JPH07249786A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH07249786A
JPH07249786A JP6038974A JP3897494A JPH07249786A JP H07249786 A JPH07249786 A JP H07249786A JP 6038974 A JP6038974 A JP 6038974A JP 3897494 A JP3897494 A JP 3897494A JP H07249786 A JPH07249786 A JP H07249786A
Authority
JP
Japan
Prior art keywords
film
gas
hgcdte
etching
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6038974A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ueda
敏之 上田
Koji Fujiwara
康治 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6038974A priority Critical patent/JPH07249786A/en
Publication of JPH07249786A publication Critical patent/JPH07249786A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Light Receiving Elements (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To fabricate an infrared detection element having a clean interface between a surface protective film and HgCdTe and the protective film is formed stably on the HgCdTe. CONSTITUTION:1) In a step for depositing an insulating film on a semiconductor substrate 1, etching on the surface of the semiconductor substrate 1 and deposition of the insulating film 3 are performed in this order in one vacuum vessel wherein the etching gas and the film deposition gas contain an identical gas component. 2) The etching gas is used in the form of plasma. 3) The identical gas includes a nitrogen-hydrogen bond. 4) The semiconductor substrate 1 is composed of mercury cadmium tellurium (HgCdTe). 5) The insulating film 3 is a silicon nitride (SiNx) film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外線検知素子, 特に水
銀カドミウムテルル (HgCdTe;MCT)を用いた赤外線検知
素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element, and more particularly to a method of manufacturing an infrared detecting element using mercury cadmium tellurium (HgCdTe; MCT).

【0002】衛星を用いた資源探査等に用いられるHgCd
Teを用いた赤外線検知素子は, HgCdTe上に良好な界面特
性をもつ保護膜の形成が非常に重要である。
HgCd used for resource exploration using satellites
In the infrared sensing device using Te, it is very important to form a protective film with good interface properties on HgCdTe.

【0003】[0003]

【従来の技術】従来のHgCdTeの表面保護膜として, 陽極
硫化膜, 二酸化シリコン(SiO2)膜, 窒化シリコン(SiN)
膜, 硫化亜鉛(ZnS) 膜等の絶縁膜が用いられてきた。
2. Description of the Related Art As a surface protective film for conventional HgCdTe, anodic sulfide film, silicon dioxide (SiO 2 ) film, silicon nitride (SiN)
Insulating films such as films and zinc sulfide (ZnS) films have been used.

【0004】陽極硫化膜は, 膜の形成とHgCdTe表面のエ
ッチングが同時に進行するため,清浄な表面保護膜/Hg
CdTeの界面が得られる特徴がある。しかし,膜が多孔質
であるため,絶縁性が悪く,化学的に不安定で,製造プ
ロセス中に腐食されやすい等の欠点がある。
The anodic sulfide film is a clean surface protection film / Hg film because the film formation and the etching of the HgCdTe surface proceed simultaneously.
It is characterized by the interface of CdTe. However, since the film is porous, it has poor insulation properties, is chemically unstable, and is easily corroded during the manufacturing process.

【0005】SiO2膜, SiN 膜, ZnS 膜等は,絶縁性は良
く, 化学的にも安定であるが, これらの膜の形成前のHg
CdTe表面の清浄度に界面特性が左右されるため,再現性
の良い表面保護膜/HgCdTe界面を得ることは困難であっ
た。
Although SiO 2 film, SiN film, ZnS film, etc. have good insulating properties and are chemically stable, Hg before these films are formed.
Since the interface characteristics depend on the cleanliness of the CdTe surface, it was difficult to obtain a reproducible surface protective film / HgCdTe interface.

【0006】HgCdTeの清浄化をはかるため, HgCdTe表面
のウエットエッチングあるいはドライエッチング等の方
法がある。ウエットエッチングでは, 乾燥後にHgCdTe表
面が大気中に曝されるため,表面に自然酸化膜ができ,
清浄な界面を形成することは困難である。
In order to clean HgCdTe, there are methods such as wet etching or dry etching of the HgCdTe surface. In wet etching, the HgCdTe surface is exposed to the atmosphere after drying, so a natural oxide film forms on the surface,
It is difficult to form a clean interface.

【0007】ドライエッチングとして,アルゴン(Ar)等
を用いたスパッタエッチングでは深さ数μm以上の損傷
がHgCdTeに入り, 良好な特性が得られない。さらに, A
r, 酸素(O2), 水素(H2), 三フッ化メタン(CHF3)等の混
合ガスのプラズマエッチングではHgCdTe表面の清浄度は
良いが, 真空を破らないで, 同一チャンバ内でSiO2膜,S
iN 膜, ZnS 膜等を成膜すると, エッチングガス中から
炭素や酸素等の不純物が混入し,安定な保護膜を形成で
きない。そこで,マルチチャンバの装置を用いれば不純
物の混入を避けることができるが, 装置が高価で大型化
するという欠点がある。
As dry etching, sputter etching using argon (Ar) or the like damages HgCdTe to a depth of several μm or more, and good characteristics cannot be obtained. In addition, A
Although the cleanliness of the HgCdTe surface is good in plasma etching with a mixed gas of r, oxygen (O 2 ), hydrogen (H 2 ), trifluoromethane (CHF 3 ), etc., it does not break the vacuum and SiO 2 membranes, S
When the iN film, ZnS film, etc. are formed, impurities such as carbon and oxygen are mixed from the etching gas and a stable protective film cannot be formed. Therefore, using a multi-chamber device can avoid the entry of impurities, but it has the drawback of making the device expensive and large.

【0008】[0008]

【発明が解決しようとする課題】上記のように,従来の
保護膜形成方法では, 清浄なHgCdTe表面に安定な保護膜
を形成することが困難である。
As described above, it is difficult to form a stable protective film on a clean HgCdTe surface by the conventional protective film forming method.

【0009】本発明は, 表面保護膜/HgCdTe間に清浄な
界面をもち, HgCdTe上に安定な保護膜の形成を目的とす
る。
The object of the present invention is to form a stable protective film on HgCdTe having a clean interface between the surface protective film and HgCdTe.

【0010】[0010]

【課題を解決するための手段】上記課題の解決は, 1)半導体基板 1上に絶縁膜 3を成膜する工程を有し,
該半導体基板 1の表面のエッチングと該絶縁膜 3の成膜
とをこの順に同一真空容器内で行い,前記エッチングを
行うエッチングガスと前記成膜を行う成膜ガスとが, 同
一ガスをその成分に含む半導体装置の製造方法,あるい
は 2)前記エッチングガスをプラズマ化して用いる前記1
記載の半導体装置の製造方法,あるいは 3)前記同一ガスが窒素−水素結合を有するガスである
前記1あるいは2記載の半導体装置の製造方法,あるい
は 4)前記半導体基板 1が水銀カドミウムテルル(HgCdTe)
からなる前記1乃至3記載の半導体装置の製造方法,あ
るいは 5)前記絶縁膜 3が窒化シリコン(SiNx ) 膜である前記
1乃至4記載の半導体装置の製造方法により達成され
る。
[Means for Solving the Problems] To solve the above problems, 1) has a step of forming an insulating film 3 on a semiconductor substrate 1,
The etching of the surface of the semiconductor substrate 1 and the film formation of the insulating film 3 are performed in this order in the same vacuum container, and the etching gas for performing the etching and the film forming gas for performing the film formation use the same gas as its component. The method of manufacturing a semiconductor device according to 1), or 2) using the etching gas in the form of plasma
3. The method for manufacturing a semiconductor device described in 3) or 3) the method for manufacturing a semiconductor device described in 1 or 2 above, wherein the same gas is a gas having a nitrogen-hydrogen bond, or 4) the semiconductor substrate 1 is mercury cadmium tellurium (HgCdTe).
1) to 3), or 5) the insulating film 3 is a silicon nitride (SiN x ) film.

【0011】[0011]

【作用】本発明では,ドライエッチングガスとしてN-H
結合を有するガスを用い, 保護膜としてSiN 膜を用い
る。
[Function] In the present invention, NH is used as the dry etching gas.
A gas having a bond is used, and a SiN film is used as a protective film.

【0012】本出願人はさきに出願番号平05-336959 号
の明細書に, N-H 結合を有するガスをプラズマ化するこ
とにより, HgCdTe表面をエッチングすることができるこ
とを開示した。
The Applicant has previously disclosed in the specification of Application No. 05-336959 that HgCdTe surfaces can be etched by plasmating a gas having NH bonds.

【0013】本発明はさらに, N-H 結合を有するガスプ
ラズマにシリコン(Si)を含むガスを混合することによ
り, SiNx 膜をHgCdTe表面に形成することができること
を利用したものである。
The present invention further utilizes the fact that a SiN x film can be formed on the surface of HgCdTe by mixing a gas plasma having NH bonds with a gas containing silicon (Si).

【0014】[0014]

【実施例】図1(A) 〜(E) は本発明の実施例の説明図で
ある。図1(A) において,p型のHgCdTe基板 1にイオン
注入を行い, n型領域 2を形成し,pn接合を構成する。
EXAMPLE FIGS. 1A to 1E are explanatory views of an example of the present invention. In Fig. 1 (A), p-type HgCdTe substrate 1 is ion-implanted to form an n-type region 2 to form a pn junction.

【0015】イオン注入の条件は, イオン種:硼素イオ
ン(B+ ) ,エネルギー 150 KeV, ドーズ量1E14cm-2であ
る。図1(B) において,図2に示す電子サイクロトロン
共鳴(ECR)プラズマ装置内にHgCdTe基板 1を入れる。
The conditions of ion implantation are as follows: ion species: boron ion (B + ), energy 150 KeV, dose amount 1E14 cm −2 . In FIG. 1 (B), the HgCdTe substrate 1 is placed in the electron cyclotron resonance (ECR) plasma device shown in FIG.

【0016】ここで,エッチングガスとしてアンモニア
(NH3) を10 SCCM 導入し,ガス圧力3×10-3 Torr に保
持し,2.45 GHzのμ波電力を120 W 投入する。5 分間の
エッチングで約0.5 μmエッチングできる。
Here, ammonia is used as an etching gas.
(NH 3 ) was introduced at 10 SCCM, the gas pressure was maintained at 3 × 10 -3 Torr, and 120 W of 2.45 GHz μ-wave power was applied. About 0.5 μm can be etched in 5 minutes.

【0017】図1(C) において,上記エッチングに連続
して, 同一チャンバ内に, 上記NH3をそのまま流しなが
ら,モノシラン(SiH4)20%−Arガスを10 SCCM 導入し,
10分間の成膜で保護膜として厚さ 150nmの SiNx 膜 3を
HgCdTe基板 1の表面に形成する。
In FIG. 1 (C), following the etching, 10 SCCM of monosilane (SiH 4 ) 20% -Ar gas was introduced into the same chamber while flowing the NH 3 as it was,
Thickness 150nm as a protective film in the film formation for 10 minutes the SiN x film 3
Formed on the surface of HgCdTe substrate 1.

【0018】その後, 通常の方法により, 赤外線検知素
子を形成する。図1(D) において, 基板上に補助保護膜
として厚さ400 nmのZnS 膜 4を蒸着法で成膜する。
After that, an infrared detecting element is formed by a usual method. In Fig. 1 (D), a 400-nm-thick ZnS film 4 is formed as an auxiliary protective film on the substrate by vapor deposition.

【0019】図1(E) において, HgCdTe基板 1及びn型
領域 2上のZnS 膜 4及び SiNx 膜 3にコンタクトホール
を開口し,基板上全面に金属電極膜としてIn膜 5を被着
し,パターニングして電極を形成する。
In FIG. 1 (E), contact holes are opened in the ZnS film 4 and the SiN x film 3 on the HgCdTe substrate 1 and the n-type region 2, and an In film 5 is deposited on the entire surface of the substrate as a metal electrode film. Then, patterning is performed to form electrodes.

【0020】図2は実施例に使用したECR プラズマ装置
の説明図である。図において,11はエッチングチャン
バ, 12は排気口, 13は基板載置台, 14はプラズマの通過
孔, 15はプラズマ生成室, 16は NH3ガスの導入口, 17は
電磁コイル, 18は導波管, 19はSiH4ガスの導入口であ
る。
FIG. 2 is an explanatory view of the ECR plasma device used in the embodiment. In the figure, 11 is an etching chamber, 12 is an exhaust port, 13 is a substrate mounting table, 14 is a plasma passage hole, 15 is a plasma generation chamber, 16 is an NH 3 gas inlet port, 17 is an electromagnetic coil, and 18 is a waveguide. The tube, 19 is an inlet for SiH 4 gas.

【0021】実施例では半導体基板としてMCT 基板を用
いたが, この他にCdTe, GaAs, InP等にも本発明は適用
できる。次に, 図3(A),(B) に実施例の効果を示す具体
例を従来例と対比して示し,図3(A) は実施例, (B) は
従来例である。
Although the MCT substrate was used as the semiconductor substrate in the embodiments, the present invention can be applied to CdTe, GaAs, InP, etc. in addition to this. Next, FIGS. 3 (A) and 3 (B) show concrete examples showing the effects of the embodiment in comparison with the conventional example. FIG. 3 (A) is the embodiment and (B) is the conventional example.

【0022】実施例では,保護膜特性の均一性,再現性
を向上させることができる。図は保護膜特性の一つであ
る界面固定電荷密度に対する出現度数を示す。界面固定
電荷密度は0になるのが理想である。図より,実施例は
従来例より出現度数のばらつきが小さいことがわかる。
In the embodiment, the uniformity and reproducibility of the protective film characteristics can be improved. The figure shows the appearance frequency with respect to the fixed charge density at the interface, which is one of the characteristics of the protective film. Ideally, the fixed charge density at the interface becomes zero. From the figure, it can be seen that the embodiment has less variation in appearance frequency than the conventional example.

【0023】[0023]

【発明の効果】本発明によれば, 赤外線検知素子の表面
保護膜/HgCdTe間に清浄な界面をもち, HgCdTe上に安定
な保護膜の形成ができる。
According to the present invention, it is possible to form a stable protective film on HgCdTe having a clean interface between the surface protective film of the infrared detection element and HgCdTe.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】 実施例に使用したECR プラズマ装置の説明図FIG. 2 is an explanatory diagram of the ECR plasma device used in the examples.

【図3】 実施例効果を示す図FIG. 3 is a diagram showing the effect of the embodiment.

【符号の説明】[Explanation of symbols]

1 p型のHgCdTe基板 2 n型領域 3 保護膜で SiNx 膜 4 補助保護膜でZnS 膜 5 金属電極 11 エッチングチャンバ 12 排気口 13 基板載置台 14 プラズマの通過孔 15 プラズマ生成室 16 NH3ガスの導入口 17 電磁コイル 18 導波管 19 SiH4ガスの導入口1 p-type HgCdTe substrate 2 n-type region 3 SiN x film as protective film 4 ZnS film as auxiliary protective film 5 metal electrode 11 etching chamber 12 exhaust port 13 substrate mounting table 14 plasma passage hole 15 plasma generation chamber 16 NH 3 gas Inlet port 17 Electromagnetic coil 18 Waveguide 19 SiH 4 Gas inlet port

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/318 B 7352−4M Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/318 B 7352-4M

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板(1) 上に絶縁膜(3)を成膜す
る工程を有し,該半導体基板(1) の表面のエッチングと
該絶縁膜(3)の成膜とをこの順に同一真空容器内で行
い,前記エッチングを行うエッチングガスと前記成膜を
行う成膜ガスとが, 同一ガスをその成分に含むことを特
徴とする半導体装置の製造方法。
1. A step of forming an insulating film (3) on a semiconductor substrate (1), comprising: etching the surface of the semiconductor substrate (1) and forming the insulating film (3) in this order. A method of manufacturing a semiconductor device, characterized in that the etching gas for performing the etching and the film forming gas for performing the film formation in the same vacuum chamber contain the same gas as its components.
【請求項2】 前記エッチングガスをプラズマ化して用
いることを特徴とする請求項1記載の半導体装置の製造
方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the etching gas is used in the form of plasma.
【請求項3】 前記同一ガスが窒素−水素結合を有する
ガスであることを特徴とする請求項1あるいは2記載の
半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the same gas is a gas having a nitrogen-hydrogen bond.
【請求項4】 前記半導体基板(1) が水銀カドミウムテ
ルル(HgCdTe)からなることを特徴とする請求項1乃至3
記載の半導体装置の製造方法。
4. The semiconductor substrate (1) is made of mercury cadmium tellurium (HgCdTe).
A method for manufacturing a semiconductor device as described above.
【請求項5】 前記絶縁膜(3)が窒化シリコン(SiNx )
膜であることを特徴とする請求項1乃至4記載の半導体
装置の製造方法。
5. The insulating film (3) is made of silicon nitride (SiN x ).
5. The method for manufacturing a semiconductor device according to claim 1, wherein the method is a film.
JP6038974A 1994-03-10 1994-03-10 Fabrication of semiconductor device Withdrawn JPH07249786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6038974A JPH07249786A (en) 1994-03-10 1994-03-10 Fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6038974A JPH07249786A (en) 1994-03-10 1994-03-10 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07249786A true JPH07249786A (en) 1995-09-26

Family

ID=12540135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6038974A Withdrawn JPH07249786A (en) 1994-03-10 1994-03-10 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07249786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429387B1 (en) * 2002-01-22 2004-04-29 국방과학연구소 Manufacturing method for infrared detector
KR100485875B1 (en) * 2002-01-02 2005-04-28 강태원 A Manufacturing Method Of Infrared Ray Detection Element Using Hg1-XCdxTe Thin Film Of Quantum Dot Structure By Hydrogenation And Non-Active Gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485875B1 (en) * 2002-01-02 2005-04-28 강태원 A Manufacturing Method Of Infrared Ray Detection Element Using Hg1-XCdxTe Thin Film Of Quantum Dot Structure By Hydrogenation And Non-Active Gas
KR100429387B1 (en) * 2002-01-22 2004-04-29 국방과학연구소 Manufacturing method for infrared detector

Similar Documents

Publication Publication Date Title
US5015331A (en) Method of plasma etching with parallel plate reactor having a grid
US4814842A (en) Thin film transistor utilizing hydrogenated polycrystalline silicon
Claassen et al. Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stress of plasma silicon nitride layers
Dun et al. Mechanisms of Plasma‐Enhanced Silicon Nitride Deposition Using SiH4/N 2 Mixture
US4901133A (en) Multilayer semi-insulating film for hermetic wafer passivation and method for making same
US4152824A (en) Manufacture of solar cells
JP3027951B2 (en) Method for manufacturing semiconductor device
US3923559A (en) Use of trapped hydrogen for annealing metal-oxide-semiconductor devices
US6090675A (en) Formation of dielectric layer employing high ozone:tetraethyl-ortho-silicate ratios during chemical vapor deposition
US6818533B2 (en) Epitaxial plasma enhanced chemical vapor deposition (PECVD) method providing epitaxial layer with attenuated defects
US5209803A (en) Parallel plate reactor and method of use
US6268296B1 (en) Low temperature process for multiple voltage devices
US4855015A (en) Dry etch process for selectively etching non-homogeneous material bilayers
US5045346A (en) Method of depositing fluorinated silicon nitride
US4778776A (en) Passivation with a low oxygen interface
CA1244560A (en) Method of annealing a compound semiconductor substrate
US5632855A (en) Thermal oxide etch technique
US6551947B1 (en) Method of forming a high quality gate oxide at low temperatures
JPH07249786A (en) Fabrication of semiconductor device
JP3207869B2 (en) Semiconductor device manufacturing and passivation method
US6281146B1 (en) Plasma enhanced chemical vapor deposition (PECVD) method for forming microelectronic layer with enhanced film thickness uniformity
Hu et al. Electron cyclotron resonance plasma process for InP passivation
Valco et al. Plasma deposited silicon nitride for indium phosphide encapsulation
Shul et al. Plasma‐induced damage of GaAs during etching of refractory metal contacts
JPH0547753A (en) Method of forming protective film of semiconductor element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605