JPS62176732A - Four shaft simultaneous manufacturing formation method on automatic programming - Google Patents

Four shaft simultaneous manufacturing formation method on automatic programming

Info

Publication number
JPS62176732A
JPS62176732A JP1954186A JP1954186A JPS62176732A JP S62176732 A JPS62176732 A JP S62176732A JP 1954186 A JP1954186 A JP 1954186A JP 1954186 A JP1954186 A JP 1954186A JP S62176732 A JPS62176732 A JP S62176732A
Authority
JP
Japan
Prior art keywords
shape
workpiece
machining
data
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1954186A
Other languages
Japanese (ja)
Other versions
JPH0616978B2 (en
Inventor
Akira Hibi
日比 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP61019541A priority Critical patent/JPH0616978B2/en
Publication of JPS62176732A publication Critical patent/JPS62176732A/en
Publication of JPH0616978B2 publication Critical patent/JPH0616978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the time for preparing four shaft simultaneous manufacturing programming by dividing a manufacturing region according to input workpiece shape, raw material shape and tool data and by automatically forming four shaft simultaneous manufacturing data every a region. CONSTITUTION:When manufacturing information such as workpiece shape, raw material shape and tool data is input from a keyboard 2 as CRT 1 is being recognized, these data are memorized in an input data memory part 4 by means of an input data control part 3. Then, a divided point set part 5 automatically sets the point for dividing a manufacturing region in the direction of a longitudinal axis of a workpiece from workpiece shape and raw material shape, establishes a divided line of a manufacturing region from a set divided point in a shape divided set part 6, sets data such as workpiece shape, raw material shape, using tool information and cutting conditions to memorize in a divided data memory part 7. Accordingly, preparing of four shaft simultaneous manufacturing program is performed with an input operation, and the time for preparing can steeply be reduced.

Description

【発明の詳細な説明】 3.9.明のn1lll14な説明 (発明の技術分野) 未発Illは、数11制W(N(:)!盤の自動プログ
ラミングを用いて外径加工するシャフト形状等のワーク
を4軸同時加工する際に、1つのワークに対して1回の
加[情報入力操作により、加工範囲の分−1,1及び工
具情報等の4軸回時加Lデータを自動的に作成する自動
プログラミングにおける4輌114峙加丁生成方U:に
関する。
[Detailed description of the invention] 3.9. Explanation of N1llll14 (Technical Field of the Invention) Undeveloped Ill is the number 11 system W (N (:)! When machining a workpiece such as a shaft shape to be machined on the outer diameter using automatic programming of the machine on 4 axes simultaneously. , one machining operation for one workpiece [4 vehicles 114 positions in automatic programming that automatically creates 4-axis rotary machining L data such as machining range minute-1, 1 and tool information by information input operation Regarding Kacho generation method U:.

(発明の技術的背景とその問題点) シャフト形状のワークは、その大多数が内径、 切削を
必要とせず外径切削のみを行なっている。第3図(A)
はこのような外18!切削のみ行なうワークの一例を示
し、このワークに対してNC旋S等を用いて4軸同時加
工を行なう際には、その−・方法として上記ワークの長
手軸方向に加工範囲を分割し、この分割した加工範囲を
それぞれ同時加工する方法がある。ところが、この分割
した加工範囲はそれぞれどちらも外径切削を行なうにも
かかわらず、従来、この各加工範−1が全く異なる!、
II l’)1 ffi位であるかの如く、各加工範囲
毎にそれぞれ加工内容、加工方向及び工具情%2等の加
工情報を入力指定しなければならず、オペレータにとっ
てその人力操作が煩わしいだけでなく、多くの時間を要
するという問題点があった・ (発明の目的) 本発明はと述のような事情からなされたものであり1本
発明の目的は、 NG旋盤のr1動プログラミングを用
いて外径切削加工するシャフト形状等のワークを4軸同
時加工する腔に、1つのワークに対してオペレータの1
回の加工情報入力操作によって、上記ワークの4軸同時
加工データを自動的に生成する自動プログラミングにお
ける4軸同時加工生成方誌を提供することにある。
(Technical background of the invention and its problems) The majority of shaft-shaped workpieces do not require cutting of the inner diameter, but only the outer diameter is cut. Figure 3 (A)
Outside 18 like this! An example of a workpiece that is only subjected to cutting is shown below. When performing 4-axis simultaneous machining on this workpiece using an NC lathe S, etc., the method is to divide the machining range in the longitudinal axis direction of the workpiece. There is a method of simultaneously machining each of the divided machining ranges. However, although each of these divided machining ranges performs outer diameter cutting, conventionally, each machining range 1 is completely different! ,
II l') 1 It is necessary to input and specify machining information such as machining content, machining direction, tool information %2, etc. for each machining range as if it were a ffi level, and the manual operation is only cumbersome for the operator. However, there was a problem that it took a lot of time. (Objective of the Invention) The present invention was made in view of the above circumstances.1 The purpose of the present invention is to One operator per workpiece is used for simultaneous four-axis machining of a workpiece such as a shaft shape that is to be machined to cut the outer diameter.
The object of the present invention is to provide a 4-axis simultaneous machining generation method in automatic programming that automatically generates 4-axis simultaneous machining data for the workpiece by multiple machining information input operations.

(発明のJ!要) 本発明は、数値制御旋盤を用いた自動プログラミングに
おける4軸向時加工生成力法に関し、上記数値制御旋盤
の自動プログラミング機能を川C%て、外径切削を行な
うワークの4軸同時加工データを自動的に生成する際に
、上記数値制御旋盤に入力されたワーク形状、素材形状
及び工具データに基づき、上記ワーク形状を示す全ワー
ク形状点のうち両端点及び全凹角点を除く全凹角点につ
いて、この各凸角点を通り、上記エバの刃先角度に応じ
た所定角度のラインをそれぞれa:ii’L、上記各ラ
インが上記製材形状と交叉する各交点と当該各画角点と
の間で上記ワーク形状に交叉しないワーク形状点を選択
し、この選択されたワーク形状点のうち上記ワーク形状
の長手軸方向の中央部に最も近いワーク形状点を上記分
割点として上記ワーク形状の加工範囲を分割し、この分
割された各加工範囲毎に4軸同時加工データを自動的に
生成するようにしたものである。
(J!Key Point of the Invention) The present invention relates to a 4-axis machining generation force method in automatic programming using a numerically controlled lathe, and the present invention utilizes the automatic programming function of the numerically controlled lathe described above to create a workpiece for which outer diameter cutting is to be performed. When automatically generating 4-axis simultaneous machining data of For all concave angle points excluding the point, a line passing through each convex point and at a predetermined angle corresponding to the blade edge angle of the evaporator is drawn a: ii'L, and each of the above lines intersects the sawn shape with the corresponding intersection point. Select a workpiece shape point that does not intersect the workpiece shape with each view angle point, and set the workpiece shape point closest to the center of the workpiece shape in the longitudinal axis direction among the selected workpiece shape points as the division point. The machining range of the workpiece shape is divided, and four-axis simultaneous machining data is automatically generated for each of the divided machining ranges.

l明の実施例) m1図は本発明の自動プログラミングにおける4軸同時
加工生成方法を過用することができるNG旋盤の制御装
置の概略を示すブロック構成図である。第1図において
、CRT表示!Aこ1から成るディスプレイ1は加ニブ
ログラムやデータ等を表示するとJ(に1品種データ入
力操作の案内表示を91ない、キーボード2はワーク形
状、素材形状、使用[貝(刃先角度、■共番号1)やジ
ノ削条件等の加工情報データを人力する際に用いられる
0人力制fRn 3はE記事−ボード2から人力される
各種データを読取り、上記ディスプレイlに表示すると
共に1人カデータ記憶Fs<に出力し、この人力データ
記+11PI14はL記入力iDI 鍵部3から出力さ
れるflデータを記憶する0分;1立設2部5は上記入
力された各種データのうち、ワーク形状及び素材形状デ
ータに基づき、ワークの長手軸方向に加工amを分;1
する点(分割点)を後述するようにして自動的に設定す
る。形状分割設定部6は上記分割点設定部5で設定され
た分;1点により後述する加工範囲の分割ラインを設定
し、この分割ラインで分】1される各加工範囲をそれぞ
れ独立した加工範囲として、それぞれに対してワーク形
状、素材形状、使用°[具情報及び切削条件等を設定す
る0分割データ記憶部7は上記形成分;11設定部で設
定された谷加工範囲毎のワーク形状、素材形状、使用工
具情報及び切削条件等のデータを記憶する。
(Example 1) Fig. m1 is a block configuration diagram schematically showing a control device for an NG lathe that can make overuse of the 4-axis simultaneous machining generation method in automatic programming of the present invention. In Figure 1, CRT display! The display 1, which consists of A1, displays the program and data, etc., and the keyboard 2 displays information such as workpiece shape, material shape, usage [shell (cutting edge angle, ■ common number). 1), 0-manpower system fRn used when manually inputting machining information data such as cutting conditions etc. 3 reads various manually inputted data from E-article board 2 and displays it on the display l, as well as 1-person data storage Fs This manual data record + 11 PI 14 stores the fl data output from the L input iDI key section 3; Based on the shape data, machining am in the longitudinal axis direction of the workpiece is
The points (dividing points) are automatically set as described below. The shape division setting section 6 sets a division line of the machining range, which will be described later, by one point set by the division point setting section 5, and divides each machining range into independent machining ranges by this division line. The 0-division data storage section 7, which sets tool information, cutting conditions, etc., is the above-mentioned component; the workpiece shape for each valley machining range set in the setting section 11; Stores data such as material shape, information on tools used, and cutting conditions.

このようなa威の制御装置をイ■するHC旋盤を用いて
、第3図(^)に示すようなワークに対する本発明のr
l動プログラミングにおける4輪間時加工生成フJυ、
を、第2図に示すフローチャートを参照して以下に説明
する。
Using an HC lathe equipped with such a powerful control device, the present invention can be applied to a workpiece as shown in Fig.
Four-wheel time machining generation function Jυ in l-dynamic programming,
will be explained below with reference to the flowchart shown in FIG.

未発明方法において、L記ディスプレイlを確認しなが
ら、オペレータが第3図(A)に示すようなワークw1
の加工情報(ワーク形状データを示す点PI、P2.・
・・、P7の座標値、素材形状データを示す点PI、P
8.P?の座標値及び使用工具Tの刃先角度”9)をキ
ーボード2から入力すると。
In the uninvented method, an operator selects a work w1 as shown in FIG. 3(A) while checking the L display l.
Machining information (points PI, P2, which indicate workpiece shape data)
..., points PI and P indicating coordinate values of P7 and material shape data
8. P? When inputting the coordinate values of and the cutting edge angle "9) of the tool T used" from the keyboard 2.

これらの加工情報データが上記入力データー111部3
により入力データ記憶t!A4に記憶される(ステップ
S1)、そこで、分割点設定Paaは一上記加工情報の
うちワーク形状データを示す点P1.P2.・・・ 、
P7を順次読込み(ステップ32〜S3)、この読み込
んだ各ワーク形状点について、以ドのようにして判定し
て加工範囲分割可能点を設定する。
These processed information data are the input data 111 part 3.
Input data is stored by t! A4 (step S1), where the dividing point setting Paa is set to the point P1. P2. ... ,
P7 is sequentially read (steps 32 to S3), and each of the read workpiece shape points is determined as follows to set a machining range dividing point.

Φまず、この順次読み込んだワーク形状点21〜P7が
ワークの両端点である最初のワーク形状点Pi又は最後
のワーク形状点P7であれば、そのワーク形状点PI及
びP7は分割点になり得ないので上記ステップS2に戻
り次のワーク形状点を証込み、同様にして判定して、そ
の他のワーク形状点22〜P8を分割可能点として選択
する(ステップS4)。
ΦFirst, if the sequentially read workpiece shape points 21 to P7 are the first workpiece shape point Pi or the last workpiece shape point P7, which are both end points of the workpiece, the workpiece shape points PI and P7 can be the dividing points. Since there is no workpiece shape point, the process returns to step S2 and the next workpiece shape point is determined, similarly determined, and other workpiece shape points 22 to P8 are selected as divisible points (step S4).

Q)次に、」:記ワーク形状点P2〜PBのうち、凹部
の点P2.P4 、Peはニー記分、161点として不
適確であるので一上記ステップS2にJJ!り次のワー
ク形状点を読込み、同様にしてr1定して、その他のワ
ーク形状点P3及びP5を分割可能点として選択する(
ステップS5)。
Q) Next, among the workpiece shape points P2 to PB, the concave point P2. Since P4 and Pe are inaccurate at 161 points, JJ! Then read the next workpiece shape point, set r1 in the same way, and select other workpiece shape points P3 and P5 as divisible points (
Step S5).

■さらに、第4図(^)に示すように、使用工具Tの刃
先角度Oに対して50ぐらい余裕を持った角度01のラ
インJITを想定し、上記ステ、プ94.S5により選
択されたワーク形状点P3及びP5を通るライン庭丁3
及びiTsについて。
■Furthermore, as shown in Fig. 4 (^), assuming a line JIT with an angle 01 that has a margin of about 50 with respect to the cutting edge angle O of the tool T used, step 94. Line garden 3 passing through workpiece shape points P3 and P5 selected by S5
and about iTs.

素材形状Nl&の交点とのIJllにワーク形状w1と
の干渉点の有無を判定する(ステップS8)。
It is determined whether there is an interference point with the workpiece shape w1 at IJll with the intersection of the material shape Nl& (step S8).

す)ここにおいて、第4図(C)に示すようなワークv
2の形状点P20の場合、−h記ステップS4.S5に
おいては分pg ur能点として選択されるが、この9
−り形状点P20を通る上記ラインI T2(Iを想定
すると、このライン!〒20は素材形状N2との交点P
P20とのIIにワーク形状w2との干渉点PV20を
有するの!、このワーク形状点P20は求める分割可能
点とは成り得ない、一方、第4図(B)に示すように上
記ワーク形状点P3及びP5を通るライン皇テ3及びj
lT5は、と記素材形状旧に対してそれぞれ交点PP3
及びPP5を有し、11つその間にワーク形状引との干
渉点を夷さないので、このワーク形状点p3及びP5を
それぞれ上記分割可能点として設定する(ステップS7
)。
) Here, a workpiece v as shown in Fig. 4(C)
In the case of shape point P20 of 2, -h step S4. In S5, it is selected as the minute pg ur function point, but this 9
- If we assume that the above line I T2 (I) passes through the material shape point P20, then this line! 〒20 is the intersection point P with the material shape N2
It has an interference point PV20 with the workpiece shape w2 at II with P20! , this workpiece shape point P20 cannot be the desired divisible point. On the other hand, as shown in FIG. 4(B), lines 3 and j passing through the workpiece shape points P3 and P5 are
lT5 is the intersection point PP3 for the material shape old, respectively.
and PP5, and there are no interference points between them with the workpiece shape points, so these workpiece shape points p3 and P5 are respectively set as the above-mentioned divisible points (step S7
).

このように上記ステップ52〜S7を繰返して全ワーク
形状点Pi〜P7について分割可能点の設定が終了する
と1.L配分刻点設定部5は、第4図(+1)に示すよ
うに、E記設定された分割可能点P3及びP5のうち、
このワーク形状w1の長手軸方向の外径加工範111U
PI−P7の中央部に最も近い点P5を求め(ステップ
S8)、このワーク形状点P5をこのワーク引の加工範
囲分割点として設定する(ステップS9)、そこで、第
3図(B)に示すように、h記形状分割設2 Fi 6
はこの加工範囲分刻点P5を通る上記ライン!T5を想
定して分割ラインjlT5として設定し、この分割ライ
ンff1T5で分;1された各加工範囲−■及び111
12をそれぞれ独立した加工@IMとして上記ワーク形
状データP1〜P7及び素材形状データPI、Pal、
P7を分割して第4図(E)に示すように設定する。さ
らに、上記使用工具Tの刃先角度等の工具情報及び切削
条件1詰条件をも上記各加工範囲一11及びw12毎に
分割して設定し、これらの分割形状加工情報データを上
記分−1データ記憶部7に設定する(ステップ5IO)
In this manner, steps 52 to S7 are repeated and when the setting of divisible points for all workpiece shape points Pi to P7 is completed, 1. As shown in FIG. 4 (+1), the L distribution marking point setting unit 5 selects the divisible points P3 and P5 set as E, as shown in FIG. 4 (+1).
The outer diameter machining range 111U in the longitudinal axis direction of this workpiece shape w1
Find the point P5 closest to the center of PI-P7 (step S8), and set this workpiece shape point P5 as the machining range dividing point for this workpiece pull (step S9), so as shown in FIG. 3(B). So, h shape division setting 2 Fi 6
is the above line that passes through this machining range dividing point P5! Assuming T5, the dividing line jlT5 is set, and each machining range -■ and 111 is divided by 1 at this dividing line ff1T5.
12 as independent machining@IM, the above workpiece shape data P1 to P7 and material shape data PI, Pal,
P7 is divided and set as shown in FIG. 4(E). Furthermore, the tool information such as the cutting edge angle of the tool T used above and the 1st cutting condition are also divided and set for each of the above machining ranges -11 and w12, and these divided shape machining information data are divided into the above-mentioned -1 data. Set in storage unit 7 (step 5IO)
.

なお、上述の実施例において、ワーク形状茅の抛−[情
報をオペレータがキーボードを操作して人力する例を示
したが、他のWi1m装置やシステム等においてn4h
決定されたデータが転送されて人力されるようにしても
よい。
In addition, in the above-mentioned embodiment, an example was shown in which the operator manually inputs the information on the workpiece shape by operating the keyboard, but other Wi1m devices and systems etc.
The determined data may be transferred and manually processed.

(発明の効果) 以Hのように本9.明の自動プログラミングにおける4
軸回時加に生成方法によれば、従来。
(Effect of the invention) As shown in H below, Book 9. 4 in automatic programming
According to the conventional method of generating shaft rotation time.

オペレータがtめ加工範囲分割点を設定し、この分11
点により分割される各加工範囲毎に各舶工条件等を入力
していた外径切削のみ行なうワークの4軸同時加工が、
1回の操作で入力されるワーク形状、ぶ材形状、使用:
[具及び加工条件等のデータから自動的に最適な同時加
工データが生成されるため、4軸回時加ニブログラムの
作成時間を大幅に短縮できると共に、作業者の負担が軽
減されるようになる。
The operator sets the tth machining range dividing point, and
Simultaneous 4-axis machining of a workpiece that only performs outer diameter cutting, which used to involve inputting each marine machining condition for each machining range divided by points, is now possible.
Workpiece shape, material shape, and usage input in one operation:
[Since the optimal simultaneous machining data is automatically generated from data such as tools and machining conditions, the time required to create a 4-axis rotary machining program can be significantly shortened, and the burden on the operator can be reduced. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を適用することができる装置の一例
を示すブロック構成図、第2図は本発明の同時加工生成
方法の動作を説明するフローチャート、第3図(ム)、
(B)及び第4図(^)〜(E)は未発り1の同時加工
生成方法を説明するためのワーク及び分割点判定方法の
一例を示す図である。 l・・・ディスプレイ、2・・・キーボード、3・・・
人力−制御部、4・・・入力データ記憶部、5・・・分
割点:a足部、6・・・形状分割設定部、7・・・分割
データ記憶部、 PI #P7.P20.Pi’〜P7
°・・・ワーク形状点、 Pi、PI、P7.PP5.
PIo、P8°、PP5°−・・・素材形状点、vt、
w2・1G材形状、 wll、1112−・・加工範囲
。 旧、N2・・・素材形状、T・・・使用工具。
FIG. 1 is a block configuration diagram showing an example of an apparatus to which the method of the present invention can be applied, FIG. 2 is a flowchart explaining the operation of the simultaneous processing and generation method of the present invention, and FIG.
(B) and FIGS. 4(^) to (E) are diagrams showing an example of a workpiece and a division point determination method for explaining a method of generating simultaneous machining of unreleased 1. l...display, 2...keyboard, 3...
Human power-control unit, 4... Input data storage unit, 5... Division point: a leg, 6... Shape division setting unit, 7... Division data storage unit, PI #P7. P20. Pi'~P7
°...Workpiece shape point, Pi, PI, P7. PP5.
PIo, P8°, PP5°--Material shape point, vt,
w2・1G material shape, wll, 1112-... processing range. Old, N2...Material shape, T...Tool used.

Claims (2)

【特許請求の範囲】[Claims] (1)数値制御旋盤の自動プログラミングにおいて、外
径切削の4軸同時加工データを自動的に生成する際に、
入力されたワーク形状、素材形状及び工具データに基づ
いて前記ワークの加工範囲を分割し、この分割された各
加工範囲毎に4軸同時加工データを自動的に生成するよ
うにしたことを特徴とする自動プログラミングにおける
4軸同時加工生成方法。
(1) In automatic programming of a numerically controlled lathe, when automatically generating 4-axis simultaneous machining data for outer diameter cutting,
The machining range of the workpiece is divided based on input workpiece shape, material shape, and tool data, and 4-axis simultaneous machining data is automatically generated for each divided machining range. 4-axis simultaneous machining generation method in automatic programming.
(2)前記加工範囲の分割を、前記ワーク形状を示す全
ワーク形状点のうち両端点及び全凹角点を除く全凸角点
について、この各凸角点を通り前記工具の刃先角度に応
じた所定角度のラインをそれぞれ想定し、前記各ライン
が前記素材形状と交叉する各交点と当該各凸角点との間
で前記ワーク形状に交叉しないワーク形状点を選択し、
この選択されたワーク形状点のうち前記ワーク形状の長
手軸方向の中央部に最も近いワーク形状点を前記分割点
として前記ワーク形状の加工範囲を分割するようにした
特許請求の範囲第1項に記載の自動プログラミングにお
ける4軸同時加工生成方 法。
(2) The machining range is divided by dividing all convex points of all workpiece shape points indicating the workpiece shape, excluding both end points and all concave points, by passing through each convex point according to the cutting edge angle of the tool. Assuming each line at a predetermined angle, selecting a workpiece shape point that does not intersect the workpiece shape between each intersection point where each of the lines intersects the material shape and each of the convex angle points,
According to claim 1, the machining range of the workpiece shape is divided by using the workpiece shape point closest to the center of the workpiece shape in the longitudinal axis direction as the dividing point among the selected workpiece shape points. 4-axis simultaneous machining generation method in automatic programming described above.
JP61019541A 1986-01-31 1986-01-31 4-axis simultaneous machining generation method in automatic programming Expired - Lifetime JPH0616978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61019541A JPH0616978B2 (en) 1986-01-31 1986-01-31 4-axis simultaneous machining generation method in automatic programming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61019541A JPH0616978B2 (en) 1986-01-31 1986-01-31 4-axis simultaneous machining generation method in automatic programming

Publications (2)

Publication Number Publication Date
JPS62176732A true JPS62176732A (en) 1987-08-03
JPH0616978B2 JPH0616978B2 (en) 1994-03-09

Family

ID=12002172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61019541A Expired - Lifetime JPH0616978B2 (en) 1986-01-31 1986-01-31 4-axis simultaneous machining generation method in automatic programming

Country Status (1)

Country Link
JP (1) JPH0616978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140304A (en) * 1987-11-27 1989-06-01 Fanuc Ltd Interactive nc input device
JPH0281209A (en) * 1988-09-19 1990-03-22 Toyota Motor Corp Teaching data generating method for robot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175010A (en) * 1982-04-07 1983-10-14 Yamazaki Mazak Corp Graphic display method of numerical controller for 4-axis lathe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175010A (en) * 1982-04-07 1983-10-14 Yamazaki Mazak Corp Graphic display method of numerical controller for 4-axis lathe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140304A (en) * 1987-11-27 1989-06-01 Fanuc Ltd Interactive nc input device
JPH0281209A (en) * 1988-09-19 1990-03-22 Toyota Motor Corp Teaching data generating method for robot

Also Published As

Publication number Publication date
JPH0616978B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US4558419A (en) Method of judging and controlling simultaneous machining in a quadriaxial numerical control lathe
DE112017000203B4 (en) Numerical control and numerical control method
US6885984B1 (en) Apparatus and method for aiding programming
EP0103428B1 (en) Nc programming apparatus
EP0104542B1 (en) Numerically controlled machining method
WO1985005702A1 (en) Automatic programming system
JPS58175010A (en) Graphic display method of numerical controller for 4-axis lathe
JPS62176732A (en) Four shaft simultaneous manufacturing formation method on automatic programming
JPS6347805A (en) Override playback system
JPS63206804A (en) Numerical control system
JP3202068B2 (en) Method of creating tool movement path for NC machining
JPS6267607A (en) Automatic programming device
US5060163A (en) Programming apparatus for lathes
JPS61103213A (en) Production of numerical control data
JP2696206B2 (en) Automatic part program creation method
JP2845711B2 (en) Machining method of work with character line
JP3092744B2 (en) Processing system
EP0079394A1 (en) Numerical control device
JPH0425346A (en) Method and device for automatic division of work stage in automatic programming device
JPH0146263B2 (en)
US5184294A (en) Apparatus for generating numerical control information for machining parts
JP2898162B2 (en) Character line processing method
JPH03156506A (en) Nc program generating method for interactive numerical controller or automatic programming device
JPS6268251A (en) Tool selecting method
JPS61257740A (en) Tool selection system