JPS6217647A - System for controlling transfer of specimen holder - Google Patents
System for controlling transfer of specimen holderInfo
- Publication number
- JPS6217647A JPS6217647A JP60155892A JP15589285A JPS6217647A JP S6217647 A JPS6217647 A JP S6217647A JP 60155892 A JP60155892 A JP 60155892A JP 15589285 A JP15589285 A JP 15589285A JP S6217647 A JPS6217647 A JP S6217647A
- Authority
- JP
- Japan
- Prior art keywords
- transfer
- sample
- ion
- specimen
- stopped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 24
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 150000002500 ions Chemical group 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 238000013480 data collection Methods 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 2
- 238000004949 mass spectrometry Methods 0.000 claims 1
- 230000001133 acceleration Effects 0.000 abstract description 3
- 238000010884 ion-beam technique Methods 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 abstract 1
- 238000004544 sputter deposition Methods 0.000 abstract 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000004809 thin layer chromatography Methods 0.000 description 6
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 5
- 238000001819 mass spectrum Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
Landscapes
- Electron Tubes For Measurement (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は質量分析計に係り、特に薄層クロマトプレート
上に展開した試料を二次イオン質量分析(SIMS)す
るのに好都合な、試料保持体を備えた装置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a mass spectrometer, and in particular to a sample holder convenient for performing secondary ion mass spectrometry (SIMS) on a sample developed on a thin layer chromatography plate. The present invention relates to a device equipped with the following.
近年薄層クロマト(TLC)プレート上に展開した試料
を二次イオン質量分析(SIMS)法で分析するTLC
/S IMSが行なわれるようになった。その概要に関
しての例は上記文献に示される通りである。この時のプ
レート上の分離スポットを連続的に測定し、コンピュー
タシステムで効率良くデータ収集するためには、プレー
トを保持する試料保持体をコンピュータのデータ収集タ
イミングに合わせて移送する必要があり1本発明はその
具体化を余ったものである。In recent years, TLC analyzes samples developed on thin layer chromatography (TLC) plates using secondary ion mass spectrometry (SIMS).
/SIMS is now available. An example of its outline is given in the above-mentioned document. In order to continuously measure the separated spots on the plate at this time and efficiently collect data using a computer system, it is necessary to transport the sample holder that holds the plate in accordance with the data collection timing of the computer. An invention is what is left over from its embodiment.
本発明の目的は、TLC/SIMSの測定に関し、横軸
を移送距離に比例した値としたマスクロマトグラムを高
感度で効率良く↑5るために、データ収集のタイミング
に合わせて試料保持体を移送する最適制御方式を提供す
る事にある。The purpose of the present invention is to move the sample holder in accordance with the timing of data collection in order to efficiently and sensitively create a mass chromatogram in which the horizontal axis is a value proportional to the transport distance in TLC/SIMS measurements. The purpose is to provide an optimal control method for transport.
上記目的を達成するために、マススペクトルの測定に必
要な磁場或いは加速電圧の走査をしている時には試料保
持体の移送を停止し、走査の戻り時間の間に移送を行う
方式をとり、移送途中でデータ収集を行う事をさせ、各
成分の移送に基づく変化を抑止し得る事とした。In order to achieve the above objective, we adopted a method in which the transfer of the sample holder is stopped when scanning the magnetic field or accelerating voltage necessary for mass spectrum measurement, and the transfer is performed during the return time of the scan. It was decided that data would be collected during the process to suppress changes due to the transfer of each component.
本発明の一実施例を第1図により説明する。第1図にお
いて、−次イオン源4で生成したイオンビームは、約8
KaVに加速され、ターゲット1に照射される。ターゲ
ット上に塗布された試料はスパッタされ、このうち一部
はイオンとなる。試料保持体2には、イオン加速電圧3
KVが印加されているため、ターゲットに衝突するエネ
ルギは5KeVであり、二次イオンが加速されるエネル
ギは3KeVとなる。上記二次イオンは、レンズ9、物
点スリット8を通って磁場5で質量対電荷比によって分
離され、コレクタスリット6を通り、検出器7で検出さ
れる。検知した信号は、コンピュータシステム10で処
理された後、出力装置11にて記録される。この場合、
通常は磁場の強さ或いは二次イオン加速電圧を変化させ
る事により、希望する範囲の質量対電荷比のイオンを全
て記録する事が出来る。一方、試料保持体2を、移送機
構3により移動すると、第2図に示す様に、ターゲット
1上に展開された試料A、B、C,Dが次々にイオン化
され、測定記録される事になる。An embodiment of the present invention will be explained with reference to FIG. In FIG. 1, the ion beam generated by the -order ion source 4 is about 8
It is accelerated to KaV and irradiates the target 1. The sample coated on the target is sputtered, and some of it becomes ions. The sample holder 2 has an ion accelerating voltage 3
Since KV is applied, the energy colliding with the target is 5 KeV, and the energy with which the secondary ions are accelerated is 3 KeV. The secondary ions pass through a lens 9 and an object slit 8, are separated by a magnetic field 5 according to their mass-to-charge ratio, pass through a collector slit 6, and are detected by a detector 7. The detected signals are processed by the computer system 10 and then recorded by the output device 11. in this case,
Usually, by changing the strength of the magnetic field or the secondary ion accelerating voltage, all ions with mass-to-charge ratios within a desired range can be recorded. On the other hand, when the sample holder 2 is moved by the transfer mechanism 3, samples A, B, C, and D spread on the target 1 are ionized one after another and measured and recorded, as shown in FIG. Become.
この時、単に試料保持体を連続的に等速度で移送するの
みでは、試料測定に時間がかかると共にターゲット上に
添加されたグリセロール等のマトリックスが乾いてしま
い、測定の最初から最後まで一様な条件でデータ測定が
出来なくなる等の弊害があった。そこで本発明では、第
3図に示す様に、展開された試料位置では(試料測定に
必要な時間)試料保持体の移送を停止し、磁場或いは加
速を変化して測定を行い、試料位置の間は、磁場或いは
加速電圧の変化を停止し、試料保持体を高速で移送させ
る方式をとった。この事は逆な見方をすれば磁場或いは
加速電圧の変化によるデータ測定中は移送を停止し、デ
ータ測定を中止している間、(磁場或いは加速電圧の戻
り時間の為に必要)に移送を行う事によって、効率の良
いデータ測定を実現する事も意味する。移送停止中の磁
場或いは加速電圧の走査方式には、第3図に示す様に1
回の走査を低速で行いマススペクトルを感度良く得る方
法、或いは、高速で多数回走査を行い、その積算値を得
る事によってS/Nの改善をしたスペクトルを得る場合
が例として考えられる。At this time, if the sample holder is simply transferred continuously at a constant speed, it will take time to measure the sample, and the matrix such as glycerol added to the target will dry out, resulting in a uniform transfer from the beginning to the end of the measurement. There were disadvantages such as not being able to measure data under certain conditions. Therefore, in the present invention, as shown in Fig. 3, the transfer of the sample holder is stopped at the developed sample position (for the time required for sample measurement), and measurement is performed by changing the magnetic field or acceleration. During this period, changes in the magnetic field or accelerating voltage were stopped, and the sample holder was transferred at high speed. From the opposite perspective, this means that during data measurement due to a change in the magnetic field or accelerating voltage, the transfer is stopped, and while data measurement is stopped, the transfer is stopped (necessary due to the return time of the magnetic field or accelerating voltage). By doing so, it also means achieving efficient data measurement. As shown in Figure 3, there are 1 scanning methods for the magnetic field or accelerating voltage while the transfer is stopped.
Examples of possible methods include performing multiple scans at low speed to obtain a mass spectrum with good sensitivity, or performing multiple scans at high speed and obtaining an integrated value to obtain a spectrum with an improved S/N ratio.
更に本発明の他の具体的実施例として第4図に示す例を
あげる。第4図では、展開された試料位置を中心に所定
の距離48間を低速で移送させ、各試料間の間は高速で
移送させ、低速で移送中には、高速のサイクリックデー
タ取集を行い、高速で移送中にはデータ収集を停止し、
第5図に示す様な、各試料のクロマトの変化の状況を観
測し得る事を可能としている。Further, as another specific embodiment of the present invention, an example shown in FIG. 4 will be given. In FIG. 4, the sample is moved at a low speed for a predetermined distance 48 centered on the developed sample position, the sample is moved at a high speed between each sample, and cyclic data is collected at a high speed while the sample is being moved at a low speed. and stop data collection during high-speed transport.
This makes it possible to observe changes in chromatography of each sample, as shown in FIG.
第5図のTICは、高速のデータ収集により得たマスス
ペクトルから得られた全イオン量表示であり、試料位!
!!Dにある試料の特有成分の質量に着目して記録した
のがm4である。The TIC in Figure 5 is an indication of the total ion amount obtained from the mass spectrum obtained through high-speed data collection.
! ! m4 is recorded by focusing on the mass of the unique component of the sample in D.
以上の様に1本発明によれば、試料保持体を効率良く移
送出来1次の様な効果を得る事が出来る。As described above, according to the present invention, the sample holder can be transferred efficiently and the first-order effect can be obtained.
本発明によれば、(a)TLC/S IMSの測定時間
を短くする事が出来る。(b)試料測定を有効にするグ
リセロールなどのマトリックスの減少量を最低限に抑え
られ、長時間安定して測定出来る。According to the present invention, (a) TLC/SIMS measurement time can be shortened. (b) The loss of matrix such as glycerol, which makes sample measurement effective, can be minimized, allowing stable measurement over a long period of time.
例えば、通常試料の展開F!@離は約50mであるが、
その中で試料のある部分は2IIIl程である。For example, the development of a normal sample F! @The distance is about 50m,
Among them, some parts of the sample are about 2IIIl.
もし連続的に試料を移送する時は、5sec/IIの移
送速度としても250aac必要とするが、本発明によ
れば、試料間を0.5sec/1mmで移送したとして
4点の試料を測定すれば、
試料間の移送時間(501m−2m X 4ケ)X 0
.5sec/ an = 21 sec試料測定の時n
R(2mXJケ) X 5 sec/ m=40sec
計 61sec
従って測定時間は61sec/ 25 C)tea=2
4.り%になる。If samples are transferred continuously, 250 aac is required even at a transfer rate of 5 sec/II, but according to the present invention, four samples can be measured by transferring the samples at a rate of 0.5 sec/1 mm. For example, transfer time between samples (501m-2m x 4 pieces) x 0
.. 5 sec/an = 21 sec sample measurement n
R(2mXJ)
4. %.
従って、マトリックスの減少も比例し、約4倍の安定な
測定を可能にする。Therefore, the reduction in matrix is also proportional, allowing approximately 4 times more stable measurements.
第1図は本発明の実施例を示す説明図、第2図は第1図
の試料保持体の拡大図、第3図は本発明の具体的利送方
式の1実施例説明図、第4図、第5図は他の具体的な実
施例を示す図である。
1、・ターゲット、2・・・試料保持体、3・・・移送
機構、4・・・−次イオン源、5・・・磁場、6・・・
コレクタスリット、7・・・検出器、8・・・物点スリ
ット、9・・・レンズ、10・・・コンピュータシステ
ム、11・・・出力装置。FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is an enlarged view of the sample holder shown in FIG. FIG. 5 is a diagram showing another specific embodiment. DESCRIPTION OF SYMBOLS 1. Target, 2... Sample holder, 3... Transfer mechanism, 4... -order ion source, 5... Magnetic field, 6...
Collector slit, 7...Detector, 8...Object point slit, 9...Lens, 10...Computer system, 11...Output device.
Claims (1)
る試料保持体を有し、その試料をイオン化し、二次イオ
ンを質量分析する装置において、前記試料保持体の移送
方式として、展開された試料位置と試料位置の間では高
速移送し、各試料位置では移送停止或いは各試料位置の
近傍では低速移送を行い、高速移送している時は二次イ
オンスペクトルのデータ測定を停止し、移送を停止、或
いは低速移送している時のみ、データ測定を、一度或い
は繰り返し実行する事を特徴とした試料保持体の移送制
御方式。 2、特許請求の範囲第1項において、データ収集を停止
する期間のみに同期させて移送を行い、データ収集の効
率をあげる事を特徴とした試料保持体の移送制御方式。[Claims] 1. An apparatus that has a sample holder holding an object having a sample spread out at a distance, ionizes the sample, and performs mass spectrometry for secondary ions, wherein the sample holder is As a transfer method, high-speed transfer is performed between the developed sample positions, and transfer is stopped at each sample position or low-speed transfer is performed near each sample position, and secondary ion spectrum data is transferred during high-speed transfer. A sample holder transfer control method characterized in that data measurement is performed once or repeatedly only when measurement is stopped, transfer is stopped, or during low-speed transfer. 2. A sample holder transfer control method as set forth in claim 1, characterized in that the transfer is performed in synchronization only with the period during which data collection is stopped, thereby increasing the efficiency of data collection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60155892A JPS6217647A (en) | 1985-07-17 | 1985-07-17 | System for controlling transfer of specimen holder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60155892A JPS6217647A (en) | 1985-07-17 | 1985-07-17 | System for controlling transfer of specimen holder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6217647A true JPS6217647A (en) | 1987-01-26 |
Family
ID=15615781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60155892A Pending JPS6217647A (en) | 1985-07-17 | 1985-07-17 | System for controlling transfer of specimen holder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6217647A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8798517B2 (en) | 2010-09-14 | 2014-08-05 | Ricoh Company, Ltd. | Sheet supplying device and image forming apparatus incorporating same |
-
1985
- 1985-07-17 JP JP60155892A patent/JPS6217647A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8798517B2 (en) | 2010-09-14 | 2014-08-05 | Ricoh Company, Ltd. | Sheet supplying device and image forming apparatus incorporating same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tamborini et al. | Application of secondary ion mass spectrometry to the identification of single particles of uranium and their isotopic measurement | |
JPS6251144A (en) | Mass spectrometer | |
JPS6217647A (en) | System for controlling transfer of specimen holder | |
US4808818A (en) | Method of operating a mass spectrometer and a mass spectrometer for carrying out the method | |
JPS62223659A (en) | Mass spectroscope | |
US4874944A (en) | Mass spectrometer | |
JPS60243958A (en) | Ion beam device | |
US20240355610A1 (en) | Device and method for the spectrometric analysis of sample material | |
JP2000123773A (en) | Secondary ion mass spectrometer | |
JP3174396B2 (en) | Method and apparatus for measuring electron energy loss fine structure | |
JP2607573B2 (en) | Ion micro analyzer | |
Lovell et al. | Comparison of laser microprobe mass spectrometry (LMMS) and micro particle induced X-ray emission (micro-PIXE) for the analysis of senile plaques in Alzheimer's disease: A preliminary study | |
JPH01267948A (en) | Solid specimen introducing device for mass analyzer | |
JPS61240149A (en) | Secondary ion mass spectrometer | |
JPH08220030A (en) | Method and apparatus for analyzing surface | |
JPH08212967A (en) | Mass spectrograph device | |
RU2020647C1 (en) | Analysis method for elastic electron reflection spectra | |
MARTIN et al. | The development, building, and testing of an Advanced Ion Microprobe(AIM) ion source system[Final Report, 10 Jan. 1972- 30 Sep. 1974] | |
JPS6312146A (en) | Pattern-dimension measuring apparatus | |
JPS54158990A (en) | Mass spectrograph for detecting multiple ions | |
JPS6091246A (en) | Mass spectrometer | |
JPH0565968B2 (en) | ||
JPS6280542A (en) | Mass spectrometer | |
JPS61148758A (en) | Surface analyzer | |
JPS6312145A (en) | Pattern-dimension measuring apparatus |