejected from a high-pressure gas nozzle sprays droplets toward the object to be sprayed. , to obtain a sprayed film. The wire that is blown away as droplets is continuously replenished from the wire feeder'.
By changing the moving speed of the object to be sprayed, etc., a sprayed film of arbitrary thickness can be obtained. The energy density of the laser beam that reaches the object to be thermally sprayed can be adjusted arbitrarily by changing the distance between the main nozzle and the object to be thermally sprayed, and the laser output. It is also possible to increase the degree of adhesion between the object and the sprayed film. If a metal is used as the wire and an inert gas such as argon is used as the lens protection gas and high pressure gas, a metal sprayed film with the same composition as the wire can be obtained.If oxygen, nitrogen, etc. are used instead of the inert gas, a sprayed metal film can be obtained. Since the molten metal reacts with oxygen, nitrogen, etc. to produce compounds, a sprayed film having a composition of oxides, nitrides, etc. of the metals can be obtained. If the thermal spraying device is installed in an atmosphere chamber and thermal spraying is performed in an inert atmosphere or nitrogen atmosphere, the thermal spraying of metal or its metal nitride will be completed. The principle of the thermal spraying method using powder is the same as that using a wire, but the powder can be fed from the powder feeding nozzle 7b and from the powder connecting part 7a provided on the thermal spray tube, either simultaneously or independently. can be done. The carrier gas for powder feeding is the same as the high pressure gas. As the powder, both metal powder and non-metal powder can be used, and it is also possible to obtain a non-metal (oxide, nitride, etc.) sprayed film using metal powder by the method described above. In addition, when the thermal spraying material is fed only from the outside of the thermal spraying tube, the powder connection part 7a, the partition wall 5a, and the powder supply chamber 8a may be omitted. FIG. 2 is an example of a thermal spraying atmosphere protection tube attached to the tip of a thermal spraying nozzle, which is adapted to thermal spraying using a simple flat wire. During thermal spraying, most of the air in the thermal spray atmosphere protection tube can be exhausted by using the same types of gases as the lens protective gas and high-pressure gas and blowing out these gases just before thermal spraying. FIG. 3 is an example of thermal spraying using wire and powder simultaneously in the atmosphere. Next, an example of experimental data is shown. The base material refers to the material to be thermally sprayed.

【表】【table】

【表】 溶射技術上、高温液化した溶射材料を噴射ガス
により、霧吹き状に均等に微粒化して飛行させ、
被溶射面に溶着させることが重要で、その均一微
粒化の条件を求めた図を第4〜6図に示す。第4
図は上表の純チタンワイヤーをアルゴン高圧ガス
により溶射した場合、レーザ出力3Kw、4Kwで
横軸のワイヤー送給速度、縦軸の高圧ガス圧力の
変化に対する均一微粒化の条件の領域(曲線の上
側)を示す。第5図は同じくチタンワイヤーを窒
素ガスで溶射した場合のレーザ出力2,3,4そ
れぞれの領域を示す。第6図は同じく酸素ガスで
溶射の場合で、この場合はレーザ出力が2〜
4Kwと変つても同じ領域になることを示してい
る。 <発明の効果> 本発明は世界で初めて、レーザによる工業的溶
射が可能なことを実証した。 集光レンズで収斂させたレーザの高エネルギー
密度部は、従来のガス溶射、プラズマ溶射の熱源
に比べ、温度、領域の制御が容易で正確であり、
瞬間加熱力を最高に高められる。この瞬間加熱力
が高いため、材料の液化部分の粘性が低く、従来
のどの溶射法の場合より波動が少なく、均質な溶
射が得られる。被溶射面も、収斂後拡散したレー
ザ光線で加熱されているから、溶射材料は完溶着
する。 また本発明は、溶射材料と噴射ガスとを適当に
選択することにより、溶射飛行中の化学反応を利
用する道を開いた。 本発明の溶射装置は、レーザ光線集光レンズが
高熱と溶融微粒の付着にさらされるのを防ぐ最も
有効確実な手段として、レンズの前に保護ガスを
吹き込み、溶射筒出口からレーザ光線と共に吹出
させる簡単な構成で成功した。 また他の溶射装置として、粉末材料を溶射筒経
由で高エネルギー密度部へ送る場合、溶射筒をレ
ンズ保護ガス室と粉末供給室とに分け、隔壁で仕
切ることにより、レンズの保護を確実にした。
[Table] In terms of thermal spraying technology, high-temperature liquefied thermal spraying material is atomized evenly in a mist-like manner using a propellant gas and then blown away.
It is important to weld the particles to the sprayed surface, and figures 4 to 6 show the conditions for uniform atomization. Fourth
The figure shows the range of conditions for uniform atomization (curve) when the pure titanium wire shown in the table above is thermally sprayed using argon high-pressure gas, with laser outputs of 3Kw and 4Kw, and the wire feed speed on the horizontal axis and the high-pressure gas pressure on the vertical axis. upper side). FIG. 5 similarly shows the respective regions of laser outputs 2, 3, and 4 when a titanium wire is thermally sprayed with nitrogen gas. Figure 6 shows the case of thermal spraying using oxygen gas, and in this case, the laser output is 2~
This shows that even if it changes to 4Kw, it will be in the same area. <Effects of the Invention> The present invention has demonstrated for the first time in the world that industrial thermal spraying using a laser is possible. The high energy density part of the laser converged by a condensing lens makes it easier and more accurate to control the temperature and area compared to the heat source of conventional gas spraying and plasma spraying.
Maximizes instantaneous heating power. Because of this high instantaneous heating power, the viscosity of the liquefied portion of the material is low, resulting in a more homogeneous spray with fewer waves than in any conventional thermal spraying method. Since the surface to be thermally sprayed is also heated by the convergent and then diffused laser beam, the thermally sprayed material is completely welded. The present invention also opens the door to utilizing chemical reactions during the spray flight by appropriately selecting the spray material and the propellant gas. The thermal spraying apparatus of the present invention injects a protective gas in front of the lens and blows it out together with the laser beam from the outlet of the thermal spray tube as the most effective and reliable means of preventing the laser beam focusing lens from being exposed to high heat and adhesion of molten particles. I succeeded with a simple configuration. In other thermal spraying equipment, when sending powder material to a high energy density area via a thermal spraying tube, the thermal spraying tube is divided into a lens protection gas chamber and a powder supply chamber, separated by a partition wall to ensure lens protection. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のレーザによる溶射装置の概
略説明図であり、第2図は単純な平面上への可変
雰囲気中溶射を可能にした溶射装置の概略説明図
である。第3図は、大気中において、ワイヤーと
粉末を同時に用いて溶射する場合の概略説明図で
ある。第4,5,6図はそれぞれ、高圧ガスをア
ルゴン、窒素、および酸素に変えて、同じ純チタ
ワイヤーを溶射した場合の均一微粒化良好な条件
を示す線図である。 図面において、はレーザビーム、は集光レ
ンズ、′はレンズホルダー、は溶射筒、は
レンズ保護ガス用接続部、7aは粉末及びそのキ
ヤリヤガス用接続部、は高圧ガス用接続部、
は主ノズル、は高圧ガスノズル、はワイヤー
送給用ノズル、は溶射雰囲気保護筒である。
FIG. 1 is a schematic explanatory diagram of a thermal spraying apparatus using a laser according to the present invention, and FIG. 2 is a schematic explanatory diagram of a thermal spraying apparatus that enables thermal spraying on a simple plane in a variable atmosphere. FIG. 3 is a schematic illustration of thermal spraying using wire and powder simultaneously in the atmosphere. Figures 4, 5, and 6 are diagrams showing conditions for uniform atomization when the same pure titanium wire is thermally sprayed by changing the high-pressure gas to argon, nitrogen, and oxygen, respectively. In the drawings, denotes a laser beam, a condensing lens, 'a lens holder, a thermal spray tube, a connection part for lens protection gas, 7a a connection part for powder and its carrier gas, a connection part for high pressure gas,
is the main nozzle, is the high-pressure gas nozzle, is the wire feeding nozzle, and is the thermal spray atmosphere protection tube.

Claims (1)

【特許請求の範囲】 1 被溶射面へ向かうレーザ光線を、保護ガスで
守られた集光レンズにより、上記被溶射面の手
前、吹付け距離だけ離れた位置に収斂させて、高
エネルギー密度部を作り、 上記レンズ用保護ガスの導入部とは仕切られた
別個の導入部から送られた溶射材料のワイヤ又は
粉末を、上記高エネルギー密度部へ連続送給し
て、そこで次々と高温液化し、 上記高エネルギー密度部に達する直前のレーザ
光線の外周の噴射口から、上記被溶射面へ向けて
高圧ガスを噴射して、上記高エネルギー密度部で
高温液化した材料を吹散らし微粒化飛行させて、
収斂後拡散したレーザ光線により加熱されている
上記被溶射面に吹付け、 上記高エネルギー密度部から被溶射面までの吹
付け距離を、上記微粒化飛行する液化材料が凝固
する前に到達する距離にしたことを特徴とするレ
ーザ溶射法。 2 溶射材料は金属であり、噴射ガスは上記金属
に対し反応性又は非反応性のものを適宜使用する
特許請求の範囲1に記載のレーザ溶射法。 3 溶射材料は金属であり、その金属は溶射雰囲
気中の化学反応により酸化物、窒化物等の非金属
溶射膜を作り得るものである特許請求の範囲2に
記載のレーザ溶射法。 4 レーザ光線集光レンズの照射側を包む室であ
つて、細くなつた収斂部直前のレーザ光線を囲む
光線出口の主ノズル、レンズ保護ガス用接続部及
び粉末供給用接続部のほかは密閉された溶射筒
と、 上記溶射筒を二分してレンズ保護ガス室と粉末
供給室とに仕切る、中央にレーザ光線通路をもつ
隔壁と、 上記溶射筒の主ノズルの外周にあつて、溶射方
向へ向けて開口した高圧ガスノズルと、 上記粉末供給用接続部から粉末供給室を経て、
上記レーザ光線収斂部へ溶射材料粉末をキヤリヤ
ガスに載せて連続送給する装置と、 上記レーザ光線収斂部へ、上記溶射筒の外部か
ら溶射材料を連続送給する装置とを備え、 上記レンズ保護ガス室へ上記接続部から保護ガ
スを送り込んで上記主ノズルから流出させ、上記
高圧ガスノズルから高圧ガスを噴射させて、上記
レーザ光線収斂部で高温液化した溶射材料を微粒
化飛行させ、上記レーザ光線収斂部から、微粒化
飛行する液化材料が凝固する前に到達する距離に
あつて収斂後拡散したレーザ光線により加熱され
ている被溶射面に、吹付けるようにした事を特徴
とするレーザ溶射装置。 5 溶射筒は溶射雰囲気保護筒の着脱可能である
特許請求の範囲4に記載のレーザ溶射装置。
[Claims] 1. Laser beams directed toward the surface to be thermally sprayed are converged at a position in front of the surface to be thermally sprayed and separated by the spraying distance using a condensing lens protected by a protective gas, thereby converging the laser beam toward a high energy density area. A wire or powder of thermal spray material is continuously fed from a separate introduction section separated from the introduction section for the lens protective gas to the high energy density section, where it is liquefied at a high temperature one after another. , A high-pressure gas is injected toward the sprayed surface from an injection port on the outer periphery of the laser beam just before it reaches the high-energy density part, and the material liquefied at high temperature in the high-energy density part is blown away and atomized into flight. hand,
Spray onto the surface to be thermally sprayed which is heated by the laser beam that is diffused after convergence, and set the spraying distance from the high energy density part to the surface to be thermally sprayed to the distance that the atomized and flying liquefied material reaches before solidifying. A laser spraying method characterized by the following. 2. The laser thermal spraying method according to claim 1, wherein the thermal spraying material is a metal, and the injection gas is appropriately reactive or non-reactive with respect to the metal. 3. The laser thermal spraying method according to claim 2, wherein the thermal spraying material is a metal, and the metal can form a non-metal sprayed film such as an oxide or nitride through a chemical reaction in the thermal spraying atmosphere. 4 A chamber that encloses the irradiation side of the laser beam condensing lens, and is sealed except for the main nozzle at the light exit that surrounds the laser beam just before the narrowed converging part, the lens protective gas connection, and the powder supply connection. a partition wall having a laser beam passage in the center, which divides the thermal spraying tube into two into a lens protection gas chamber and a powder supply chamber; The high-pressure gas nozzle opened at
a device for continuously feeding the thermal spray material powder on a carrier gas to the laser beam converging section; and a device for continuously feeding the thermal spraying material from the outside of the thermal spray tube to the laser beam converging section; A protective gas is sent into the chamber from the connection part and flows out from the main nozzle, and high-pressure gas is injected from the high-pressure gas nozzle to atomize and fly the high-temperature liquefied thermal spray material in the laser beam convergence section, thereby converging the laser beam. A laser thermal spraying device is characterized in that the sprayed surface is heated by a laser beam that is diffused after converging at a distance that the atomized liquefied material reaches before solidifying. 5. The laser thermal spraying apparatus according to claim 4, wherein the thermal spraying cylinder has a thermal spraying atmosphere protection cylinder which is detachable.
JP60105664A 1985-05-16 1985-05-16 Laser spraying method and its apparatus Granted JPS61264168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60105664A JPS61264168A (en) 1985-05-16 1985-05-16 Laser spraying method and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60105664A JPS61264168A (en) 1985-05-16 1985-05-16 Laser spraying method and its apparatus

Publications (2)

Publication Number Publication Date
JPS61264168A JPS61264168A (en) 1986-11-22
JPH0450381B2 true JPH0450381B2 (en) 1992-08-14

Family

ID=14413701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60105664A Granted JPS61264168A (en) 1985-05-16 1985-05-16 Laser spraying method and its apparatus

Country Status (1)

Country Link
JP (1) JPS61264168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717231B2 (en) 2015-05-26 2020-07-21 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621335B2 (en) * 1988-02-24 1994-03-23 工業技術院長 Laser spraying method
JPH02111863A (en) * 1988-10-20 1990-04-24 Suzuki Motor Co Ltd Formation of thermally sprayed nickel film with laser under reduced pressure
US5043548A (en) * 1989-02-08 1991-08-27 General Electric Company Axial flow laser plasma spraying
JPH05271898A (en) * 1992-02-17 1993-10-19 Ind Technol Res Inst Surface treatment method of injection screw in injection molding machine
JP2810973B2 (en) * 1993-08-09 1998-10-15 工業技術院長 Method for manufacturing fuel electrode for high-temperature fuel cell
US6251488B1 (en) * 1999-05-05 2001-06-26 Optomec Design Company Precision spray processes for direct write electronic components
DE10035622C2 (en) * 2000-07-21 2003-05-08 Precitec Kg Powder coating head
DE10154093B4 (en) * 2001-11-02 2006-02-02 Daimlerchrysler Ag Process for surface treatment by a powder material using a laser beam and apparatus for carrying out the method
JP3784404B1 (en) * 2004-11-24 2006-06-14 株式会社神戸製鋼所 Thermal spray nozzle device and thermal spray device using the same
CN103132069B (en) * 2011-11-23 2015-07-22 沈阳大陆激光柔性制造技术有限公司 Laser processing wire-feeding powder-feeding cladding atmosphere protective device
CN111778501A (en) * 2020-06-30 2020-10-16 武汉武钢华工激光大型装备有限公司 Method and device for preparing conducting layer on Cr20Ni80 thermal spraying coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102267A (en) * 1980-12-18 1982-06-25 Agency Of Ind Science & Technol Method and apparatus for melt-spraying by laser
JPS61163258A (en) * 1985-01-11 1986-07-23 Shinagawa Refract Co Ltd Laser thermal spraying method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102267A (en) * 1980-12-18 1982-06-25 Agency Of Ind Science & Technol Method and apparatus for melt-spraying by laser
JPS61163258A (en) * 1985-01-11 1986-07-23 Shinagawa Refract Co Ltd Laser thermal spraying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717231B2 (en) 2015-05-26 2020-07-21 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method

Also Published As

Publication number Publication date
JPS61264168A (en) 1986-11-22

Similar Documents

Publication Publication Date Title
JPH01215961A (en) Laser thermal spraying method
US4269868A (en) Application of metallic coatings to metallic substrates
US5847357A (en) Laser-assisted material spray processing
US4127761A (en) Laser welding
US4200669A (en) Laser spraying
US6623796B1 (en) Method of producing a coating using a kinetic spray process with large particles and nozzles for the same
US4370538A (en) Method and apparatus for ultra high velocity dual stream metal flame spraying
JPH0450381B2 (en)
JP2683134B2 (en) Laser plasma spraying apparatus and method
JP3225293B2 (en) Thermal spraying method using the temperature of powder particles in the conveying process below the melting point
GB2439934A (en) Laser-assisted spray system and nozzle
JPH02258186A (en) Leaser welding method and device
JP2010201415A (en) Apparatus, system, and method for cold spray coating
US4358053A (en) Flame spraying device with rocket acceleration
JPH0798990B2 (en) Cross flow laser spray nozzle
JP6165771B2 (en) Reactive gas shroud or flame sheath for suspension plasma spray process
EP2707172A1 (en) Process for cladding a substrate
JPH07501490A (en) Methods of supplying gas for laser cutting and cutting equipment for carrying out such methods
CN109295455A (en) Coating for metal surfaces preparation facilities
CN110877003B (en) Hole part inner wall spraying method and device based on double-pulse strong laser technology
CN104745999A (en) Method and device for performing impact-spraying on inner hole wall based on laser impact wave technology
JPS642187B2 (en)
US7351450B2 (en) Correcting defective kinetically sprayed surfaces
CN209636320U (en) Coating for metal surfaces preparation facilities
JPH03107447A (en) Plasma thermal spraying method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term