JPS6217570A - Method of controlling chilling unit - Google Patents

Method of controlling chilling unit

Info

Publication number
JPS6217570A
JPS6217570A JP15424585A JP15424585A JPS6217570A JP S6217570 A JPS6217570 A JP S6217570A JP 15424585 A JP15424585 A JP 15424585A JP 15424585 A JP15424585 A JP 15424585A JP S6217570 A JPS6217570 A JP S6217570A
Authority
JP
Japan
Prior art keywords
way valve
cold storage
cooling
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15424585A
Other languages
Japanese (ja)
Inventor
藤村 至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15424585A priority Critical patent/JPS6217570A/en
Publication of JPS6217570A publication Critical patent/JPS6217570A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冷房負荷の一時的な増加を補う蓄冷器を具
える冷房装置の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of controlling a cooling device equipped with a regenerator to compensate for a temporary increase in cooling load.

(従来の技術) かかる冷房装置としては、例えば、特開昭58−644
60号公報にて開示されたものがある。
(Prior art) As such a cooling device, for example, Japanese Patent Application Laid-Open No. 58-644
There is one disclosed in Publication No. 60.

この冷房装置は、圧縮機、凝縮器、減圧装置および蒸発
器が配管により接続されてなり、これらによって冷凍サ
イクルが構成されるとともに、その圧縮機から凝縮器に
至る配管途中に熱容量体を有する。ここにおけるこの熱
容量体は、冷房装置の非作動時に外気により冷却されて
蓄冷し、冷房負荷の大きい冷房装置の始動時、すなわち
いわゆるクールダウン時に放冷して冷媒の温度を引下げ
る蓄冷器として機能する。
This cooling device has a compressor, a condenser, a pressure reducing device, and an evaporator connected by piping, and these constitute a refrigeration cycle, and a heat capacity body is provided in the piping from the compressor to the condenser. This heat capacity body here functions as a cold storage device that is cooled by outside air and stores cold when the air conditioner is not in operation, and releases the cool to lower the temperature of the refrigerant when the air conditioner with a large cooling load is started, that is, during so-called cool-down. do.

しかしながら、この冷房装置にあっては、常に熱容量体
と冷媒との間で熱交換が行われているので、熱容量体が
その放冷を終ると冷媒と同温度となってしまい、しかも
、熱容量体を積極的忙冷却する手段がないため、冷房装
置をその連続運転後短時間非作動とするような場合には
熱容量体が充分冷却されず、このため、このような場合
にはその熱容量体の蓄冷器としての機能が期待できない
という問題があった。
However, in this cooling system, heat exchange is always performed between the heat capacity body and the refrigerant, so when the heat capacity body finishes cooling, it becomes the same temperature as the refrigerant. Since there is no means to actively cool down the heat capacity, the heat capacity body is not cooled sufficiently when the cooling system is inactive for a short period of time after continuous operation. There was a problem that the function as a cold storage device could not be expected.

そして、かかる問題を解決する冷房装置としては、例え
ば、本出願人は、第1図に示すものを提案している。
As a cooling device that solves this problem, the applicant has proposed, for example, the one shown in FIG.

図中1は圧縮器であり、ここではこの圧縮器1に対して
凝縮器2、受液器8、蓄冷用減圧手段の一例としての蓄
冷用膨張弁4、蓄冷器5、この蓄冷6忙接続する側を入
口側とした逆止弁6、冷房用減圧手段の一例としての冷
房用膨張弁7および蒸発器8が順次に接続され、さらに
この蒸発器8が圧縮器1に接続されている。またここで
は、蓄冷用膨張弁4を迂回する第1のバイパス路9およ
びこれを開閉する第1の二方弁10と、蓄冷用膨張弁4
から逆止弁6までを迂回する第2のバイパス路11およ
びこれを開閉する第2の二方弁1zと、逆止弁6から蒸
発器8までを迂回する第3のバイパス路18およびこれ
を開閉する第3の二方弁14とが設けられている。そし
て、このようにして構成された流体回路は、冷媒を充填
されて蒸気圧縮式冷凍サイクルをなしている。尚、上記
の蓄冷器5は、通常の熱交換器の周囲を断熱材で覆い、
これらの熱交換器と断熱材との間に、水などの潜熱蓄熱
材を満たした構造を有している。
In the figure, 1 is a compressor, and here, the compressor 1 is connected to a condenser 2, a liquid receiver 8, an expansion valve 4 for cold storage as an example of pressure reduction means for cold storage, a cold storage 5, and this cold storage 6. A check valve 6 whose inlet side is the inlet side, a cooling expansion valve 7 as an example of a cooling pressure reducing means, and an evaporator 8 are connected in this order, and the evaporator 8 is further connected to the compressor 1 . In addition, here, a first bypass path 9 that bypasses the cold storage expansion valve 4, a first two-way valve 10 that opens and closes this, and a first bypass path 9 that bypasses the cold storage expansion valve 4, and a first two-way valve 10 that opens and closes this, and the cold storage expansion valve 4.
A second bypass path 11 that detours from to the check valve 6 and a second two-way valve 1z that opens and closes it, and a third bypass path 18 that detours from the check valve 6 to the evaporator 8 and this. A third two-way valve 14 that opens and closes is provided. The fluid circuit configured in this way is filled with refrigerant to form a vapor compression refrigeration cycle. In addition, the above-mentioned regenerator 5 is a conventional heat exchanger that is covered with a heat insulating material,
It has a structure in which a latent heat storage material such as water is filled between these heat exchangers and the heat insulating material.

かかる構成とされたこの冷房装置は、その二方弁10.
12.14を次iK示す8種類の組合わせにて選択的に
開閉されて、後述する蓄冷、放冷および通常の作用をも
たらすよう作動制御される。
This cooling device having such a configuration has a two-way valve 10.
12.14 are selectively opened and closed in eight different combinations as shown below, and the operation is controlled to provide cold storage, cooling release, and normal functions as described below.

例えば、冷房能力の余剰時には、冷媒が継続シて蒸発器
8を通流する必要がないので、第3の二方弁のみ開放す
る蓄冷モードが短時間づつ断続的に選択され、これによ
り、逆止弁6、冷房用膨張弁7および蒸発器8の流路抵
抗のゆえにこれらを迂回して第3のバイパス路18を通
流する流体回路が構成される。
For example, when there is a surplus of cooling capacity, the refrigerant does not need to continue to flow through the evaporator 8, so the cold storage mode in which only the third two-way valve is opened is selected intermittently for short periods of time. Because of the flow path resistance of the stop valve 6, the cooling expansion valve 7, and the evaporator 8, a fluid circuit is configured that bypasses these and flows through the third bypass path 18.

この流体回路によれば、受液器8を出た高温高圧の液状
冷媒が、蓄冷用膨張弁4への通流で減圧され、断熱膨張
して低温低圧の霧状となり、これが蓄冷器5を通流し、
気化して、その中の潜熱蓄熱材を冷却しあるいは凝固さ
せ、その後第3のバイパス路18を通流して圧縮機1へ
戻ることから、蓄冷器5への蓄冷作用がもたらされる。
According to this fluid circuit, the high-temperature, high-pressure liquid refrigerant that has exited the liquid receiver 8 is depressurized by flowing through the cold storage expansion valve 4, expands adiabatically, and becomes a low-temperature, low-pressure mist. flow through,
It vaporizes, cools or solidifies the latent heat storage material therein, and then returns to the compressor 1 through the third bypass path 18, thereby providing a cold storage effect to the regenerator 5.

また、クールダウン時など、一時的に大きな冷房負荷が
加わるときには、第1の二方弁10のみ開放する放冷モ
ードが選択され、これにより、蓄冷用膨張弁4の流路抵
抗のゆえにこれを迂回して第1のバイパス路9を通流す
る流体回路が構成される。
Furthermore, when a large cooling load is temporarily applied, such as during cool-down, a cooling mode is selected in which only the first two-way valve 10 is opened. A fluid circuit that detours and flows through the first bypass path 9 is configured.

この流体回路によれば、受液器8を出た高温高圧の液状
冷媒が、そのまま第1のバイパス路9を経て蓄冷器5を
通流し、その中の潜熱蓄熱材により冷却されてその過冷
却度を高められ、逆止弁6を経て冷房用膨張弁?で減圧
されて低温低圧の霧状となり、これが蒸発器8を通流し
、気化して、蒸発器8に増大された冷房能力を与え、そ
の後圧縮機1へ戻ることから、蓄冷器5からの放冷作用
とそれに基づく冷房能力増大作用とがもたらされる。
According to this fluid circuit, the high-temperature, high-pressure liquid refrigerant that exits the liquid receiver 8 passes through the regenerator 5 via the first bypass path 9, is cooled by the latent heat storage material therein, and is supercooled. Expansion valve for cooling through check valve 6? The pressure is reduced in the evaporator 8 to form a low-temperature, low-pressure mist, which passes through the evaporator 8 and is vaporized, providing increased cooling capacity to the evaporator 8, and then returns to the compressor 1. A cooling effect and an effect of increasing the cooling capacity based on the cooling effect are brought about.

さらに、通常の冷房負荷時には、第2の二方弁12のみ
開放する通常モードが選択され、これにより、蓄冷用膨
張弁4、蓄冷器5および逆止弁6の流路抵抗のゆえにこ
れらを迂回して第2のバイパス路1zを通流する流体回
路が構成される。
Furthermore, during a normal cooling load, the normal mode in which only the second two-way valve 12 is opened is selected, thereby bypassing the cold storage expansion valve 4, the cold storage device 5, and the check valve 6 due to their flow path resistance. A fluid circuit that flows through the second bypass path 1z is configured.

この流体回路によれば、受液器8を出た高温、高圧の液
状冷媒がそのままバイパス路1zを経て冷房用膨張弁?
で減圧されて低温低圧の霧状となり、これが蒸発器8を
通流した後圧縮機1へ戻ることから、通常能力の冷房作
用がもたらされる。
According to this fluid circuit, the high-temperature, high-pressure liquid refrigerant that exits the liquid receiver 8 directly passes through the bypass path 1z and reaches the cooling expansion valve.
The air is depressurized and becomes a low-temperature, low-pressure mist, which passes through the evaporator 8 and then returns to the compressor 1, providing a normal cooling effect.

(発明が解決しようとする問題点) しかしながら、本出願人の実験によれば放冷モードを選
択すると、上述したように高圧の冷媒が冷房用膨張弁7
まで流れることから、第1図に示す、蓄冷器5と逆止弁
6との間の第3のバイパス路18への分岐点である点A
に、第3図に示すように高圧が加わり、第3のバイパス
路を閉止している第3の二方弁14の上流側すなわち点
A側にもこの高圧がもたらされることが確認された。そ
して、この放冷モード選択後に通常モードを選択した場
合にも、第3の二方弁14が閉じておりかつ冷房用膨張
弁7の上流側に高圧がもたらされるため第3図に示すよ
うに点Aの高圧が保たれる。
(Problems to be Solved by the Invention) However, according to the applicant's experiments, when the cooling release mode is selected, the high-pressure refrigerant flows into the cooling expansion valve 7 as described above.
Point A, which is the branching point to the third bypass path 18 between the regenerator 5 and the check valve 6, shown in FIG.
Then, as shown in FIG. 3, high pressure was applied, and it was confirmed that this high pressure was also brought to the upstream side of the third two-way valve 14 that closes the third bypass path, that is, to the point A side. Even when the normal mode is selected after this cooling mode is selected, the third two-way valve 14 is closed and high pressure is brought to the upstream side of the cooling expansion valve 7, so as shown in FIG. High pressure at point A is maintained.

また一方、第1図に示す蒸発器8と圧縮機1との間の、
第3のバイパス路への分岐点である点Bが常に低圧に保
たれるので、第3のバイパス路18により第3の二方弁
14の下流側すなわち点B側は常に低圧となる。従って
、放冷モードを選択した時および、その後、冷房負荷の
減少に従って通常モードを選択した時には、閉止されて
いる第3の二方弁14の両側の圧力差ΔPは第3図に示
すよう忙大きなものKなる。
On the other hand, between the evaporator 8 and the compressor 1 shown in FIG.
Since the point B, which is the branching point to the third bypass path, is always kept at a low pressure, the downstream side of the third two-way valve 14, that is, the point B side, is always at a low pressure due to the third bypass path 18. Therefore, when the cooling mode is selected and then when the normal mode is selected as the cooling load decreases, the pressure difference ΔP on both sides of the third two-way valve 14, which is closed, is as shown in FIG. The big one is K.

このため、その後に冷房能力の余剰により蓄冷モードを
選択しようとすると、この第3の二方弁14が、蓄冷モ
ード選択時に蓄冷用膨張弁4の作用下で低圧となる第3
のバイパス路18の流路抵抗を極力小さくすべく、例え
ば10鵡穆度の大口径のものとされていることとも相俟
って、図中点Cで示すその開放時に、例えば81Jf−
12kyf程度と、非常に大きな弁開放力が必要となり
、それゆえ、この第3の二方弁14の駆動用に大型のソ
レノイドを用いざるを得す、弁配置上の制約が出るとと
もに、弁開放に要する消費電力が多くならざるを得なか
った。
Therefore, when the cold storage mode is subsequently selected due to excess cooling capacity, the third two-way valve 14 becomes low pressure under the action of the cold storage expansion valve 4 when the cold storage mode is selected.
In order to minimize the flow resistance of the bypass passage 18, the bypass passage 18 has a large diameter of, for example, 10mm, and when it is opened as shown by point C in the figure, for example, 81Jf-
A very large valve opening force of about 12 kyf is required, which necessitates the use of a large solenoid to drive the third two-way valve 14, which creates restrictions on valve arrangement and also increases the valve opening force. Therefore, the power consumption required for this process inevitably increases.

(問題点を解決するための手段) この発明の冷房装置の制御方法は、圧縮器から、凝縮器
、゛蓄冷用減圧手段、蓄冷器、前記蓄冷器側を入口側と
する逆止弁、冷房用減圧手段および蒸発器を順次に経て
前記圧縮器に至る流体回路と、前記蓄冷用減圧手段を迂
回する第1のバイパス路を開閉する第1の二方弁と、前
記蓄冷用減圧手段と前記蓄冷器と前記逆止弁とを迂回す
る第2のバイパス路を開閉する第2の二方弁と、前記逆
止弁と前記冷房用減圧手段と前記蒸発器とを迂回する第
3のバイパス路を開閉する第3の二方弁とを具える冷房
装置の、閉止された前記第3の二方弁の上流側に高圧を
もたらす流体の通流状態から前記第3の二方弁を通る通
流状態をもたらすに際し、前記第1および第2の二方弁
を閉止した後に前記第3の二方弁を開放することを特徴
とするものである。
(Means for Solving Problems) A method for controlling a cooling device according to the present invention includes a compressor, a condenser, a pressure reducing means for cold storage, a cold storage, a check valve whose inlet side is the cold storage, and a cooling device. a first two-way valve that opens and closes a first bypass passage that bypasses the pressure reduction means for cold storage and the pressure reduction means for cold storage; a second two-way valve that opens and closes a second bypass path that bypasses the regenerator and the check valve; and a third bypass path that bypasses the check valve, the cooling pressure reducing means, and the evaporator. In an air conditioner equipped with a third two-way valve that opens and closes, the fluid flows through the third two-way valve from a fluid flow state that brings about high pressure upstream of the closed third two-way valve. In bringing about the flow state, the third two-way valve is opened after the first and second two-way valves are closed.

(作用) この発明の方法によれば、閉止された第3の二方弁の上
流側すなわちこれに第3のバイパス路を介して接続され
た逆止弁の入口側の流体が高圧である場合に、先ず、第
1および第2の二方弁を閉止すると、これにより全ての
二方弁が閉止状態となって、蓄冷用減圧手段、蓄冷器、
逆止弁、冷房用減圧手段および蒸発器を通流する流体回
路が構成され、流体が、蓄冷用減圧手段への通流により
圧力を低められた後に蓄?@器を通過して逆止弁に至る
ようKなる。従って、この低圧が第3の二方弁の上流側
にもたらされ、一方第3の二方弁の下流側は第3のバイ
パス路を介し圧縮器に接続されて低圧となっているので
、第3の二方弁の両側の圧力差が極めて小さなものとな
る。そしてその後、第3の二方弁を開放すると、上述し
た小さな圧力差のゆえに極めて小な力でその開放を実施
し得て第3の二方弁を通る通流状態がもたらされる。
(Operation) According to the method of the present invention, when the fluid on the upstream side of the closed third two-way valve, that is, on the inlet side of the check valve connected thereto via the third bypass path, is at high pressure. First, when the first and second two-way valves are closed, all the two-way valves are closed, and the cold storage pressure reducing means, the cold storage,
A fluid circuit is configured to flow through a check valve, a pressure reducing means for cooling, and an evaporator, and the fluid is stored after its pressure is lowered by flowing through the pressure reducing means for cold storage. It becomes K as it passes through the @ container and reaches the check valve. Therefore, this low pressure is brought to the upstream side of the third two-way valve, while the downstream side of the third two-way valve is connected to the compressor via the third bypass path and has a low pressure. The pressure difference on both sides of the third two-way valve becomes extremely small. Thereafter, when the third two-way valve is opened, due to the small pressure difference mentioned above, opening can be carried out with very little force, resulting in a flow condition through the third two-way valve.

(実施例) 以下に、この発明の実施例を図面に基づき詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

ここでは、本発明冷房装置の制御方法の一実施例を、本
出願人がすでに提出した第1図に示す冷房装置に適用す
る場合について説明する。
Here, a case will be described in which an embodiment of the method for controlling a cooling device of the present invention is applied to the cooling device shown in FIG. 1, which has already been submitted by the applicant.

この例では、先ず、蓄冷、放冷および通常モードに加え
て緩衝モードを設定する。これらのモードにおける第1
、第2および第3の二方弁10゜la 、14の開閉の
組合わせは、次表に示す通りとする。
In this example, first, a buffer mode is set in addition to the cold storage, cold release, and normal modes. The first in these modes
, the opening and closing combinations of the second and third two-way valves 10°la and 14 are as shown in the following table.

尚、蓄冷、放冷および通常モード選択時のこれらの二数
弁の開閉の組合わせは従来例と同一であるので、これら
のモードの選択時にもたらされる作用は従来例と同一で
ある。
Incidentally, since the combination of opening and closing of these two valves when selecting the cold storage, cooling radiation, and normal modes is the same as in the conventional example, the effects brought about when these modes are selected are the same as in the conventional example.

そしてこの例では、上記の緩衝モードを、第2図に示す
よう和、放冷モード選択後の通常モード選択時において
、冷房能力の余剰により蓄冷上−ドな断続的に選択する
場合に、その初回の蓄冷モード選択に先立って、極く短
時間選択するものとする。
In this example, as shown in Figure 2, when the normal mode is selected after the sum and cooling modes are selected, the buffer mode is intermittently selected due to excess cooling capacity. Prior to selecting the cold storage mode for the first time, it shall be selected for a very short time.

この、第1.第2および第3の二方弁10゜12.14
を全て閉止する緩衝モードの選択時には、蓄冷用膨張弁
4、蓄冷器5、逆止弁6、冷房用膨張弁7および蒸発器
8を通流する流体回路が構成され、この流体回路によれ
ば、受液器8を出た高温高圧の液状冷媒が、蓄冷用膨張
弁4への通流にて減圧され、断熱膨張して霧状となり、
蓄冷器5内を通流してその中の潜熱蓄熱材を冷却した後
、さらに逆止弁6を経て冷房用膨張弁7を通流し、もう
一度域圧されて断熱膨張する。そしてこの冷媒が、蒸発
器8を通流し、それに減少された冷房能力をもたらした
後、圧縮機1へ戻ることになる。
This, the first. Second and third two-way valve 10°12.14
When the buffer mode is selected in which all of the The high-temperature, high-pressure liquid refrigerant that has exited the liquid receiver 8 is depressurized by flowing through the cold storage expansion valve 4, expands adiabatically, and becomes a mist.
After passing through the regenerator 5 to cool the latent heat storage material therein, the latent heat storage material therein is further passed through the cooling expansion valve 7 via the check valve 6, where it is once again brought under regional pressure and adiabatically expanded. This refrigerant will then flow through the evaporator 8 and return to the compressor 1 after providing it with a reduced cooling capacity.

従って、放冷モード選択時およびその後の通常モード選
択時に、高圧冷媒の冷房用膨張弁7への通流によって高
圧となっていた第1図の点Aの圧力は、この緩衝モード
の選択によって第2図に示すように低下し、他方ABの
圧力が前述したように低圧であることから、点Aと点B
とを結ぶ第3のバイパス路18を閉止している第3の二
方弁14の上流側と下流側との圧力差ΔPは、極めて小
なものとなる。
Therefore, when the cooling mode is selected and then when the normal mode is selected, the pressure at point A in FIG. As shown in Figure 2, the pressure at AB is low as described above, so the pressure at point A and point B
The pressure difference ΔP between the upstream side and the downstream side of the third two-way valve 14 that closes the third bypass passage 18 connecting the two is extremely small.

そして、その後の第2図中点りで示す時点で、蓄冷モー
ドを選択するために第3の二方弁14の開放を行うと、
上述した小さな圧力差のゆえに、極めて小さな力でその
開放が行われ、第3の二方弁を通る通流状態すなわち蓄
冷モードがもたらされる。
Then, at the subsequent point indicated by the dot in the middle of FIG. 2, when the third two-way valve 14 is opened to select the cold storage mode,
Owing to the small pressure difference mentioned above, its opening takes place with very little force, resulting in a flow condition through the third two-way valve, i.e. a cold storage mode.

以上述べたようにこの実施例の方法によれば、緩衝モー
ドの選択によって第3の二方弁14の両側の圧力差を極
めて小さなものとし得て、その弁開放に要する力を極め
て小さくすることができるので、この第3の二方弁14
の駆動用に小型のソレノイドの使用が可能となり、これ
によって、弁配置上の制約がなくなるとともに、弁開放
に要する消費電力が大幅に減少するという効果がもたら
される。
As described above, according to the method of this embodiment, the pressure difference on both sides of the third two-way valve 14 can be made extremely small by selecting the buffer mode, and the force required to open the valve can be made extremely small. This third two-way valve 14
It becomes possible to use a small solenoid for driving the valve, which has the effect of eliminating restrictions on valve arrangement and significantly reducing the power consumption required to open the valve.

尚、上述した実施例では、緩衝モードを通常モードから
蓄冷モードへの切換えの際に選択するものとしたが、放
冷モードから通常モードへの切換えの際に選択するよう
にしても同様の作用効果がもたらされる。また、緩衝モ
ードの選択を、初回の蓄冷モード選択に先立って行なう
ものとしだが例えば、蓄冷モード選択の間隔が長く、通
常モード選択中に蓄冷用膨張弁4を経た冷媒の圧力が高
くなる場合のように、第3の二方弁の上流側が高圧とな
る場合には、その後の蓄冷モード選択に先立って適宜選
択することにしても良い。
In the above embodiment, the buffer mode is selected when switching from the normal mode to the cold storage mode, but the same effect can be achieved even if the buffer mode is selected when switching from the cooling mode to the normal mode. effect is brought about. In addition, the buffer mode is selected prior to the first cold storage mode selection. In this way, when the upstream side of the third two-way valve has a high pressure, an appropriate selection may be made prior to the subsequent cold storage mode selection.

(発明の効果) かくしてこの発明の制御方法によれば、閉止された第3
の二方弁の両側の圧力差を極めて小さなものとし得て、
その後の、この第3の二方弁の開放に要する力を極めて
小さなものとすることができるので、第3の二方弁の駆
動用に、小型のソレノイドの使用を可能とすることがで
き、ひいては、弁配置上の制約をなくすとともに、弁開
放に要する消費電力を大幅に減少させることができる。
(Effect of the invention) Thus, according to the control method of this invention, the closed third
The pressure difference on both sides of the two-way valve can be made extremely small,
Since the force required to subsequently open the third two-way valve can be made extremely small, it is possible to use a small solenoid for driving the third two-way valve, As a result, restrictions on valve arrangement can be eliminated and power consumption required for opening the valves can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明制御方法の一実施例を適用する冷房装置
の流体回路図、 第2図は前記実施例の方法を示すタイムチャート、 第3図は従来の冷房装置の制御方法を示すタイムチヤー
ドである。 1・・・圧縮機      2・・・凝縮器4・・・蓄
冷用膨張弁(蓄冷用減圧手段)5・・・蓄冷器    
  6・・・逆止弁?・・・冷房用膨張弁(冷房用減圧
手段)8・・・蒸発器      9・・・第1のバイ
パス路10・・・第1の二方弁   11・・・第2の
バイパス路1z・・・第2の二方弁   18・・・第
3のバイパス路14・・・第3・の二方弁
FIG. 1 is a fluid circuit diagram of a cooling device to which an embodiment of the control method of the present invention is applied; FIG. 2 is a time chart showing the method of the embodiment; FIG. 3 is a time chart showing a conventional method of controlling a cooling device. It's Chiard. 1...Compressor 2...Condenser 4...Expansion valve for cold storage (pressure reducing means for cold storage) 5...Regenerator
6...Check valve? ... Cooling expansion valve (cooling pressure reducing means) 8... Evaporator 9... First bypass path 10... First two-way valve 11... Second bypass path 1z... -Second two-way valve 18...Third bypass passage 14...Third two-way valve

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮器から、凝縮器、蓄冷用減圧手段、蓄冷器、前
記蓄冷器側を入口側とする逆止弁、冷房用減圧手段およ
び蒸発器を順次に経て前記圧縮器に至る流体回路と、前
記蓄冷用減圧手段を迂回する第1のバイパス路を開閉す
る第1の二方弁と、前記蓄冷用減圧手段と前記蓄冷器と
前記逆止弁とを迂回する第2のバイパス路を開閉する第
2の二方弁と、前記逆止弁と前記冷房用減圧手段と前記
蒸発器とを迂回する第3のバイパス路を開閉する第3の
二方弁とを具える冷房装置の、閉止された前記第3の二
方弁の上流側に高圧をもたらす流体の通流状態から前記
第3の二方弁を通る通流状態をもたらすに際し、前記第
1および第2の二方弁を閉止した後に前記第3の二方弁
を開放することを特徴とする冷房装置の制御方法。
1. A fluid circuit leading from the compressor to the compressor through a condenser, a pressure reducing means for cold storage, a cold storage, a check valve whose inlet side is the cold storage side, a pressure reducing means for cooling, and an evaporator; a first two-way valve that opens and closes a first bypass passage that bypasses the pressure reduction means for cold storage; and a second two-way valve that opens and closes a second bypass passage that bypasses the pressure reduction means for cold storage, the regenerator, and the check valve. a third two-way valve that opens and closes a third bypass path that bypasses the check valve, the cooling pressure reducing means, and the evaporator; After closing the first and second two-way valves when bringing about a fluid flow state through the third two-way valve from a fluid flow state that brings high pressure on the upstream side of the third two-way valve; A method for controlling an air conditioner, comprising opening the third two-way valve.
JP15424585A 1985-07-15 1985-07-15 Method of controlling chilling unit Pending JPS6217570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15424585A JPS6217570A (en) 1985-07-15 1985-07-15 Method of controlling chilling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15424585A JPS6217570A (en) 1985-07-15 1985-07-15 Method of controlling chilling unit

Publications (1)

Publication Number Publication Date
JPS6217570A true JPS6217570A (en) 1987-01-26

Family

ID=15580004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15424585A Pending JPS6217570A (en) 1985-07-15 1985-07-15 Method of controlling chilling unit

Country Status (1)

Country Link
JP (1) JPS6217570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337538A (en) * 2001-05-16 2002-11-27 Zexel Valeo Climate Control Corp Regenerative air conditioner for vehicle
JP2010281561A (en) * 2009-06-05 2010-12-16 Valeo Systemes Thermiques Heat exchange device and thermal management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337538A (en) * 2001-05-16 2002-11-27 Zexel Valeo Climate Control Corp Regenerative air conditioner for vehicle
JP2010281561A (en) * 2009-06-05 2010-12-16 Valeo Systemes Thermiques Heat exchange device and thermal management system

Similar Documents

Publication Publication Date Title
US7412838B2 (en) Heat pump using CO2 as refrigerant and method of operation thereof
US20040103681A1 (en) Method and arrangement for defrosting a vapor compression system
US6003323A (en) Refrigerating air-conditioning apparatus
JPS6217570A (en) Method of controlling chilling unit
JP3351353B2 (en) Automotive cooling system
JP2003121025A (en) Heating-cooling combination appliance
JP3304866B2 (en) Thermal storage type air conditioner
JP2000118231A (en) Refrigerating cycle
JP2003028520A (en) Regenerative refrigerating plant
JPH0233571A (en) Refrigerating device
JPH02223773A (en) Refrigerating device for cooling, which is used in combination both for low-temperature medium and high-temperature medium
JPH0420752A (en) Double-element type freezer device
JPH0820139B2 (en) Heat storage type heat pump device
JP2002327968A (en) Cold storage type refrigerating system
JPH0221731Y2 (en)
JPH07109324B2 (en) Heat storage type air conditioner
JP4017100B2 (en) Regenerative heat refrigeration system
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPH11173689A (en) Heat storage type cooling device
JPH03191261A (en) Refrigeration cycle device
JP2931326B2 (en) Refrigeration equipment
JP3354624B2 (en) refrigerator
JPH0658578A (en) Air conditioner
JPS6032534Y2 (en) Heat recovery air conditioner
JPH05312357A (en) Heat accumulation type air conditioner