JPS62176656A - Continuous casting method by solidification under molten metal surface without surface cracking of billet - Google Patents

Continuous casting method by solidification under molten metal surface without surface cracking of billet

Info

Publication number
JPS62176656A
JPS62176656A JP1577586A JP1577586A JPS62176656A JP S62176656 A JPS62176656 A JP S62176656A JP 1577586 A JP1577586 A JP 1577586A JP 1577586 A JP1577586 A JP 1577586A JP S62176656 A JPS62176656 A JP S62176656A
Authority
JP
Japan
Prior art keywords
casting
mold
speed
billet
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1577586A
Other languages
Japanese (ja)
Other versions
JPH0359779B2 (en
Inventor
Hidema Takeuchi
竹内 英磨
Shogo Matsumura
省吾 松村
Hidenori Tsuchida
土田 英典
Jun Oishi
大石 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1577586A priority Critical patent/JPS62176656A/en
Publication of JPS62176656A publication Critical patent/JPS62176656A/en
Publication of JPH0359779B2 publication Critical patent/JPH0359779B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve quality of billet surface by executing reciprocating motion with closely resemblong sine curve in casting direction for integrated type combination mold, making a max. descendent speed of the mold faster than casting speed of the casting billet and making a return-back length, etc. a speci fied value. CONSTITUTION:The integrated type combination mold, which arranges an inter mediate vessel 2 above a water cooling mold 1, and a heat insulating ring 3 at the boundary of the both, executes reciprocating motion with closely resem bling sine curve in the casting direction, and the max. descendent speed of the mold is faster than the casting speed of the casting billet. Further, the casting is executed under condition of which a negative strip time (tN) and the return-back length (lr) satisfy the inequality. In this way, the casting billet having good surface quality is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋳型振動連続鋳造における湯面下凝固法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a subsurface solidification method in mold vibratory continuous casting.

〔従来の技術〕[Conventional technology]

連続鋳造法における鋳片断面の最小寸法は浸漬ノズルの
外径に制限される。このため浸漬ノズルの最小径以下の
鋳片を鋳造する方法として、タンディシュ(以下タンデ
ィシュを略称してTDという)と鋳型を直結して鋳造を
行ういわゆる湯面下凝固鋳造法が公知である。
The minimum dimension of the slab cross section in the continuous casting method is limited by the outer diameter of the immersion nozzle. Therefore, as a method for casting slabs having a diameter smaller than the minimum diameter of the immersion nozzle, a so-called submerged solidification casting method is known, in which a tundish (hereinafter simply referred to as TD) and a mold are directly connected.

湯面下凝固鋳造法としては例えば特公昭53−3704
3号公報記載の方法がある。この方法は、凝固開始位置
を一定とするために1.TD内まで黒鉛鋳型を挿入し、
鋳型を振動しないで鋳造する方法である。
An example of the submerged solidification casting method is the Japanese Patent Publication No. 53-3704.
There is a method described in Publication No. 3. In this method, 1. Insert the graphite mold into the TD,
This is a method of casting without vibrating the mold.

また本出願人は、湯面下凝固鋳造法として水冷鋳型の上
部に中間容器を配置し、該水冷鋳型と該中間容器の境界
に断熱性リングを装着した一体型組合せ鋳型を用い鋳型
を振動させて鋳造する方法を先に出願した(特願昭59
−159951)。
In addition, the present applicant uses an integrated combination mold in which an intermediate container is placed above a water-cooled mold and a heat insulating ring is attached to the boundary between the water-cooled mold and the intermediate container as a submerged solidification casting method, and the mold is vibrated. He first applied for a method of casting (patent application filed in 1982)
-159951).

このような湯面下凝固鋳造法によって得られた鋳片は、
パウダーレス鋳造のためパウダーの捲き込みの無い平滑
な表面が得られる。しかし鋳型の振動条件によっては、
鋳片の表面割れが発生する場合がある。鋳片の表面割れ
は1サイクル毎に鋳片の全周にわたって発生し、最大深
さは2mm以上に達するものもあり鋳片の手入れ歩留り
を低下させる。
The slab obtained by this submerged solidification casting method is
Powderless casting provides a smooth surface without powder entrainment. However, depending on the vibration conditions of the mold,
Surface cracking of slabs may occur. Surface cracks on the slab occur over the entire circumference of the slab in each cycle, and some have a maximum depth of 2 mm or more, reducing the maintenance yield of the slab.

この湯面下凝固鋳造法における鋳片表面割れの生成機構
は、水冷鋳型と中間容器の境界の断熱性リング側から生
成する初期凝固シェル(旧シェル)と、1サイクル引抜
後旧シエル側からのシェルの生成(新シェル)との境界
層が不連続な凝固パターンを形成し、この新・旧シェル
の境界層が融着不良の場合に生成すると考えられる。
The generation mechanism of slab surface cracks in this subsurface solidification casting method consists of an initial solidification shell (old shell) generated from the insulating ring side at the boundary between the water-cooled mold and the intermediate vessel, and a crack formed from the old shell side after one cycle of drawing. It is thought that the boundary layer between the new shell and the new shell forms a discontinuous solidification pattern, and this boundary layer between the new and old shells is generated when fusion is poor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

表面割れ防止湯面下凝固鋳造法としては、たとえば、鋳
片の引抜サイクル数を増大させることによって1サイク
ルあたりに生成されるシェルの生成時間を小さくし表面
割れを浅くしようとする方法が考えられる。
As a method of subsurface solidification casting to prevent surface cracking, for example, a method can be considered in which the number of cycles for drawing the slab is increased to reduce the time required to form a shell per cycle, thereby making surface cracks shallower. .

しかし鋳型振動を正確に制御しながら高サイクルを得る
ためには引抜装置の機構が複雑になりまた設備的にも限
界があり表面割れの防止は困難であることがわかった。
However, in order to obtain high cycles while accurately controlling mold vibration, the mechanism of the drawing device becomes complicated, and there are limitations in terms of equipment, making it difficult to prevent surface cracks.

また、水冷鋳型と中間容器の境界の断熱性リングを薄く
することにより、初期凝固シェルの生成を抑え、表面割
れを小さくする方法を考え鋳造実験を行った。しかし断
熱性リングを薄くすることにより機械的強度が低下し鋳
造時に破損し安定した鋳造は不可能であることがわかっ
た。
We also conducted casting experiments to find a way to suppress the formation of an initial solidified shell and reduce surface cracks by thinning the insulating ring at the boundary between the water-cooled mold and the intermediate container. However, it was found that by making the heat insulating ring thinner, its mechanical strength decreased and it broke during casting, making stable casting impossible.

従って湯面下凝固連続鋳造法により表面割れを防止する
方法は現在にいたるまで実用化されていないのが実状で
ある。
Therefore, the actual situation is that a method of preventing surface cracking by submerged solidification continuous casting has not been put to practical use to date.

本発明は湯面下凝固連続鋳造法において、表面割れの発
生しない鋳片の製造技術を提供するものである。
The present invention provides a technology for producing slabs without surface cracks in a continuous submerged solidification casting method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴は、鋳型の下降速度が鋳片の鋳造速度より
大きい領域(ネガティブストリップ領域)を存在させる
ことにより生成した初期凝固シェルを鋳片の鋳造方向に
押しつけて割れを融着させ、割れの発生を完全に防止し
ようとするものである。
The feature of the present invention is that by creating a region (negative strip region) where the descending speed of the mold is higher than the casting speed of the slab, the initially solidified shell generated is pressed against the casting direction of the slab to fuse the cracks. The aim is to completely prevent the occurrence of

表面割れの発生を防止するためには、鋳型の下降速度が
鋳片の鋳造速度より大きい領域内で、新・旧シェルを鋳
片の鋳造方向に押しつける時間(ネガティブス) IJ
ツブ時間)と量(押戻量)が必要である。
In order to prevent the occurrence of surface cracks, it is necessary to press the new and old shells in the casting direction of the slab within the region where the descending speed of the mold is higher than the casting speed of the slab (negative IJ).
(push time) and amount (push back amount) are required.

またネガティブストリップ時間あるいは押戻量が大きす
ぎると鋳片の表面に凹みが発生するためこれらの条件に
は最適な領域が存在する。
Furthermore, if the negative strip time or pushback amount is too large, dents will occur on the surface of the slab, so there is an optimum range under these conditions.

第1図に鋳造実験結果より得られた表面割れにおよぼす
、押戻量(I!P)とネガティブストリップ時間(tN
)との関係を示す。第1図に示すようにN、は01mよ
り太きく6.0龍以下、1Nは0.1sec以上0.5
sec以下の範囲で、かつ!、≧−10tN+2の範囲
で、表面割れが殆ど発生せずかつ凹みの発生しない領域
が存在することがわかった。
Figure 1 shows the push-back amount (I!P) and negative strip time (tN) affecting surface cracking obtained from casting experiment results.
). As shown in Figure 1, N is thicker than 01m and less than 6.0 long, and 1N is 0.1 sec or more and 0.5
Within the range of sec or less, and! , ≧-10tN+2, it was found that there is a region where almost no surface cracks occur and no dents occur.

以上の結果をまとめると次のとおりである。The above results can be summarized as follows.

0.1sec≦1.≦0.5sec O■鳳   <72.   ≦ 6.0 鳳−l、≧−
10tN+ま ただし tN=60/π1cos−1(V#rsf)   (s
ec)11p =S−sin (πf−tN/60) 
 v−tN/60  (m)■ =鋳造速度 (am/
min ) S :振動ストローク  (11) f :振動サイクル (c/min) 〔作 用〕 第2図は、鋳型をサインカーブで往復運動させ、鋳型の
最大下降速度が鋳造速度より、大きくなる領域が存在す
る鋳型振動法における、鋳型速度変化と鋳片の鋳造(下
降)速度、鋳型変位と鋳片変位との関係と鋳片と鋳型と
の相対変位およびその際の初期凝固シェルの生成状態を
示す。
0.1sec≦1. ≦0.5sec O ■ Otori <72. ≦ 6.0 Otori-l, ≧-
10tN+Madashi tN=60/π1cos-1(V#rsf) (s
ec) 11p = S-sin (πf-tN/60)
v-tN/60 (m)■ = Casting speed (am/
min) S: Vibration stroke (11) f: Vibration cycle (c/min) [Function] Figure 2 shows that when the mold is reciprocated in a sine curve, there is a region where the maximum descending speed of the mold is greater than the casting speed. In the existing mold vibration method, the relationship between mold speed change, slab casting (lowering) speed, mold displacement and slab displacement, relative displacement between slab and mold, and the state of formation of an initial solidified shell at that time are shown. .

aは鋳型振動速度の変化を示し、bは鋳片の鋳造(下降
)速度を示す。またこの図において、■と■との間の斜
線部分はネガティブストリップ領域を示す。
a shows the change in mold vibration speed, and b shows the casting (lowering) speed of the slab. In this figure, the diagonally shaded area between ■ and ■ indicates a negative strip area.

さらにCは鋳型の変位状態を示し、dは鋳片の変位状態
を示す。eは鋳片と鋳型との相対変位を示すものである
Further, C indicates the displacement state of the mold, and d indicates the displacement state of the slab. e indicates the relative displacement between the slab and the mold.

第2図の下方の図は初期凝固シェルの生成状況を示すも
のである。■より初期凝固シェル(旧シェル11)が下
降するとともに鋳型lが上昇し、旧シェル11と断熱性
リング3の間で新シェル12の生成が開始し、■は新シ
ェル12が生成され旧シェル11と新シェル12の境界
に割れ13が生じている状態にあることを示す。■で新
シェル12の生成は完了し、新シェル12は最大長にな
る。この点より先はネガティブストリップ領域で新シェ
ル12は押し戻され始め、鋳片の表面に発生した割れが
融着され始める。図中のl、が押戻量である。■でネガ
ティブストリップ領域は完了し表面に発生した割れは融
着する。
The lower part of FIG. 2 shows the formation of an initial solidified shell. From ■, the initial solidified shell (old shell 11) descends and the mold l rises, and the new shell 12 starts to be formed between the old shell 11 and the heat insulating ring 3. This shows that a crack 13 has occurred at the boundary between the new shell 11 and the new shell 12. Generation of the new shell 12 is completed in (2), and the new shell 12 has the maximum length. Beyond this point, the new shell 12 begins to be pushed back in the negative strip area, and cracks that have occurred on the surface of the slab begin to be fused. l in the figure is the pushback amount. In step (3), the negative strip area is completed and the cracks that have occurred on the surface are fused.

このように本鋳造法の特徴は、鋳型の下降速度が鋳片の
鋳造速度より大きい領域を存在させ、生成したシェルを
鋳片の鋳造方向に押しつける量(ip)およびネガティ
ブストリップ時間(LH)を本発明法の領域内で鋳造す
ることにより、表面割れの発生しない鋳片が得られるこ
とである。
As described above, the feature of this casting method is that there is a region where the descending speed of the mold is higher than the casting speed of the slab, and the amount by which the generated shell is pressed in the casting direction of the slab (ip) and the negative strip time (LH) are controlled. By casting within the range of the method of the present invention, slabs without surface cracks can be obtained.

〔実施例〕〔Example〕

第3図に示す装置例により、5US304の150φの
断面を有する30TONの鋳片を400〜1500龍/
minの鋳造速度、9.8〜15 Q c /minの
サイクルで中間容器内で溶鋼が凝固しないように加熱装
置を用いて鋳造した。第3図中1は水冷鋳型、2は中間
容器、3は断熱性リング、4は浸漬ノズル、5は凝固シ
ェル、6は中間容器中の溶鋼を溶融状態に維持するため
の加熱装置である。その結果を第1表に示す。N119
〜19に示すように本発明領域で鋳造した結果、表面割
れの発生しない良好な鋳片が得られた。
Using the example of the equipment shown in Fig. 3, a 30TON slab of 5US304 with a cross section of 150φ can be produced at a rate of 400 to 1,500 times.
Casting was performed using a heating device at a casting speed of 1 min and a cycle of 9.8 to 15 Q c /min so that the molten steel did not solidify in the intermediate vessel. In FIG. 3, 1 is a water-cooled mold, 2 is an intermediate container, 3 is a heat insulating ring, 4 is an immersion nozzle, 5 is a solidified shell, and 6 is a heating device for maintaining the molten steel in the intermediate container in a molten state. The results are shown in Table 1. N119
As shown in Figures 1 to 19, as a result of casting in the area of the present invention, good slabs with no surface cracks were obtained.

なお本発明法は、第4図、第5図に示すような各種連鋳
法にも適用することが可能である。第4図は多ストラン
ド鋳造の実施例を示し、第5図は中子鋳ぐるみ連鋳法と
の組み合わせの実施例を示す。第5図において7は中子
である。
The method of the present invention can also be applied to various continuous casting methods as shown in FIGS. 4 and 5. FIG. 4 shows an example of multi-strand casting, and FIG. 5 shows an example of combination with the core casting continuous casting method. In FIG. 5, 7 is a core.

〔発明の効果〕〔Effect of the invention〕

湯面下凝固連続鋳造法において本発明を実施することに
より、従来の湯面下凝固連続鋳造材特有の表面割れが防
止でき、無手入押出、圧延が可能な表面品質の良好な鋳
片を得ることができた。
By implementing the present invention in the sub-surface solidification continuous casting method, it is possible to prevent the surface cracks characteristic of conventional sub-surface solidification continuous casting materials, and to produce slabs with good surface quality that can be extruded and rolled without manual work. I was able to get it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、表面割れ深さにおよぼす押戻量とネガティブ
ストリップ時間との関係を示す図、第2図は、鋳型変位
と鋳片変位との関係と鋳片と鋳型との相対変位およびそ
の際の初期凝固シェルの生成状態を示す図、第3図、第
4図、第5図は本発明を実施するための装置例を示す説
明図である。 l:水冷鋳型、2;中間容器、3:断熱性リング、4:
浸漬ノズル、5:凝固シェル、6:加熱装置、7:中子
。 第1図 ネカ゛ティフ“ストリップ時ル[〜(SeC)第4図
Figure 1 is a diagram showing the relationship between the pushback amount and negative strip time affecting the surface crack depth, and Figure 2 is a diagram showing the relationship between mold displacement and slab displacement, the relative displacement between the slab and mold, and its relationship. FIGS. 3, 4, and 5 are explanatory diagrams showing an example of an apparatus for carrying out the present invention. l: water-cooled mold, 2: intermediate container, 3: heat insulating ring, 4:
Immersion nozzle, 5: solidified shell, 6: heating device, 7: core. Figure 1 Necatif "Strip Time" ~ (SeC) Figure 4

Claims (1)

【特許請求の範囲】 水冷鋳型の上部に中間容器を配置し、該水冷鋳型と該中
間容器の境界に断熱性リングを装着した一体型組合せ鋳
型を用い、該一体型組み合せ鋳型をサインカーブに近似
させて鋳造方向に往復運動させるとともに、該鋳型の最
大下降速度を鋳片の鋳造速度よりも速くし、かつネガテ
ィブストリップ時間(t_N)および押戻量(l_P)
がそれぞれ次式を満足する条件で鋳造することを特徴と
する鋳片の表面割れの発生のない湯面下凝固連続鋳造法
。 0.1sec≦t_N≦0.5sec 0mm<l_P≦6.0mm l_P≧−10t_N+2 ただし t_N=60/πf・cos^−^1(V/πsf)(
sec) l_P=S・sin(πf・t_N/60)−V−t_
N/60(mm) V:鋳造速度(mm/min) S:振動ストローク(mm) f:振動サイクル(c/min)
[Claims] An integrated combination mold is used in which an intermediate container is placed above a water-cooled mold and a heat insulating ring is attached to the boundary between the water-cooled mold and the intermediate container, and the integrated combination mold is approximated to a sine curve. At the same time, the maximum descending speed of the mold is made faster than the casting speed of the slab, and the negative strip time (t_N) and the pushback amount (l_P) are
A subsurface solidification continuous casting method that does not cause surface cracks in slabs, characterized in that casting is performed under conditions that satisfy the following formulas. 0.1sec≦t_N≦0.5sec 0mm<l_P≦6.0mm l_P≧−10t_N+2 However, t_N=60/πf・cos^−^1(V/πsf)
sec) l_P=S・sin(πf・t_N/60)−V−t_
N/60 (mm) V: Casting speed (mm/min) S: Vibration stroke (mm) f: Vibration cycle (c/min)
JP1577586A 1986-01-29 1986-01-29 Continuous casting method by solidification under molten metal surface without surface cracking of billet Granted JPS62176656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1577586A JPS62176656A (en) 1986-01-29 1986-01-29 Continuous casting method by solidification under molten metal surface without surface cracking of billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1577586A JPS62176656A (en) 1986-01-29 1986-01-29 Continuous casting method by solidification under molten metal surface without surface cracking of billet

Publications (2)

Publication Number Publication Date
JPS62176656A true JPS62176656A (en) 1987-08-03
JPH0359779B2 JPH0359779B2 (en) 1991-09-11

Family

ID=11898187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1577586A Granted JPS62176656A (en) 1986-01-29 1986-01-29 Continuous casting method by solidification under molten metal surface without surface cracking of billet

Country Status (1)

Country Link
JP (1) JPS62176656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008513A (en) * 2012-06-28 2014-01-20 Jfe Steel Corp Method for manufacturing continuously cast slab and method for manufacturing high strength cold-rolled steel sheet
JP2014193475A (en) * 2013-03-29 2014-10-09 Jfe Steel Corp Continuous casting method of round billet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008513A (en) * 2012-06-28 2014-01-20 Jfe Steel Corp Method for manufacturing continuously cast slab and method for manufacturing high strength cold-rolled steel sheet
JP2014193475A (en) * 2013-03-29 2014-10-09 Jfe Steel Corp Continuous casting method of round billet

Also Published As

Publication number Publication date
JPH0359779B2 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
CN1091064A (en) The casting of metal tape
JPH02205232A (en) Method and apparatus for drawing-up continuous casting
CN1102469C (en) Continuous casting equipment and method for composite roller
JPH08150440A (en) Continuous casting of high-carbon steel
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
JPS62176656A (en) Continuous casting method by solidification under molten metal surface without surface cracking of billet
US3721286A (en) Method of obtaining metal hollow ingots by the elastroslag remelting
JPS60133962A (en) Method of vibrating horizontal type continuous casting mold for metal
US3990499A (en) Apparatus for making ingots by electroslag remelting
RU96117380A (en) CONTINUOUS CASTING DEVICE AND METHOD FOR MANUFACTURING RECTANGULAR THIN FLAT INGOTS
JPS56114560A (en) Ultrasonic treatment for unsolidified ingot in horizontal conditinous casting
JPH01293960A (en) Method for continuously casting molten metal
US4633934A (en) Horizontal continuous casting method
JPH0337455B2 (en)
US3687189A (en) Method of the electroslag remelting of consumable electrodes
GB1596395A (en) Method of continuous casting of steels or metal alloys with segregation tendancy and apparatus for carrying out the method
SU772011A1 (en) Method and apparatus for continuous casting of hollow iron blanks
JPS62107848A (en) Continuous casting method for steel
RU2125921C1 (en) Apparatus for making continuously cast deformed billets
RU2174057C2 (en) Method for producing continuously cast deformed bimetal blanks
JPH038860B2 (en)
JPS62230458A (en) Single-side solidification type continuous casting apparatus
RU2142864C1 (en) Method for production of continuous deformed castings
JPS57154350A (en) Continuous casting method for metal
JPH10156505A (en) Method for oscillating mold for vertical type continuous casting