JPS62172733A - Semiconductor substrate - Google Patents

Semiconductor substrate

Info

Publication number
JPS62172733A
JPS62172733A JP739887A JP739887A JPS62172733A JP S62172733 A JPS62172733 A JP S62172733A JP 739887 A JP739887 A JP 739887A JP 739887 A JP739887 A JP 739887A JP S62172733 A JPS62172733 A JP S62172733A
Authority
JP
Japan
Prior art keywords
region
passivation layer
layer
refractive index
silicon oxynitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP739887A
Other languages
Japanese (ja)
Inventor
グルゼゴルツ カガノビツチ
ロナルド エドワード エンストローム
ジヨン ウオルタ ロビンソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Publication of JPS62172733A publication Critical patent/JPS62172733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は不働態化層を有する半導体基体、特にオキシ
窒化シリコン不働態化層を有する半導体基体とその製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a semiconductor substrate having a passivation layer, and particularly to a semiconductor substrate having a silicon oxynitride passivation layer and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

光検知器では、第一の導電型の吸光性半導体基体とこの
基体上の第二の導電型の領域との界面付近に例えばpn
接合やpin接合のような半導体培仝が竪箭六灼飄どの
光埼IFuNlこ通バイアス桑印加すると、易動電荷キ
ャリアのない空乏領域が生じ、光検知器に入射した光が
吸収されて電子正孔対を形成し、これが空乏領域から流
出して検知可能の電流を発生する。接合の周辺即ち半導
体接合が装置の表面と交わる領域は一般に暗電流即ち装
置に入射する光のないとき流れる逆バイアス漏洩電流を
実質的に増す沿面降伏と表面漏洩電流の増倍を特徴とし
、これが光検知器の感度を低下させる逆効果を生む。
In a photodetector, for example, a pn
When a semiconductor structure such as a junction or a pin junction is applied with a bias voltage of IFuNl, a depletion region with no mobile charge carriers is created, and the light incident on the photodetector is absorbed and electrons are generated. Hole pairs are formed which flow out of the depletion region and generate a detectable current. The periphery of the junction, or the region where the semiconductor junction intersects the surface of the device, is generally characterized by creepage breakdown and surface leakage current multiplication that substantially increases the dark current, or reverse bias leakage current that flows when no light is incident on the device. This has the opposite effect of reducing the sensitivity of the photodetector.

この沿面降伏や表面電流の原因は、第二領域が第一領域
内の井戸状領域になるように光検知器を作ることによっ
て減じられていた。これは例えば第一領域の頂面にマス
クを被着し、その開口部を通して反対導電型のドープ剤
を拡散させることによって行うことが出来る。これはマ
スク下で第一領域の表面に達する接合を与えるが、マス
クは半導体接合付近で装置の表面を覆うため、保護不働
態化層としても働く必要がある。
This cause of creepage breakdown and surface current has been reduced by constructing the photodetector such that the second region is a well-like region within the first region. This can be done, for example, by applying a mask on top of the first region and diffusing a dopant of the opposite conductivity type through the openings. This provides a junction that reaches the surface of the first region under the mask, but since the mask covers the surface of the device near the semiconductor junction, it must also act as a protective passivation layer.

酸化シリコン例えばS i 02の不働態化層は半導体
接合の装置表面に露出した部分の対湿気障壁としてはよ
いが、イオン障壁としてはよくない。
A passivation layer of silicon oxide, such as S i 02, is good as a moisture barrier for exposed portions of the device surface of a semiconductor junction, but is not a good ion barrier.

窒化シリコンの不働態化層はイオン移動に対する優れた
障壁となるが、一般に応力による割れを生じ易く、表面
に対する接着力に欠ける特徴がある。
Although silicon nitride passivation layers provide an excellent barrier to ion migration, they are generally susceptible to stress cracking and lack adhesion to surfaces.

半導体装置の拡散障壁として用いられるオキン窒化シリ
コンは、窒化シリコンの可能な組成が種々あるためその
性質が変動して予測出来ず、そのため上記の欠点の度合
も変わる。
Oxygen silicon nitride, which is used as a diffusion barrier in semiconductor devices, has variable and unpredictable properties due to the variety of possible compositions of silicon nitride, and therefore the degree of the above-mentioned drawbacks.

従って、よシ有効に不働態化された半導体装置とその製
造方法が考えられてきた。
Therefore, efforts have been made to develop a semiconductor device that is more effectively passivated and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

ここに優れた不働態化層を有する半導体基体とその製造
方法を開示するが、その不働態化層は低温で形成される
利点があり、波長632.8nmで測定した屈折率が約
1.55〜1.75で、相当量の水素を含有するオキシ
窒化シリコン材料を含んでいる。
Disclosed here is a semiconductor substrate having an excellent passivation layer and a method for manufacturing the same. The passivation layer has the advantage of being formed at a low temperature, and has a refractive index of about 1.55 when measured at a wavelength of 632.8 nm. ~1.75 and contains silicon oxynitride material containing significant amounts of hydrogen.

〔推奨実施例の詳細な説明〕[Detailed explanation of recommended examples]

第1図に示すように、光検知器装置は基板12とそれを
覆う第一の導電型の第一領域14を含み、その第一領域
14は吸光領域16と光電的に発生された電子正孔対の
表面再結合を防ぐ働きをする掩蔽領域18を含み、頂面
20を有する。第二の導電型の第二領域22は不働態化
層26の開口部24の下にあって、一般に吸光領域16
の下まで延びている。第一領域14と第二領域22の界
面またはその付近にはpn接合またはpin接合のよう
な半導体接合が形成され、不働態化層26の下の頂面2
0まで延びている。
As shown in FIG. 1, the photodetector device includes a substrate 12 and a first region 14 of a first conductivity type overlying the substrate 12, which first region 14 has a light absorbing region 16 and a photoelectrically generated electron beam. It has a top surface 20 and includes an occulting region 18 that serves to prevent surface recombination of the hole pairs. A second region 22 of a second conductivity type is below the opening 24 in the passivation layer 26 and is generally in the light absorbing region 16.
It extends to the bottom. A semiconductor junction such as a pn junction or a pin junction is formed at or near the interface between the first region 14 and the second region 22 , and the top surface 2 below the passivation layer 26 is formed.
It extends to 0.

第一および第二の領域14.22は相対導電型関係が保
たれている限シどちらの導電型でもよい。
The first and second regions 14.22 may be of either conductivity type as long as the relative conductivity type relationship is maintained.

第1図の光検知器はこの発明がこのような装置に与える
利益が明らかなためプレーナ構造で示されているが、当
業者に公知のメサ型構造でもよい基板12は一般にn型
InPで構成され、第一領域14の形成される面は結晶
面(100)から約2.0度偏しているのがよい。
Although the photodetector of FIG. 1 is shown in a planar configuration because of the obvious benefits that the present invention provides for such a device, the substrate 12 is generally comprised of n-type InP, which may be a mesa-type configuration as is known to those skilled in the art. The plane on which the first region 14 is formed is preferably deviated by about 2.0 degrees from the crystal plane (100).

第一領域14は一般に厚さ約6〜9ミクロンで、吸光領
域16と掩蔽領域18を含み、吸光領域16は一般に厚
さ約5〜6ミクロンで、検知すべき特定波長の光を吸収
する合金で構成されている。この合金には波長1.2〜
1.7ミクロンに対してInO,53G a o 、 
47A Sが適している。被着された吸光領域16はド
ーピングされず、n型導電度変調剤を濃度約5X101
5/c4以下で含むのが好ましい。吸光領域16が充分
厚ければ、これを基板としてもよい。
The first region 14 is typically about 6-9 microns thick and includes a light-absorbing region 16 and an obscuring region 18, where the light-absorbing region 16 is typically about 5-6 microns thick and is made of an alloy that absorbs the particular wavelength of light to be detected. It consists of This alloy has a wavelength of 1.2~
InO, 53G a o for 1.7 microns,
47A S is suitable. The deposited light-absorbing region 16 is undoped and contains an n-type conductivity modulator at a concentration of about 5×101
The content is preferably 5/c4 or less. If the light absorption region 16 is sufficiently thick, it may be used as a substrate.

掩蔽領域18は光学ウィンドーで、普通厚さ約2〜3ミ
クロンである。この掩蔽領域18は好ましくはドーピン
グのないn型導電度変調剤を約10/dの濃度で含むI
nPとすることができる。また、第一領域14全体をこ
の吸光領域16とすることも出来る。
Obscuration region 18 is an optical window, typically about 2-3 microns thick. This masking region 18 preferably contains an undoped n-type conductivity modifier at a concentration of about 10/d.
It can be nP. Further, the entire first region 14 can be used as the light-absorbing region 16.

第二領域22は厚さ2〜3ミクロンがよく、一般にp型
導電度変調剤例えば亜鉛をドープしたInPから成る。
The second region 22 is preferably 2-3 microns thick and typically comprises InP doped with a p-type conductivity modifier, such as zinc.

普通2つの領域14.22の間にpn接合が形成されて
いる。第二領域22は一般に掩蔽領域18よジ約0.2
5〜0.75 ミクロン厚く、はぼこの距離だけ吸光領
域16に食い込んでいる。このため第二領域22もp型
I nGaAsを含み得る。第二領域22は掩蔽領域1
8にマスク層の開口部を通してp型ドープ剤例えば亜鉛
を拡散して形成することが出来るが、イオン注入後焼き
ならしする等の他の公知の方法で形成することも出来る
。第二領域22のアクセプタ濃度は少なくとも約1×1
0 原子/ cAを要する。基・板12と第二領域22
は透光性で、検知すべき波長で実質的に透明であること
が好ましい。
A pn junction is usually formed between the two regions 14.22. The second region 22 typically has a diagonal of about 0.2
It is 5 to 0.75 microns thick and cuts into the light absorbing region 16 by the distance of the embossment. Therefore, the second region 22 may also contain p-type InGaAs. The second region 22 is the occultation region 1
8 can be formed by diffusing a p-type dopant, such as zinc, through openings in the mask layer, but can also be formed by other known methods such as ion implantation followed by normalizing. The acceptor concentration in the second region 22 is at least about 1×1
Requires 0 atoms/cA. Substrate/board 12 and second area 22
is preferably translucent and substantially transparent at the wavelength to be detected.

第二領域22がp型の時はその領域の電気接触手段(図
示せず)は金亜鉛合金が適し、基板12がn型の時はそ
の接触手段は金錫合金が適している。
When the second region 22 is p-type, a gold-zinc alloy is suitable for the electrical contact means (not shown) in that region, and when the substrate 12 is n-type, the contact means is suitably a gold-tin alloy.

上記の各領域は通常の方法によシ半導体基板12上に成
長された個別の層でもよく、また検知器の必要に応じて
第1II −V族元素の他の組み合わせを用いてもよい
。この光検知器の形成には公知の気相または液相エピタ
キンヤル成長法または分子線エピタキシャル成長法を用
いることが出来るが、この方法の1つがピアソーA/ 
(T 、 P 、 Pearsall )編集(7) 
Ga I nAsP合金半導体の一章のオルセン(G、
 H,01sen)著「Ga、InAsPの気相エピタ
キシャル」に記載されている。
Each of the above regions may be a separate layer grown on the semiconductor substrate 12 in a conventional manner, and other combinations of Group IH-V elements may be used depending on the needs of the detector. The photodetector can be formed using a known vapor phase or liquid phase epitaxy method or molecular beam epitaxial growth method. One of these methods is the Pearsaw A/
(T, P, Pearsall) Edit (7)
Olsen (G,
``Gas-phase epitaxial formation of Ga, InAsP'' by John H., 01sen).

第二の導電型の領域22の形成のための拡散マスクとし
て特別に働かせるために吸光領域14の表面20に材料
層を被着して後で除去することもあるが、不働態化層2
6が拡散マスクとしても働く事が望ましい。従って、不
働態化層26は表面20に延びる半導体接合の良好な不
働態化剤であると共に第二領域22の形成に用いるイオ
ン、通常亜鉛イオンに対する良好な障壁であることが必
要である。この発明の方法により低温で形成したオキシ
窒化シリコンは特別の屈折率と半導体装置の接合を不働
態化するに要する特性全部の良好な組み合わせを持ち、
その不働態化層は亜鉛の拡散に対する優れた不透性を示
す上に、清面降伏と暗電流の低下の信頼度がさらに高く
、接着がよくて、より高い湿気不感性を示すことが判っ
ている。波長632.8nmで測定した屈折率が約1.
55〜1.75、好ましくは約1.60のオキシ窒化シ
リコンが上述のような半導体装置内の不働態化層に特に
適している。このオキシ窒化物の屈折率の厳密塵は、屈
折率1.55未満の材料の層はイオンやドープ剤の透過
度が極めて高いことを特徴とし、屈折率1.75以上の
層は基板への接着が悪いことを特徴とすることを考える
と、理解することが出来る。この発明の不働態化層が周
囲温度即ち約25℃で形成し得ることは、燐化インジウ
ムのような感温材料上に不働態化層を形成する必要のあ
るとき著しく有利である。
A passivating layer 2 may be deposited on the surface 20 of the absorbing region 14 and later removed to specifically serve as a diffusion mask for the formation of the region 22 of the second conductivity type.
It is desirable that 6 also act as a diffusion mask. Therefore, passivation layer 26 needs to be a good passivator of the semiconductor junction extending to surface 20 and a good barrier to the ions used to form second region 22, typically zinc ions. Silicon oxynitride formed at low temperatures by the method of this invention has a special refractive index and a good combination of all the properties necessary to passivate junctions in semiconductor devices.
The passivation layer was found to exhibit excellent impermeability to zinc diffusion, more reliable surface breakdown and lower dark current, better adhesion, and higher moisture insensitivity. ing. The refractive index measured at a wavelength of 632.8 nm is approximately 1.
Silicon oxynitride of 55 to 1.75, preferably about 1.60, is particularly suitable for passivation layers in semiconductor devices such as those described above. The strict refractive index of oxynitride is characterized by the fact that a layer of material with a refractive index of less than 1.55 has extremely high permeability to ions and dopants, while a layer of material with a refractive index of 1.75 or more has a high permeability to the substrate. This is understandable considering that it is characterized by poor adhesion. The ability of the passivating layer of the present invention to be formed at ambient temperature, about 25° C., is a significant advantage when it is necessary to form a passivating layer on a temperature sensitive material such as indium phosphide.

不働態化層26は屈折率1.55で少なくとも約90n
mの厚さを持つことを要し、約数100 nmの厚さま
で被着出来るが、約300nmが好ましい。それよシ厚
い(400nm以上)不働態化層26を要する用途では
、その追加の厚さをオキシ窒化シリコン層26の上にホ
ウ燐珪酸ガラスを被着することによって適当に得ること
が出来る。オキシ窒化シリコン不働態化層26は頂面2
0を覆い、一般にそれと接触しているが、場合によって
はその頂面20と不働態化層26の間に他の層を介在さ
せる方が有利なことがある。例えば、燐含有材料例えば
燐化インジウムを含む装置の場合は、頂面20とオキシ
窒化シリコン層26との間に燐含有不働態化剤例えばホ
ウ燐珪酸ガラスを介在させればよい。ホウ燐珪酸ガラス
は燐化インジウム材料に適合する傾向があり、オキシ窒
化シリコンは優れた湿気およびイオン障壁となるため、
この構成は有利である。
Passivation layer 26 has a refractive index of 1.55 and is at least about 90n.
It is required to have a thickness of about 100 nm, and can be deposited to a thickness of about 100 nm, preferably about 300 nm. For applications requiring a thicker passivation layer 26 (greater than 400 nm), the additional thickness can be suitably obtained by depositing borophosphosilicate glass over the silicon oxynitride layer 26. Silicon oxynitride passivation layer 26 is on top surface 2
0 and generally in contact with it, although it may be advantageous in some cases to have other layers interposed between its top surface 20 and the passivation layer 26. For example, in the case of a device containing a phosphorus-containing material, such as indium phosphide, a phosphorus-containing passivating agent, such as borophosphosilicate glass, may be interposed between the top surface 20 and the silicon oxynitride layer 26. Borophosphosilicate glass tends to be compatible with indium phosphide materials, and silicon oxynitride is an excellent moisture and ion barrier, so
This configuration is advantageous.

不働態化層26は例えば約25N200℃の低温−好ま
しくは周囲温度で出来るプラズマ強化化学蒸着のような
公知の蒸着法で与蘂→辱被着する事が出来る。低温法は
基板の一体性を保証する点で光検知器のようなインジウ
ム含有装置の不働態化には重要である。典型的な先駆化
合物はシラン(S 1H4)、アンモニア(NH3)、
亜酸化窒素(N20)で、それぞれシリコン、窒素、酸
素を供給する。5IK4 :NH3+N20の流量比は
所要範囲内の屈折率のシリコン被膜を生成するために約
1 : 1.67〜1:5に保つ必要がある。窒素源と
してアンモニアを用いると、不働態化層26の水素含有
量が約8〜20原子%になる。不働態化層26内に水素
が存在すると、その屈折率が約10%低下する。層26
はまた約9〜35原子%のシリコンと、約9〜35原子
%の窒素と、約20〜40原子%の酸素を含む。このオ
キシ窒化シリコン材料は約10〜15原子%の水素と、
約25〜30原子%のシリコンと、約25〜30原子%
の窒素と、約20〜40原子%の酸素を含むことが好ま
しい。
The passivation layer 26 can be deposited by known deposition techniques, such as plasma enhanced chemical vapor deposition, which can be performed at low temperatures, such as about 25N200 DEG C., preferably at ambient temperature. Low temperature methods are important for passivation of indium-containing devices, such as photodetectors, in that they ensure the integrity of the substrate. Typical precursor compounds are silane (S 1H4), ammonia (NH3),
Nitrous oxide (N20) is used to supply silicon, nitrogen, and oxygen, respectively. The flow ratio of 5IK4:NH3+N20 should be kept at about 1:1.67 to 1:5 to produce a silicon coating with a refractive index within the required range. When ammonia is used as the nitrogen source, the hydrogen content of passivation layer 26 is approximately 8 to 20 atomic percent. The presence of hydrogen in passivation layer 26 reduces its refractive index by approximately 10%. layer 26
It also contains about 9-35 atomic percent silicon, about 9-35 atomic percent nitrogen, and about 20-40 atomic percent oxygen. This silicon oxynitride material contains approximately 10 to 15 atomic percent hydrogen;
Approximately 25-30 at% silicon and approximately 25-30 at%
of nitrogen and about 20 to 40 atomic percent oxygen.

ホウ燐珪酸ガラスはその厚さを不働態化層26より厚く
したいときも薄くしたいときも、公知の技法で被着する
ことが出来る。例えば、米国特許第3481781号に
は一般に約300〜450℃の温度で行われる種々の珪
酸ガラスの化学蒸着法が開示されている。燐化インジウ
ム含有装置ではホウ燐珪酸ガラスの被着温度が実質的に
約300℃以上に、如何なる場合にも360℃以上にな
らないのがよいことが判っている。
Whether the borophosphosilicate glass is desired to be thicker or thinner than passivation layer 26, it can be deposited using known techniques. For example, U.S. Pat. No. 3,481,781 discloses various chemical vapor deposition processes for silicate glasses that are generally carried out at temperatures of about 300-450°C. It has been found that in devices containing indium phosphide, the deposition temperature of the borophosphosilicate glass should not exceed substantially 300 DEG C., and in no case exceed 360 DEG C.

この装置の品質と不働態化層の有効性はその不働態化層
を乗せる表面を被着前に処理すると更に向上する。19
86年6月6日付米国特許願第871316号明細書に
は表面を例えば弗化アンモニウム・弗酸水溶液で処理し
た後、無酸素の窒素含有雰囲気中でプラズマに当てる工
程が開示されている。
The quality of the device and the effectiveness of the passivation layer are further improved if the surface on which the passivation layer rests is treated before application. 19
US Patent Application No. 871,316, dated June 6, 1986, discloses a process in which the surface is treated with, for example, an aqueous solution of ammonium fluoride and hydrofluoric acid, and then exposed to plasma in an oxygen-free nitrogen-containing atmosphere.

光検知器または同様の装置の表面に不働態化層を被着す
るには、その装置を米国特許第4512284号開示の
ような標準のグロー放電装置に入れ、室内を約10−5
〜1O−6Torrに排気する。この室内に先1駆化合
物を所要の流量で約10〜50mTorr 、好ましく
は約40〜45m Torrの分圧まで導入する。この
装置に例えばアルミニウム電極に13.56 MHz、
400Wの電力を印加することによりプラズマを発生さ
せ、この電力を所要厚さの窒化シリコンが被着されるま
で維持する。
To deposit a passivation layer on the surface of a photodetector or similar device, the device is placed in a standard glow discharge apparatus, such as that disclosed in U.S. Pat. No. 4,512,284, and the chamber is heated to approximately 10
Evacuate to ~10-6 Torr. The precursor compound is introduced into this chamber at the required flow rate to a partial pressure of about 10-50 mTorr, preferably about 40-45 mTorr. In this device, for example, 13.56 MHz on aluminum electrode,
A plasma is generated by applying a power of 400 W and this power is maintained until the desired thickness of silicon nitride is deposited.

第2図は被着因子の変化と生じたオキシ窒化シリコン層
の屈折率の関係を示す。第2図の曲線は屈折率を3種の
シラ/流量に対するプラズマ強化化学蒸着中のN20流
量の関数として示す。第2図の3つの曲線は所要の屈折
率範囲内でオキシ窒化物層を生成するのに用い得る先駆
化合物の流量の組み合わせを示している。
FIG. 2 shows the relationship between changes in deposition factors and the refractive index of the resulting silicon oxynitride layer. The curves in FIG. 2 show the refractive index as a function of N20 flow rate during plasma enhanced chemical vapor deposition for three silica/flow rates. The three curves in FIG. 2 show combinations of precursor compound flow rates that can be used to produce oxynitride layers within the required refractive index range.

生成するオキシ窒化シリコン層に対する被着因子の変化
の効果をさらに説明するため、第3図に層内の酸素と窒
素の原子%を被着中のN2oの流量の関数として示す。
To further illustrate the effect of varying deposition factors on the resulting silicon oxynitride layer, FIG. 3 shows the atomic percent of oxygen and nitrogen in the layer as a function of the N2O flow rate during deposition.

この結果も屈折率の関数とし、て示されているが、一定
NH3流量45 sccm 、一定S iH4流量45
 secmに対するものである。酸素と窒素の百分率は
アラガミ子分先決で測定し、この方法は水素を検知しな
いので各試料中の水素含有量に対して補正した。この補
正を行うため、水素含有量は別に二次イオン質量分析に
よシ測定した。
The results are also shown as a function of refractive index, with a constant NH3 flow rate of 45 sccm and a constant SiH4 flow rate of 45 sccm.
secm. The percentages of oxygen and nitrogen were measured with Aragami molecules first and were corrected for the hydrogen content in each sample since this method does not detect hydrogen. To perform this correction, the hydrogen content was measured separately by secondary ion mass spectrometry.

この不働態化層形成方法は、不働態化された装置が湿気
に感じないことが判り、その典型的な低暗電流と高降伏
電圧によシ証明されるように表面漏洩と暗電流が実質的
に少ない点で、光検知器の不働態化に有利である。
This passivation layer formation method has shown that the passivated device is not sensitive to moisture and has virtually no surface leakage and dark current, as evidenced by its typically low dark current and high breakdown voltage. It is advantageous for passivation of photodetectors in that it is less expensive.

以上この発明をInGaAs / I nP三元合金プ
レーナ型光検知器について説明したが、一般にその他の
合金系または半導体およびその他の構体例えばメサ装置
その他の半導体装置もここに開示した不働態化材料から
利益を受けることに注意すべきである。
Although the invention has been described with respect to an InGaAs/InP ternary alloy planar photodetector, other alloy-based or semiconductor and other structures, such as mesa devices and other semiconductor devices, may also benefit from the passivating materials disclosed herein. You should be careful about receiving.

次にこの発明を例によって説明するが、この発明はその
説明の細部に限定されないことを理解すべきである。以
下の例において開示のない限シ組成を表す部と%はすべ
で重量によるものであり、温度はすべて℃で表す。
The invention will now be described by way of example, but it will be understood that the invention is not limited to the details of the description. In the following examples, unless otherwise disclosed, all parts and percentages expressing compositions are by weight and all temperatures are expressed in degrees Celsius.

例弐 n型InPの掩蔽層を有するI nGaAs / I 
n Pのプレーナ型基体をグロー放電装置に入れ、これ
を約1O−6Torrに排気した後、NH3とSiH4
をそれぞれ流量約4530Cmで、N20を流量約15
sccmで導入した。13.56MHz、400 Wの
電力を印加してプラズマを発生させ、室温で掩蔽層上に
厚さ300nmのオキシ窒化シリコン層を被着した。得
られたオキシ窒化シリコンの屈折率(測定波長632.
8 nm )は約1.82であった。この不働態化層は
気泡を含み、次のエツチングおよび拡散中に多くの部分
で実際に剥離した。
Example 2 InGaAs/I with n-type InP masking layer
A planar type substrate of nP was placed in a glow discharge device, and after it was evacuated to about 1O-6 Torr, NH3 and SiH4
respectively at a flow rate of approximately 4530 Cm, and N20 at a flow rate of approximately 15 Cm.
It was introduced via sccm. A plasma was generated by applying a power of 400 W at 13.56 MHz to deposit a 300 nm thick silicon oxynitride layer on the masking layer at room temperature. The refractive index of the obtained silicon oxynitride (measurement wavelength: 632.
8 nm) was approximately 1.82. This passivation layer contained air bubbles and actually peeled off in many areas during subsequent etching and diffusion.

例  2 第2のI nGaAs / I n P基体に対してN
H3、SiH4、N20の流量をそれぞれ45 sec
m 145゛seem 、 60secmとした以外同
じ処理を行なった。得られたオキシ窒化シリコン層の屈
折率は約1.60で、二次イオン質量分析により約12
%の水素を含むことが判った。
Example 2 N for a second I nGaAs/I n P substrate
The flow rates of H3, SiH4, and N20 were each 45 sec.
The same process was performed except that m 145゛seem and 60 seconds were used. The refractive index of the obtained silicon oxynitride layer is about 1.60, and the refractive index is about 12 by secondary ion mass spectrometry.
It was found to contain % hydrogen.

この第2の基体にさらに公知のエツチングと拡散を行っ
て製造したプレーナ型光検知器は低い暗電流と優れた不
働態化層の接着力を示した。またこの様にして製造され
た装置は、9V逆バイアス150℃3000時間の信頼
度と寿命の加速試験で優れた電気特性の安定性を示した
Planar photodetectors prepared from this second substrate by further conventional etching and diffusion exhibited low dark current and excellent passivation layer adhesion. Further, the device manufactured in this manner showed excellent stability of electrical characteristics in an accelerated reliability and life test of 9 V reverse bias at 150° C. for 3,000 hours.

例  3 次の条件下でアンモニアとシランの流量ヲ同じにしてシ
リコンウェハ上に窒化シリコン層を形成した。850℃
で化学蒸着、それぞれ380℃と25℃でプラズマ強化
化学蒸着。この3つの被膜の二次イオン質量分析の結果
、それぞれの水素含有量は約1%、7〜8%、12〜1
5%であった。
Example 3 A silicon nitride layer was formed on a silicon wafer under the following conditions with the same flow rates of ammonia and silane. 850℃
chemical vapor deposition at 380 °C and plasma enhanced chemical vapor deposition at 25 °C, respectively. As a result of secondary ion mass spectrometry analysis of these three films, the respective hydrogen contents were approximately 1%, 7-8%, and 12-1
It was 5%.

例2の割合で亜酸化窒素を追加した以外同じ条件を用い
て製造した被膜ではそれぞれ約1%、5〜6%、9〜1
2%であった。
Coatings prepared using the same conditions except that nitrous oxide was added at the rate of Example 2 were approximately 1%, 5-6%, and 9-1%, respectively.
It was 2%.

アンモニアの代わシに窒素を用いて同じ実験をくり返す
と、水素源としてのアンモニアをなくすることによシ平
均して被膜の水素が20%減じることが経験的に判った
When the same experiment was repeated using nitrogen in place of ammonia, it was found empirically that eliminating ammonia as a hydrogen source reduced the hydrogen content of the coating by an average of 20%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によって製造し得る光検知器の断面図
、第2図はオキシ窒化シリコンの屈折率を亜酸化窒素先
駆化合物の流量の関数として示す図、第3図は酸素と窒
素の原子%を亜酸化窒素先駆化合物の流量の関数として
示す図である。 10・・・半導体基体、20・・・表面、26・・・不
働態化層。
FIG. 1 is a cross-sectional view of a photodetector that can be produced according to the present invention; FIG. 2 is a diagram showing the refractive index of silicon oxynitride as a function of the flow rate of the nitrous oxide precursor compound; and FIG. 3 is a diagram showing oxygen and nitrogen atoms. % as a function of nitrous oxide precursor compound flow rate. DESCRIPTION OF SYMBOLS 10... Semiconductor base, 20... Surface, 26... Passivation layer.

Claims (1)

【特許請求の範囲】[Claims] (1)表面に不働態化層を有し、その不働態化層が約1
.55〜1.75の屈折率を持ち、約8〜20原子%の
水素と、約9〜35原子%のシリコンと、約9〜35原
子%の窒素と、約10〜50原子%の酸素とを含むオキ
シ窒化シリコン材料を含むことを特徴とする半導体基体
(1) Has a passivation layer on the surface, and the passivation layer is about 1
.. It has a refractive index of 55 to 1.75, and contains about 8 to 20 atom% hydrogen, about 9 to 35 atom% silicon, about 9 to 35 atom% nitrogen, and about 10 to 50 atom% oxygen. A semiconductor substrate comprising a silicon oxynitride material.
JP739887A 1986-01-16 1987-01-14 Semiconductor substrate Pending JPS62172733A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81929686A 1986-01-16 1986-01-16
US878240 1986-06-25
US819296 2001-03-27

Publications (1)

Publication Number Publication Date
JPS62172733A true JPS62172733A (en) 1987-07-29

Family

ID=25227750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP739887A Pending JPS62172733A (en) 1986-01-16 1987-01-14 Semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS62172733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184340A (en) * 1986-09-08 1988-07-29 Nec Corp Semiconductor device
JPH04155969A (en) * 1990-10-19 1992-05-28 Nec Corp Semiconductor nonvolatile storage and its manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062774A (en) * 1973-10-06 1975-05-28
JPS5642377A (en) * 1979-09-14 1981-04-20 Fujitsu Ltd Ultraviolet ray erasable type rewritable read-only memory
JPS5693344A (en) * 1979-12-26 1981-07-28 Fujitsu Ltd Manufacture of semiconductor device
JPS6039837A (en) * 1983-08-12 1985-03-01 Nec Corp Growth of insulating film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062774A (en) * 1973-10-06 1975-05-28
JPS5642377A (en) * 1979-09-14 1981-04-20 Fujitsu Ltd Ultraviolet ray erasable type rewritable read-only memory
JPS5693344A (en) * 1979-12-26 1981-07-28 Fujitsu Ltd Manufacture of semiconductor device
JPS6039837A (en) * 1983-08-12 1985-03-01 Nec Corp Growth of insulating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184340A (en) * 1986-09-08 1988-07-29 Nec Corp Semiconductor device
JPH04155969A (en) * 1990-10-19 1992-05-28 Nec Corp Semiconductor nonvolatile storage and its manufacture

Similar Documents

Publication Publication Date Title
US4717631A (en) Silicon oxynitride passivated semiconductor body and method of making same
Stein et al. Properties of plasma‐deposited silicon nitride
CA2136580C (en) Gallium oxide coatings for optoelectronic devices
Nemirovsky et al. Interface of p‐type Hg1− x Cd x Te passivated with native sulfides
EP0128724B2 (en) Preparation of photodiodes
JPS62122183A (en) Semiconductor device
CN109285913A (en) Low tracking current mesa-type photodetectors and preparation method thereof
US3949119A (en) Method of gas doping of vacuum evaporated epitaxial silicon films
US4819039A (en) Devices and device fabrication with borosilicate glass
US4731293A (en) Fabrication of devices using phosphorus glasses
Zhou et al. Structural and electrical properties of plasma-deposited silicon nitride from SiH 4-N 2 gas mixture
Inada et al. Chemical vapor deposition of silicon nitride: encapsulant layers for annealing gallium arsenide
US4705760A (en) Preparation of a surface for deposition of a passinating layer
JPS62172733A (en) Semiconductor substrate
JP3207869B2 (en) Semiconductor device manufacturing and passivation method
JP3602600B2 (en) Product including SiO x layer and method for producing the product
CN112420871B (en) Mesa type indium gallium arsenic detector chip and preparation method thereof
JP3440992B2 (en) Light-emitting material containing silicon and nitrogen as main components, method for producing the same, and light-emitting element using the same
JPH0616501B2 (en) Device manufacturing method
Yamamoto et al. Passivation effect of plasma chemical vapor deposited SiNx on single-crystalline silicon thin-film solar cells
JPH07249786A (en) Fabrication of semiconductor device
JPS6154619A (en) Forming process of gallium arsenide p type conductive layer
Dutta et al. Dry etching, surface passivation and capping processes for antimonide based photodetectors
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
Kasai et al. Optical absorption properties of indium-doped thin crystalline silicon films