JPS6217619A - Apparatus for processing output signal of karman vortex sensor - Google Patents

Apparatus for processing output signal of karman vortex sensor

Info

Publication number
JPS6217619A
JPS6217619A JP60155083A JP15508385A JPS6217619A JP S6217619 A JPS6217619 A JP S6217619A JP 60155083 A JP60155083 A JP 60155083A JP 15508385 A JP15508385 A JP 15508385A JP S6217619 A JPS6217619 A JP S6217619A
Authority
JP
Japan
Prior art keywords
flow amount
cycle
karman vortex
output signal
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60155083A
Other languages
Japanese (ja)
Other versions
JPH0690060B2 (en
Inventor
Toshiaki Isobe
磯部 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60155083A priority Critical patent/JPH0690060B2/en
Priority to DE19863623262 priority patent/DE3623262A1/en
Priority to US06/884,187 priority patent/US4819490A/en
Publication of JPS6217619A publication Critical patent/JPS6217619A/en
Priority to US07/241,219 priority patent/US4878386A/en
Publication of JPH0690060B2 publication Critical patent/JPH0690060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To enable the control of an air/fuel ratio with high accuracy over an entire region by correcting a flow amount with higher accuracy in a low flow amount region while response is secured, by correcting the flow amount of a fluid on the basis of a vortex generation cycle. CONSTITUTION:A cycle detection means detects the cycle Ti corresponding to the flow amount of a fluid generated by a Karman vortex sensor and the correction coefficient K corresponding to the detected cycle Ti is operated by a correction coefficient operation means. Therefore, a flow amount operation means operates the flow amount Q=K/Ti of the fluid corresponding to the coefficient K and the cycle Ti. Because the flow amount is inversely proportional to the cycle Ti, if the error of the flow amount Q is corrected corresponding to the cycle Ti, a low flow amount region is corrected with higher accuracy and, at the time of the adaptation to an engine, high air/fuel ratio control accuracy can be obtained over an entire region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はたとえばエンジンの吸入空気■を測定するため
のエアフローメータとして用いられるカルマン渦センサ
の出力処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an output processing device for a Karman vortex sensor used as an air flow meter for measuring intake air of an engine, for example.

〔従来の技術〕[Conventional technology]

一般に、エンジンの吸入空気量を測定するためのエアフ
ローメータとしてはベーン弐流量計が主流であったが、
最近、小型等の利点を有するカルマン渦センサが開発さ
れつつある。カルマン渦センサにおいては、たとえば、
特開昭58−80524号および特開昭58−8052
5号に示すように、流体が流れる管路内にカルマン渦発
生体を挿入し、そのカルマン渦発生体の両側面近傍に交
互に発生する圧力変動を1対の圧力伝達通路を介して管
路外の振動板に伝達し、この振動板の回転変位を光電的
に検出することにより流体の速度を検出している。この
場合、振動板の回転変位に応じた正弦波状の電気信号を
得、流体の速度を得ている。
In general, the vane flow meter was the mainstream air flow meter for measuring the amount of intake air in an engine.
Recently, Karman vortex sensors have been developed which have advantages such as small size. In the Karman vortex sensor, for example,
JP-A-58-80524 and JP-A-58-8052
As shown in No. 5, a Karman vortex generator is inserted into a pipe through which fluid flows, and pressure fluctuations that occur alternately near both sides of the Karman vortex generator are transferred to the pipe through a pair of pressure transmission passages. The velocity of the fluid is detected by transmitting the signal to an external diaphragm and photoelectrically detecting the rotational displacement of this diaphragm. In this case, a sinusoidal electrical signal corresponding to the rotational displacement of the diaphragm is obtained to obtain the velocity of the fluid.

上述のカルマン渦センサの出力信号の周波数から流体の
流量を得る場合、周波数と空気量が完全に比例しないた
め、周波数に応じて流量を補正するのが一般的である(
参照:特開昭56−616号公報)。
When obtaining the fluid flow rate from the frequency of the output signal of the above-mentioned Karman vortex sensor, the frequency and air volume are not completely proportional, so it is common to correct the flow rate according to the frequency (
Reference: Japanese Unexamined Patent Publication No. 56-616).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、エンジンのエアフローメータは高応答か
つ低流量域で特に高精度が要求される。
However, engine air flow meters are required to have high response and high accuracy, especially in the low flow rate range.

したがって、従来の周波数で流量を補正する方式では低
流量域はど周波数が低くなるために正確な値を得るのに
時間がかかり、また、どの周波数域も均一な重みで補正
することになるので応答性が悪く、さらに低流量域で補
正精度不足、高流量域で過剰精度となるアンバランスが
生しるという問題点があった。
Therefore, in the conventional method of correcting flow rate using frequency, it takes time to obtain an accurate value because the frequency is low in the low flow rate range, and it also requires correction with uniform weighting in all frequency ranges. There were problems in that the response was poor, and there was also an imbalance in which correction accuracy was insufficient in the low flow rate region and excessive accuracy in the high flow rate region.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、応答性を確保しつつ低流量域はど高精
度に補正し、エンジンに適用した場合に全域に亘って高
い空燃比制御精度を得ることにあり、その手段は第1図
に示される。
The purpose of the present invention is to highly accurately correct the low flow rate range while ensuring responsiveness, and to obtain high air-fuel ratio control accuracy over the entire range when applied to an engine. is shown.

第1図において、カルマン渦センサは流体の流量に応じ
た周期T、の出力信号を発生し、周期検出手段はカルマ
ン渦センサの出力信号の周期T。
In FIG. 1, the Karman vortex sensor generates an output signal with a period T corresponding to the flow rate of fluid, and the period detecting means generates an output signal with a period T of the output signal of the Karman vortex sensor.

を検出する。補正係数演算手段は周期T、に応じて補正
係数Kを演算する。この結果、流量演算手段は補正係数
におよび周!tlIT 、に応して流体の流量Q=に/
Tiを演算するものである。
Detect. The correction coefficient calculating means calculates the correction coefficient K according to the period T. As a result, the flow rate calculation means calculates the correction coefficient and the cycle! tlIT, depending on the fluid flow rate Q=/
This is for calculating Ti.

〔作 用] 上述の手段によれば、流IQは周3tlIT 、に反比
例するので、周期T、に応じて流量の誤差を補正すれば
低流量域はど高精度に補正される。
[Operation] According to the above-mentioned means, since the flow IQ is inversely proportional to the period 3tlIT, if the error in the flow rate is corrected according to the period T, the low flow rate region can be corrected with high accuracy.

〔実施例〕〔Example〕

以下、第2図以降の図面を参照して本発明の詳細な説明
する。
Hereinafter, the present invention will be described in detail with reference to the drawings from FIG. 2 onwards.

!2図(A)はカルマン渦センサの一例を示す断面図で
ある。第2図(A)において、管路1内の中央に渦発生
体2が設けられており、この渦発生体2には、一対の過
圧取入孔3と、この取入孔3の圧力変動を管路l外に伝
達する圧力伝達通路4とが設けられている。この結果、
圧力伝達通路4の圧力変動によって振動Fi5に回転モ
ーメントが生じる。
! FIG. 2(A) is a sectional view showing an example of a Karman vortex sensor. In FIG. 2(A), a vortex generator 2 is provided at the center of the pipe line 1, and this vortex generator 2 has a pair of overpressure intake holes 3 and a pressure A pressure transmission passage 4 is provided for transmitting fluctuations to the outside of the pipe 1. As a result,
A rotational moment is generated in the vibration Fi5 due to pressure fluctuations in the pressure transmission passage 4.

なお、振動板5は、第2図(B)に示すように、一対の
スパンバンド6a、6bによってその重心を含む回転軸
上に支持され、さらに、スパンバンド6a、6bは枠部
7に保持されている。従って、振動板5は外部振動によ
る枠部7の上下振動ではほとんど振動せず、従って、カ
ルマン渦による圧力伝達通路4内の圧力変動のみ応じて
回転振動することになる。
Note that, as shown in FIG. 2(B), the diaphragm 5 is supported by a pair of span bands 6a and 6b on a rotation axis that includes its center of gravity, and the span bands 6a and 6b are further held by a frame 7. has been done. Therefore, the diaphragm 5 hardly vibrates due to the vertical vibration of the frame portion 7 caused by external vibration, and therefore rotates and vibrates only in response to pressure fluctuations in the pressure transmission passage 4 due to Karman vortices.

第2図(A)において、8は発光手段としての発光ダイ
オード、9は受光手段としてのフォトダイオードである
。つまり、この場合、振動板5が光の反射板として作用
し、従って、カルマン渦圧によって振動板5が回転振動
すると、フォトダイオード9の出力信号は渦周波数fの
正弦波状となる0本発明はフォトダイオード9の正弦波
状の出力信号の処理に関するものである。
In FIG. 2(A), 8 is a light emitting diode as a light emitting means, and 9 is a photodiode as a light receiving means. That is, in this case, the diaphragm 5 acts as a light reflecting plate, and therefore, when the diaphragm 5 rotates and vibrates due to Karman vortex pressure, the output signal of the photodiode 9 becomes a sine wave with a vortex frequency f. This relates to processing of the sinusoidal output signal of the photodiode 9.

第3図は本発明に係るカルマン渦センサの出力信号処理
装置の一実施例を示す回路図であって、たとえばマイク
ロコンピュータによって構成されているものである。な
お、第3図において、1点鎖線にて囲まれた部分はマイ
クロコンピュータとして構成されるが、波形整形回路3
4はカルマン渦センサ31内に設けてもよい。
FIG. 3 is a circuit diagram showing an embodiment of an output signal processing device for a Karman vortex sensor according to the present invention, which is configured by, for example, a microcomputer. In addition, in FIG. 3, the part surrounded by the one-dot chain line is configured as a microcomputer, but the waveform shaping circuit 3
4 may be provided within the Karman vortex sensor 31.

カルマン渦センサ31の正弦波状の出力信号は波形整形
回路34に供給され、ここで、正弦波状信号は矩形波信
号に変換される。この矩形波信号はCPU35の1つの
割込み入力に供給される。この結果、CPIJ35は矩
形波信号の立上りに応して後述の第4図に示す割込みル
ーチンを実行する。36はクロ/り信号CLKを計数し
て常に現在時刻CNTを発生するフリーランカウンタ、
37はプログラム、定数等を予め記憶するROM、38
はデータを一時的に記憶するRAM、39(ま入出力イ
ンターフェイスである。入出力インターフェイス39に
はたとえばクランク角センサ32、燃料噴射弁33等が
接続されている。
The sinusoidal output signal of the Karman vortex sensor 31 is supplied to a waveform shaping circuit 34, where the sinusoidal signal is converted into a rectangular wave signal. This square wave signal is supplied to one interrupt input of CPU 35. As a result, the CPIJ 35 executes an interrupt routine shown in FIG. 4, which will be described later, in response to the rise of the rectangular wave signal. 36 is a free running counter that counts the black/white signal CLK and always generates the current time CNT;
37 is a ROM that stores programs, constants, etc. in advance; 38
A RAM 39 (also an input/output interface) temporarily stores data. For example, a crank angle sensor 32, a fuel injection valve 33, etc. are connected to the input/output interface 39.

第3図の回路動作を第4図を参照して説明する。The operation of the circuit shown in FIG. 3 will be explained with reference to FIG.

第4図は吸入空気量演算ルーチンであって、第5図に示
すような波形整形回路34の矩形波信号の立上りによっ
てスタートする。ステップ401ではフリーランカウン
タ36より現在時刻CNTを読出し、ステップ402に
て渦の発生周期T、を、TI←CNT−CNTO ただし、CNTOは前回割込み時の時刻により演算する
。ステップ403では次回の割込みに備えて今回の時刻
CNTをCNTOとする。
FIG. 4 shows an intake air amount calculation routine, which starts at the rise of the rectangular wave signal from the waveform shaping circuit 34 as shown in FIG. In step 401, the current time CNT is read from the free run counter 36, and in step 402, the vortex generation period T is calculated as TI←CNT-CNTO, where CNTO is calculated based on the time of the previous interrupt. In step 403, the current time CNT is set as CNTO in preparation for the next interruption.

ステップ404では、ROM37に格納された第6図に
示す一次元マツブにより補正係数Kを補間計算し、ステ
ップ405にて吸入空気量Qを、Q4−に/T。
In step 404, a correction coefficient K is calculated by interpolation using the one-dimensional matrix shown in FIG. 6 stored in the ROM 37, and in step 405, the intake air amount Q is set to /T at Q4-.

により演算する。Calculate by

そして、ステップ406にてこのルーチンは終了する。The routine then ends at step 406.

なお、上述の吸入空気iQは、たとえば、クランク角セ
ンサ32の出力信号にもとづいて演算されたエンジン回
転速度N0と共に、燃料噴射量TAUの演算に用いられ
、所定タイミングにて燃料噴射弁33を動作させること
になる。
Note that the above-mentioned intake air iQ is used, for example, together with the engine rotational speed N0 calculated based on the output signal of the crank angle sensor 32, to calculate the fuel injection amount TAU, and operates the fuel injection valve 33 at a predetermined timing. I will let you do it.

第6図に示すごとく、補正係数にのマツプを周期T、に
より等間隔で作成すると、補正係数にのマツプを渦周波
数fにより等間隔で作成した場合に比較して、低流量域
で補正係数にの精度が向上することが分かる。つまり、
低流量域では、渦周波数fにより等間隔で作成した場合
には、鎖線で示す量だけ誤差を発生する。
As shown in Fig. 6, if the map to the correction coefficient is created at equal intervals with the period T, the correction coefficient will be lower in the low flow region than if the map to the correction coefficient is created at equal intervals with the vortex frequency It can be seen that the accuracy is improved. In other words,
In a low flow rate region, if the vortex frequency f is created at equal intervals, an error will occur by the amount shown by the chain line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、流体の流量を渦発
生周期T!にもとづいて補正しているので、周期が長い
低流量測定領域でも流量検出精度を高めることができ、
カルマン渦センサを内燃機関のエアフローメータとして
用いた場合には空燃比制御が改善され、アイドリングの
安定性等に役立つものである。
As explained above, according to the present invention, the fluid flow rate is set to the vortex generation period T! Since it is corrected based on
When the Karman vortex sensor is used as an air flow meter for an internal combustion engine, air-fuel ratio control is improved, which is useful for idling stability and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図(A)
はカルマン渦センサの一例を示す断面図、 第2図(B)は第2図(A)の振動板5の平面図、 第3図は本発明に係るカルマン渦センサの出力信号処理
装置の〜実施例を示す回路図、第4図は第3図の回路動
作を説明するためのフローチャート、 第5図は第3図の波形整形回路の出力信号のタイミング
図、 第6図は第4図のステップ405における補正係数Kを
説明するグラフである。 1・・・管路、     2・・・渦発生体、3・・・
渦圧取人孔、  4・・・圧力伝達通路、5・・・振動
板、    8・・・発光手段、9・・・受光手段、 
  31・・・カルマン渦センサ。 第3図 第4図 第6図
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 (A)
is a cross-sectional view showing an example of a Karman vortex sensor, FIG. 2(B) is a plan view of the diaphragm 5 of FIG. 2(A), and FIG. 4 is a flowchart for explaining the operation of the circuit shown in FIG. 3, FIG. 5 is a timing chart of the output signal of the waveform shaping circuit shown in FIG. 3, and FIG. 7 is a graph illustrating the correction coefficient K in step 405. 1... Pipeline, 2... Vortex generator, 3...
Vortex pressure control hole, 4... Pressure transmission passage, 5... Vibration plate, 8... Light emitting means, 9... Light receiving means,
31... Karman vortex sensor. Figure 3 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】 1、流体の流量に応じた周期の出力信号を発生するカル
マン渦センサと、 該カルマン渦センサの出力信号の周期を検出する周期検
出手段と、 該周期に応じて補正係数を演算する補正係数演算手段と
、 該補正係数および前記周期に応じて前記流体の流量を演
算する流量演算手段と、 を具備するカルマン渦センサの出力信号処理装置。
[Claims] 1. A Karman vortex sensor that generates an output signal with a period corresponding to the flow rate of fluid; a period detection means that detects the period of the output signal of the Karman vortex sensor; and a correction coefficient according to the period. An output signal processing device for a Karman vortex sensor, comprising: a correction coefficient calculation means for calculating the correction coefficient; and a flow rate calculation means for calculating the flow rate of the fluid according to the correction coefficient and the period.
JP60155083A 1985-07-16 1985-07-16 Karman vortex sensor output signal processor Expired - Fee Related JPH0690060B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60155083A JPH0690060B2 (en) 1985-07-16 1985-07-16 Karman vortex sensor output signal processor
DE19863623262 DE3623262A1 (en) 1985-07-16 1986-07-10 FLOW MEASURING SYSTEM WITH A KARMAN SWIRL FLOW METER
US06/884,187 US4819490A (en) 1985-07-16 1986-07-10 Karman vortex sensor type flow rate measuring system
US07/241,219 US4878386A (en) 1985-07-16 1988-09-07 Karman vortex sensor type flow rate measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60155083A JPH0690060B2 (en) 1985-07-16 1985-07-16 Karman vortex sensor output signal processor

Publications (2)

Publication Number Publication Date
JPS6217619A true JPS6217619A (en) 1987-01-26
JPH0690060B2 JPH0690060B2 (en) 1994-11-14

Family

ID=15598283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60155083A Expired - Fee Related JPH0690060B2 (en) 1985-07-16 1985-07-16 Karman vortex sensor output signal processor

Country Status (1)

Country Link
JP (1) JPH0690060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110321A (en) * 1988-06-06 1990-04-23 Tokico Ltd Device for correcting flow rate of turbine-type flowmeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493717A (en) * 1978-01-06 1979-07-25 Hitachi Ltd Electronic fuel feeder
JPS55106314A (en) * 1979-02-08 1980-08-15 Nissan Motor Co Ltd Signal processor for karman sensor
JPS56616A (en) * 1979-02-22 1981-01-07 Mitsubishi Electric Corp Flow rate detecting unit
JPS58173429A (en) * 1982-04-05 1983-10-12 Nissan Motor Co Ltd Signal processing device of karman's vortex street flow rate sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493717A (en) * 1978-01-06 1979-07-25 Hitachi Ltd Electronic fuel feeder
JPS55106314A (en) * 1979-02-08 1980-08-15 Nissan Motor Co Ltd Signal processor for karman sensor
JPS56616A (en) * 1979-02-22 1981-01-07 Mitsubishi Electric Corp Flow rate detecting unit
JPS58173429A (en) * 1982-04-05 1983-10-12 Nissan Motor Co Ltd Signal processing device of karman's vortex street flow rate sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110321A (en) * 1988-06-06 1990-04-23 Tokico Ltd Device for correcting flow rate of turbine-type flowmeter
JPH0827201B2 (en) * 1988-06-06 1996-03-21 トキコ株式会社 Turbine flow meter flow rate correction device

Also Published As

Publication number Publication date
JPH0690060B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
CN105518420B (en) Thermal flow rate sensor
KR100192110B1 (en) Process for correcting measurement errors of a hot-film device for measuring air masses
JPS5917371B2 (en) flow rate detection device
JPH0554890B2 (en)
US4450715A (en) Method for measuring the flow of a medium
JPH02161313A (en) Composite flowmeter
JPS6140052B2 (en)
US4819490A (en) Karman vortex sensor type flow rate measuring system
CZ310395A3 (en) Correction method of output signal of air supply meter
JPS6217619A (en) Apparatus for processing output signal of karman vortex sensor
JPS6214705B2 (en)
JPH03238323A (en) Heat-type intake-air-quantity sensor
JP2524847B2 (en) Thermal intake air flow sensor
JPS6056220A (en) Output signal processor for karman's vortex sensor
JP2000028412A (en) Method for correcting mass of air sucked by inlet pipe of internal combustion engine and measured in intake pipe
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JPS6375326A (en) Electronic control fuel injection device for internal combustion engine
JPS6053812A (en) Output-signal processing device of karman vortex sensor
JPS6053811A (en) Output-signal processing device of karman vortex sensor
JPS6212256Y2 (en)
JPS6319779Y2 (en)
JP2003004496A (en) Flow rate measuring instrument
CN1198118C (en) Gas flow sensor
JP3974209B2 (en) Measurement error correction device
SU1201777A1 (en) Arrangement for measuring pulsation of flow velocity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees