JPS62171797A - Treatment of water - Google Patents

Treatment of water

Info

Publication number
JPS62171797A
JPS62171797A JP61013664A JP1366486A JPS62171797A JP S62171797 A JPS62171797 A JP S62171797A JP 61013664 A JP61013664 A JP 61013664A JP 1366486 A JP1366486 A JP 1366486A JP S62171797 A JPS62171797 A JP S62171797A
Authority
JP
Japan
Prior art keywords
activated carbon
water
treatment tank
treated
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61013664A
Other languages
Japanese (ja)
Inventor
Toshiaki Kobayashi
小林 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61013664A priority Critical patent/JPS62171797A/en
Publication of JPS62171797A publication Critical patent/JPS62171797A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To permit immediate execution of nitrification of ammoniac nitrogen in water to be treated even if active carbon is exchanged with fresh active carbon by passing the filtered water to be treated through an active carbon treatment tank having a high integrated water passage amt. then passing the water through an active carbon treatment tank having a low integrated water passage amt. CONSTITUTION:The water to be treated which is filtered by a filtration process in at least the previous stage is first passed through the 1st stage of the active carbon treatment tank having the high integrated water passage amt. to execute mainly the nitrification of the ammoniac nitrogen of the water to be treated by the biological active carbon effect of the active carbon in said active carbon treatment tank. The water is then passed through the 2nd stage of the active carbon treatment tank having the low integrated water passage amt. to execute mainly the adsorption of org. materials by the active carbon having large adsorption capacity in the active carbon treatment tank. As a result, the immediate nitrification of the ammoniac nitrogen in the water to be treated is made possible even if the active carbon is exchanged with the fresh active carbon or reconditioned active carbon. The fluctuation of the quality of the treated water is decreased as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば浄水場や下水道処理場の水処理方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a water treatment method for, for example, a water purification plant or a sewage treatment plant.

〔従来の技術〕[Conventional technology]

近年水道水源の汚濁が進行して水質の悪化が間層となっ
ており、特に有機汚濁物質や浄水場の塩素処理で生成す
るトリハロメタン(以下THMと称する)頚に対しては
、現在多くの浄水場で採用している、前塩素→擬集沈殿
−砂ろ過−後塩素の各処理プロセスの順に配列した浄水
処理プロセスでは対応しきれなくなっている。そこで現
在使用されているものに代わる新しい浄水処理プロセス
が提案されている。
In recent years, the pollution of tap water sources has progressed and the water quality has deteriorated rapidly.In particular, many water purification methods are currently being used to treat organic pollutants and trihalomethane (hereinafter referred to as THM) produced during chlorination at water treatment plants. The water purification process used in the field, which consists of pre-chlorination, pseudo-sedimentation, sand filtration, and post-chlorination, is no longer able to handle the problem. New water purification processes have therefore been proposed to replace those currently in use.

第6図は「水道協会雑誌」第561号66頁に記載され
た高度処理プロセスのブロック図である。
FIG. 6 is a block diagram of the advanced treatment process described in "Waterworks Association Magazine" No. 561, page 66.

図において、(1)は水道水源からの導水施設、(2)
In the figure, (1) is the water conveyance facility from the tap water source, (2)
.

(4)はオゾン処理プロセス、(3)は凝集沈殿処理プ
ロセス、(5)は砂ろ過プロセス、(6)は活性炭処理
プロセス、(7)は後塩素処理プロセス、(8)は浄水
の送水施設である。
(4) is an ozonation process, (3) is a coagulation sedimentation process, (5) is a sand filtration process, (6) is an activated carbon treatment process, (7) is a post-chlorination process, and (8) is a water purification facility. It is.

なお、上記高速処理プロセスにおいて、(2)〜(7)
の各処理プロセスのうち、(51、+61 、 (71
の各処理プロセスは常に必要とされ、+21.(41の
各処理プロセスの一部またζよ全部を省略することは可
能であり、また(4)と(5)の各処理プロセスの順序
を逆にすることも可能であるとされている。
In addition, in the above high-speed processing process, (2) to (7)
Of each processing process, (51, +61, (71
Each processing process is always required, +21. (It is possible to omit some or all of the processing processes in 41, and it is also possible to reverse the order of the processing processes in (4) and (5).

以上のように構成された高速処理プロセスて;よ、導水
施設(1)を経て浄水場に導入された被処理水は、オ・
jノ処理プロセス(2)またはその後のオゾン処理プロ
セス(4)で殺菌消毒、有機物の酸化、鉄イオン・7ノ
ガンイオノの不溶化などが行なわれ、凝集沈殿プロセス
(3)で凝集剤などが注入されて懸濁物の大部分を沈降
分離し、砂ろ過プロセス(5)で凝集沈殿プロセス(3
)において除去しきれなかっtこ微量の9、 iSJ物
を捕捉する。次いで活性炭処理プロセス(6)で被処理
水に残存するva量の有機物などを吸着除去し、後塩素
処理プロセス(7)でアンモニア性窒素の分解と殺菌消
毒を行ない、送水施設(8)を経て需要家に配水する。
In the high-speed treatment process configured as described above, the water to be treated is introduced into the water treatment plant via the water conveyance facility (1).
In the treatment process (2) or the subsequent ozone treatment process (4), sterilization, oxidation of organic matter, insolubilization of iron ions and bustard ions, etc. are performed, and in the coagulation-sedimentation process (3), flocculants, etc. are injected. Most of the suspended matter is separated by sedimentation, and the sand filtration process (5) is followed by the coagulation-sedimentation process (3).
9. Capture the small amount of iSJ material that could not be completely removed in ). Next, the activated carbon treatment process (6) adsorbs and removes the VA amount of organic matter remaining in the water to be treated, and the post-chlorination process (7) decomposes ammonia nitrogen and sterilizes it, and then passes through the water supply facility (8). Distributes water to consumers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の高度処理プロセスでは、活性炭処理
プロセス(6)が単一活性炭処理て構成されているため
、構内の活性炭を新炭または賦活再生炭に交換すると、
交換された粒状活性炭には長期間の通水によす、粒状活
性炭に付着するアンモニア性窒素を硝化する微生物が存
在しないので、活性炭に微生物が付着して硝化を行なう
ようになるまで、被処理水はアンモニア性窒素が未分解
のまま次の後塩素処理プロセス(7)へ送られる。また
活性炭吸着力は通水の初期と末期で大きく異なるため、
活性炭の入れ替文により処理水質に大きな変動を生じろ
In the conventional advanced treatment process as described above, the activated carbon treatment process (6) consists of a single activated carbon treatment, so when the activated carbon in the premises is replaced with new carbon or activated recycled carbon,
The replaced granular activated carbon has no microorganisms that can nitrify the ammonia nitrogen attached to the granular activated carbon when water is passed through it for a long period of time. The water is sent to the next post-chlorination process (7) with the ammonia nitrogen undecomposed. In addition, the adsorption power of activated carbon differs greatly between the initial and final stages of water flow.
Make a big difference in the quality of treated water by replacing activated carbon.

さらに、砂ろ過プロセス(5)に不都合が生じると、活
性炭でろ過を行なうことになるから、活性炭層は目結ま
りし、大容量の活性炭層を高頻度で送洗する必要がある
などの種々の問題があった。
Furthermore, if a problem occurs in the sand filtration process (5), filtration is performed using activated carbon, which causes various problems such as the activated carbon layer becoming clogged and the large capacity activated carbon layer having to be washed frequently. There was a problem.

この第1の発明はかかる問題点を解決するためになされ
たもので、活性炭を新炭または再生炭に交換しても被処
理水中のアンモニア性窒素の硝化を直ちに行なうことが
でき、また処理水質の変動を小さくすることを目的とす
る。
This first invention was made to solve such problems, and even if activated carbon is replaced with new or recycled carbon, ammonia nitrogen in the water to be treated can be immediately nitrified, and the quality of the treated water can be improved. The purpose is to reduce the fluctuation of

また、第2の発明は、上記目的に加えて粒状活性炭槽に
流入する微量の懸濁物質を効率良く除去し、逆洗水量を
低減化することを目的とする。
In addition to the above object, the second invention aims to efficiently remove a small amount of suspended solids flowing into a granular activated carbon tank and reduce the amount of backwash water.

〔問題点を解決するための手段〕[Means for solving problems]

第1の発明に係る水処理方法は、水処理プロセスにおい
て、少なくともろ過プロセスによりろ過した彼処理水を
第1段の積算通水量の多い活性炭処理槽に通水し、次い
で第2段の積算通水量の少ない活性炭処理槽に通水する
ようにしたものである。
The water treatment method according to the first invention is such that, in the water treatment process, at least treated water filtered by a filtration process is passed through an activated carbon treatment tank with a large cumulative water flow rate in the first stage, and then in a second stage where the water treatment tank has a large cumulative water flow rate. Water is passed through the activated carbon treatment tank, which has a small amount of water.

@2の発明に係る水処理方法は、水処理プロセスにおい
て、ろ過プロセスを省略し、ろ過していない被処理水を
上記第1の発明と同様の処理をする方法である。
The water treatment method according to the invention @2 is a method in which the filtration process is omitted in the water treatment process, and unfiltered water to be treated is treated in the same manner as in the first invention.

〔作用〕[Effect]

第1の発明においては、被処理水の活性炭処理において
、被処理水を最初に通水するのは積算通水量の多い活性
炭処理槽である。そして、この活性炭処理槽は積算通水
量が多いから、充填されている活性炭は被処理水の有機
物を吸着する能力が若干低下しているが、微生物が付着
して被処理水のアンモニア性窒素を硝化することができ
る状態にある。したがって、被処理水を第1段の活性炭
処理槽に通水すると、有機物を完全に吸着除去すること
はできないが、アンモニア性窒素は硝化により高効率に
除去することができろ。
In the first invention, in the activated carbon treatment of water to be treated, the water to be treated is first passed through an activated carbon treatment tank with a large cumulative water flow rate. Since this activated carbon treatment tank has a large cumulative water flow rate, the activated carbon filled in it has a slightly reduced ability to adsorb organic matter in the water to be treated, but microorganisms can attach to it and absorb ammonia nitrogen in the water to be treated. It is in a state where it can be nitrified. Therefore, when the water to be treated is passed through the first stage activated carbon treatment tank, organic matter cannot be completely adsorbed and removed, but ammonia nitrogen can be removed with high efficiency through nitrification.

次いで被処理水は、vi算道通水量少ないので微生物の
付着がないか、または少ないため硝化能力がないかまた
は少ないけれども有機物吸着能力の大きい活性炭の活性
炭処理槽に通水されろため、残存ずろ被処理水の有機物
を完全に吸着除去することができろ。
Next, the water to be treated is passed through an activated carbon treatment tank made of activated carbon, which has no or little nitrification ability due to the small amount of water flow, or has no nitrification ability due to the small amount of water flowing through it, but has a large ability to adsorb organic matter, so the remaining slag is reduced. It should be possible to completely adsorb and remove organic matter from treated water.

第2の発明は、前の工程でろ過プロセスを省略し、ろ過
していない被処理水を第1の発明と同様の方法で活性炭
処理するようにしたので、第1の発明と同様の効果が得
られ、かつ被処理水の懸濁物は最初に通水する活性炭処
理槽の活性炭層でほとんどろ過されて、次の活性炭処理
槽は懸濁物の負荷を受けることがない。
In the second invention, the filtration process is omitted in the previous step and the unfiltered water to be treated is treated with activated carbon in the same manner as in the first invention, so that the same effects as in the first invention can be obtained. Most of the suspended matter in the obtained water to be treated is filtered through the activated carbon layer of the first activated carbon treatment tank, and the next activated carbon treatment tank is not loaded with suspended matter.

゛〔実施例〕 第1図は第1の発明の一実施例を示すブロック図であり
、図において(2)〜(5]、(71は第6図に示す高
度処理プロセスと同等のものである。(9)は各々単一
の活性炭処理槽(9a) 、 (9b) 、 (9c)
よりなる活性炭処理プロセスであり、(9a)は第1段
の活性炭処理槽で、積算通水量が多い状態にある。また
第2段の活性炭処理槽(9b)は積算通水量が少ない状
態にある。さらに待機中の活性炭処理槽(9C)には、
十分に水洗された新炭また賦活再生炭が充填されており
、いつでも使用に供せる状態になっている。
[Embodiment] Fig. 1 is a block diagram showing an embodiment of the first invention. In the figure, (2) to (5) and (71) are equivalent to the advanced processing process shown in Fig. 6. (9) are each a single activated carbon treatment tank (9a), (9b), (9c)
The activated carbon treatment process is as follows, and (9a) is the first stage activated carbon treatment tank, which is in a state where the cumulative water flow rate is large. Further, the second stage activated carbon treatment tank (9b) is in a state where the cumulative water flow rate is small. Furthermore, in the waiting activated carbon treatment tank (9C),
It is filled with fresh coal or activated recycled coal that has been thoroughly washed with water, and is ready for use at any time.

新しい活性炭は彼処理水中の有機物などの吸着能力は、
積算通水量の多い活性炭に比較し−c (’lれている
。しかし新しい活性炭は、相当量の被処理水を通水しな
いとアンモニア性窒素の硝化等を行なう微生物が活性炭
の粒子に付着しない。
The new activated carbon has the ability to adsorb organic matter in treated water.
Compared to activated carbon, which has a large cumulative water flow rate, -c ('l) However, with new activated carbon, microorganisms that nitrify ammonia nitrogen do not attach to activated carbon particles unless a considerable amount of water to be treated is passed through. .

つまり新しい活性炭は、付着した微生物により生物学的
反応を行なう機能をもった生物活性炭(以下T3ACと
称する)になっていない。これに対して積算通水量の多
い活性炭では、有機物などの吸着能力は劣るもののBΔ
C効果が活発なため、被処理水に含まれるアンモニア性
窒素の硝化が効率良く行なわれろ。
In other words, the new activated carbon is not a biological activated carbon (hereinafter referred to as T3AC) that has the function of performing a biological reaction using attached microorganisms. On the other hand, activated carbon, which has a large cumulative water flow rate, has a lower ability to adsorb organic matter, but BΔ
Since the C effect is active, the ammonia nitrogen contained in the water to be treated can be nitrified efficiently.

そこでこの発明(よ、活性炭処理ゴロセス(9)を2段
に分けて行なう1うにし、第1段の処理は有機物の吸着
能力は少し低下しているが、BAC効果のある活性炭で
行ない、第2段の処理を有機物吸着能力の大きい活性炭
で処理することにより、従来単一の活性炭処理槽内で行
なオ)れている2つの主要な機能をそれぞれの機能に分
けて行なうようにしたものである。
Therefore, according to the present invention, the activated carbon treatment process (9) is carried out in two stages.The first stage is treated with activated carbon, which has a BAC effect, although its adsorption capacity for organic matter is slightly reduced. By performing the two-stage treatment with activated carbon that has a high ability to adsorb organic matter, the two main functions that were conventionally performed in a single activated carbon treatment tank can be performed separately. It is.

そして第1段の活性炭処理槽(9a)が破過ずろ状態に
なると、第2段の活性炭処理槽(9b)の活性炭はDA
C効果を有する状態となっているので、活性炭処理槽(
9b)を第1段の活性炭処理槽として使用し、待機中の
活性炭処理槽(9C)を第2段口の処理槽として1吏用
し、活性炭処理t’、!!(9a)中の活性炭は再生す
る。
When the first stage activated carbon treatment tank (9a) reaches the breakthrough state, the activated carbon in the second stage activated carbon treatment tank (9b) is DA
Since it has a C effect, the activated carbon treatment tank (
9b) is used as the first-stage activated carbon treatment tank, and the standby activated carbon treatment tank (9C) is used as the second-stage entrance treatment tank for activated carbon treatment t',! ! The activated carbon in (9a) is regenerated.

次にこの発明を成立させた実験について記述する。Next, the experiment that led to the realization of this invention will be described.

〔実験例〕[Experiment example]

〔実験1〕 実験1は、河川表流水を原水として用い、これに凝集沈
殿処理、オゾユ・処理、活性炭処理を行なう実験を16
1日間行なった。そして活性炭処理は、実験用の3個の
活性炭処理槽を直列に配置して通水するようにし、第1
段の処理槽(R1という)、第2段目の処理槽(rt 
2という)、第3段目の処理槽(rt ’yという)と
した。また操作条件として、空塔接触時間(以下EBC
Tという)はR,で4分、R2で8分、R3て12分と
した。
[Experiment 1] Experiment 1 consisted of 16 experiments in which river surface water was used as raw water and subjected to coagulation-sedimentation treatment, ozoyu treatment, and activated carbon treatment.
I did it for one day. For the activated carbon treatment, three experimental activated carbon treatment tanks were arranged in series and water was passed through them.
The second stage treatment tank (referred to as R1), the second stage treatment tank (rt
2), and the third stage treatment tank (referred to as rt'y). In addition, as an operating condition, the empty column contact time (hereinafter referred to as EBC)
(referred to as T) was 4 minutes at R, 8 minutes at R2, and 12 minutes at R3.

被処理水は原水を擬東沈殿プロセス(3)で処理した凝
集処理水(ltoという)を、R1−R3の順に直列に
通水した。またR1−R3の各々の出口の水質は水質指
標としてトリハロメタン(以下T HMFPという)生
成能を測定した。
The water to be treated was coagulated water (referred to as lto) obtained by treating raw water with the pseudo-to precipitation process (3), and was passed through the water in series in the order of R1 to R3. Furthermore, the ability to produce trihalomethane (hereinafter referred to as THMFP) was measured as a water quality index for the water quality at each outlet of R1 to R3.

第2図はその実験結果を示す線図であり、通水日数(横
軸)に対応する凝集処理水(RO)およびR,〜R3の
各々出口の水のT HM F P濃度の経日変化1幀)
を示したものである。
Figure 2 is a diagram showing the experimental results, showing daily changes in the THMFP concentration of the flocculated treated water (RO) and the outlet water of R, ~R3, corresponding to the number of days of water flow (horizontal axis). 1 square)
This is what is shown.

〔実験2〕 実験2は、被処理水として凝集処理水(RO)に約21
11g/lのオゾンを注入したオゾン処理水(SOとい
う)を使用し、活性炭処理装置および操作条件は実験1
と同様にして通水すると共に、水質も実験1と同様に測
定した。
[Experiment 2] In experiment 2, about 21
Ozonated water (referred to as SO) injected with 11 g/l of ozone was used, and the activated carbon treatment equipment and operating conditions were the same as in Experiment 1.
Water was passed in the same manner as in Experiment 1, and the water quality was also measured in the same manner as in Experiment 1.

第3図はその実験結果を示す線図であり、通水口数(横
軸)に対応するオゾン処理水(SO)およびR,〜R4
の各々出口の水のT HM F P濃度の経口変化(I
軸)を示した乙のである。
Figure 3 is a diagram showing the experimental results, and shows the ozonated water (SO) and R, ~R4 corresponding to the number of water ports (horizontal axis).
Oral change in THMFP concentration (I
This is the one that shows the axis).

以上実験1および2の結果(第2図、第3図)から凝集
沈殿水(rto) 、オゾン処理水(SO)のいずれの
場合も通水初期は有機物の活性炭への吸着性が良いが、
第1段のR4出口の被処理水(Rw−1という)は約8
0〜90日の通水で水質改善は約50%にまで低下して
おり、その時の活性炭1 kg当たりの処理水屋は概ね
53〜61m゛てあった。
From the results of Experiments 1 and 2 (Figures 2 and 3), the adsorption of organic matter to activated carbon is good in both cases of coagulated precipitated water (RTO) and ozonated water (SO) at the initial stage of water flow.
The water to be treated at the R4 outlet of the first stage (referred to as Rw-1) is approximately 8
After water flow for 0 to 90 days, the water quality improvement decreased to about 50%, and at that time, the amount of water treated per 1 kg of activated carbon was approximately 53 to 61 m.

〔実験3〕 実験3は活性炭処理槽(R+)、(R2)、(R3)へ
の通水による活性炭のBAC効果の生成を調べるために
行なった。実験はオゾン処理水(SO)を実験1と同様
の条件で行ない、第1段〜第3段の活性炭処理槽(R1
)、(rt2)、 (R3)の各々出口の被処理水(R
W−1)、(RW−2)、(RW−3)の酸素飽和百分
率を測定した。
[Experiment 3] Experiment 3 was conducted to investigate the generation of the BAC effect of activated carbon by passing water into the activated carbon treatment tanks (R+), (R2), and (R3). The experiment was conducted using ozonated water (SO) under the same conditions as Experiment 1, and the activated carbon treatment tanks (R1
), (rt2), and (R3), the treated water (R
The oxygen saturation percentages of W-1), (RW-2), and (RW-3) were measured.

第4図(よその実験結果を示す線図で、通水日数(横軸
)に対応するオゾン処理水(SO)および各活性炭処理
槽(rtl)、 (R2)、 (R3)出口の被処理水
(RW−4L (rt W−2)、 (Rw−3)の酸
素飽和百分率(ti!軸)の変化を示しtコものである
Figure 4 (a diagram showing the results of other experiments, showing the ozone-treated water (SO) and the treated water at the outlets of each activated carbon treatment tank (RTL), (R2), and (R3) corresponding to the number of days of water flow (horizontal axis) It shows the change in oxygen saturation percentage (ti! axis) of water (RW-4L (rt W-2), (Rw-3)).

この実験結果から、オゾン処理水(SO)はオゾン曝気
されているため、酸素飽和百分率が概ね100%を超え
ているが、第1段から第3段の活性炭処理槽(R11,
(R2)、(fl、)へと順次通水するにつれて各出口
の被処理水(It W −1)、 (rt W−2)。
From the results of this experiment, the oxygen saturation percentage of the ozone-treated water (SO) is generally over 100% due to ozone aeration, but the activated carbon treatment tanks (R11,
(R2), (fl,) as the water to be treated at each outlet (It W -1), (rt W-2).

(1’t w−*)の酸素飽和百分率は減小するのが認
められろ。
It is observed that the oxygen saturation percentage of (1't w-*) decreases.

つまり活性炭には溶存酸素を吸着する能力がほと7しど
ないため、溶存酸素の減小は、活性炭上の1敵生物の呼
吸および有機物やアンモニア性窒素などの酸化に1史オ
)れなものである。したがって、活性炭処理槽(111
1,(It2)、 (R3)で処理した被処理水(Rw
−+)、(RW−21,(RW−J)の溶存酸素の減小
率が明らかになれば、減小率が大きくなった時点から活
性炭にBAC効果が生成したことになる。第4図の結果
からは、3週間程度通水しないと活性炭にBΔC効果が
顕著に現れない。
In other words, since activated carbon has almost no ability to adsorb dissolved oxygen, the reduction in dissolved oxygen is due to the respiration of enemy organisms on activated carbon and the oxidation of organic matter and ammonia nitrogen. It is something. Therefore, activated carbon treatment tank (111
1, (It2), (R3) treated water (Rw
-+), (RW-21, (RW-J)), if the reduction rate of dissolved oxygen becomes clear, the BAC effect will be generated in the activated carbon from the time when the reduction rate becomes large. Fig. 4 From the results, the BΔC effect does not become noticeable on activated carbon unless water is passed through it for about 3 weeks.

〔実験4〕 上記実験1〜3を行なった期間の河川表流水の原水には
アンモニア性窒素濃度が高い水準になかったので、別の
時期のアンモニア性窒素濃度の高い原水から、活性炭処
理槽(R1)、 (R2)、 (R3)による硝化の能
力を測定するため実験を行った。
[Experiment 4] Since the raw water of the river surface water during the period when the above experiments 1 to 3 were conducted did not have a high level of ammonia nitrogen concentration, raw water with high ammonia nitrogen concentration from another period was used in an activated carbon treatment tank ( An experiment was conducted to measure the nitrification ability of R1), (R2), and (R3).

実験はアンモニア性窒素濃度の高い原水をオゾン処理(
2)、凝集沈殿処理(3)、砂ろ過(5)の順に各プロ
セスで処理した後、通水量を約20 rn’ /活性炭
1 kgの条件で活性炭処理槽(R1)、 (Ftt)
、 (rt−Jlで処理した。
The experiment involved ozone treatment of raw water with a high concentration of ammonia nitrogen (
2), coagulation-sedimentation treatment (3), and sand filtration (5) in the order of each process, the activated carbon treatment tank (R1), (Ftt) was heated at a water flow rate of approximately 20 rn'/1 kg of activated carbon.
, (treated with rt-Jl.

第5図はその実験結果を示す線図であり、オゾン処理プ
ロセス(2)でオゾン注入率を種々変化させtこ場合の
原水、オゾン処理プロセス(2)で処理したオゾン処理
水、凝集沈殿プロセス(3)で処理した凝沈水、砂ろ過
プロセス(5)で処理したろ過水および活性炭処理槽(
R1)、 (rts)、 (It3)で処1重シた被処
理水(横軸)におけろアンモニア性窒素濃度の変化(蒔
iP+I+ lを示したものである。
Figure 5 is a diagram showing the experimental results, in which the ozone injection rate was variously changed in the ozone treatment process (2), the raw water in this case, the ozonated water treated in the ozone treatment process (2), and the coagulation and precipitation process. The flocculated water treated in (3), the filtered water treated in sand filtration process (5) and the activated carbon treatment tank (
R1), (rts), (It3) shows the change in ammonia nitrogen concentration (iP+I+l) in the treated water (horizontal axis).

この実験結果から、砂ろ過プロセス(5)で処理したろ
過水と、活性炭処理槽(R11,(R2)、 (rt3
)て処理した被処理水との間には、アンモニア性窒素が
0 、72mgN/ e減小していることがわかった。
From the results of this experiment, the filtered water treated with the sand filtration process (5) and the activated carbon treatment tanks (R11, (R2), (rt3)
) It was found that the ammonia nitrogen content was reduced by 0.72 mgN/e compared to the treated water treated with the same method.

そこでろ過水と活性炭処理水との間の硝酸性窒素の増加
を測定したところ、0.65mgN/ 1であり、実験
誤差の範囲でアンモニア性窒素は硝化されて、硝酸態窒
素になっていることが明らかとなった。このことから活
性炭処理槽(R1)。
Therefore, when we measured the increase in nitrate nitrogen between the filtered water and the activated carbon-treated water, it was 0.65 mgN/1, which indicates that, within experimental error, ammonia nitrogen was nitrified and turned into nitrate nitrogen. became clear. From this, activated carbon treatment tank (R1).

(R2)、(R’3)におけろアンモニア性窒素の除去
は、l3AC効果による硝化であることは明らかである
It is clear that the removal of ammonia nitrogen in (R2) and (R'3) is nitrification due to the 13AC effect.

まlこ実験1〜4において、通水開始後151日口およ
び158日目に生物学的酸素要求量(BOD)を測定し
たところ、凝集沈殿水(rto)およびオゾン処理水(
SO)ではBODが約1■/lあったが、活性炭処理水
(RW−2)ではOmg/I!となっており、この時の
活性炭1kg当たりの通水量は約54〜57m゛てあっ
た。すなわちこの積算通水量の時点ては、EI3CT8
分てBAC効果が得られていることを示している。μ上
の実験結果をまとめろと実験1および2の結果(第2図
、第3図)から活性炭の有槻物吸若能力(よ通水1約5
0〜60 [rn’/kg−活性炭〕の時点で低下し、
実験3の結果(第4図)から活性炭処理槽でのDAC効
果は、新しい活性炭で通水開始後約3週間、通水1約1
5(rri’/kg−活性炭〕の時点で顕著となり、通
水1約20〔m”/ kg−活性炭〕の時点では第5図
に示すようにオゾン注入率の大小にかかわらず、アンモ
ニア性窒素の除去が活性炭処理槽で行なわれる。
In Maruko Experiments 1 to 4, biological oxygen demand (BOD) was measured on the 151st day and 158th day after the start of water flow.
SO) had a BOD of about 1 ■/l, but activated carbon treated water (RW-2) had a BOD of Omg/I! The water flow rate per kg of activated carbon at this time was about 54 to 57 m. In other words, at this cumulative water flow rate, EI3CT8
This shows that the BAC effect is obtained. Summarizing the experimental results on μ
It decreases at the point of 0 to 60 [rn'/kg-activated carbon],
From the results of Experiment 3 (Figure 4), the DAC effect in the activated carbon treatment tank was approximately 3 weeks after water flow started with new activated carbon, and water flow was approximately 1.
5 (rri'/kg-activated carbon), and at the time of water flow of about 20 [m''/kg-activated carbon], as shown in Figure 5, ammonia nitrogen is present regardless of the ozone injection rate. is removed in an activated carbon treatment tank.

したがって、第1図の第1段活性炭処理槽(9a)は、
通水1約20[rn’/kg−活性炭1以上の状態のも
のにし、第2段の活性炭処理槽(9b)は通水1約50
(rn’/kg−活性炭〕以下の状態にあるのが好適で
ある。
Therefore, the first stage activated carbon treatment tank (9a) in FIG.
The water flow rate should be approximately 20 [rn'/kg - activated carbon 1 or more], and the second stage activated carbon treatment tank (9b) should have a water flow rate of approximately 50 [rn'/kg].
(rn'/kg-activated carbon) It is preferable to be in the following state.

例えば、この条件で活性炭処理槽(9a) 、 (9b
)の順に通水されており、第1段の活性炭処理槽(9λ
)が破過する状態となって新しい活性炭に交換した場合
、砂ろ過プロセス(5)でろ過されたろ過水は通水を切
替えて、先ず活性炭処理槽(9b)に通して第1段の活
性炭処理槽として使用し、次いで新しい活性炭を充填し
て待機中の活性炭処理槽(9C)を第2段の活性炭処理
槽として使用し、その間に活性炭処理槽(9a)の活性
炭を新炭または再生炭に交換する。このようにして活性
炭処理槽(9al 、 (9bl 。
For example, under these conditions, activated carbon treatment tanks (9a) and (9b
), and the first stage activated carbon treatment tank (9λ
) has broken through and is replaced with new activated carbon, the filtrate filtered in the sand filtration process (5) switches the water flow and first passes through the activated carbon treatment tank (9b) to be treated with activated carbon in the first stage. The activated carbon treatment tank (9C), which is used as a treatment tank and then filled with new activated carbon and is on standby, is used as the second stage activated carbon treatment tank, and in the meantime, the activated carbon in the activated carbon treatment tank (9a) is used as new carbon or recycled carbon. exchange to. In this way, activated carbon treatment tanks (9al, (9bl).

(9e)のうち2つを順次第1段、第2段の活性炭処理
槽(9a) 、 (9b) 、 (9e)として切降え
て使用し、切t÷1は上記第1段、第2段の活性炭処理
槽(!la) 。
Two of (9e) are cut down and used as activated carbon treatment tanks (9a), (9b), and (9e) in the first stage and second stage, respectively. Stage activated carbon treatment tank (!la).

(9b) 、 (9c)に要求されろ通水量の条件に適
合させろ、1:うにすればよい。
(9b) and (9c) should meet the water flow rate conditions required for 1:

なお、活性炭処理槽(9a) 、 (9h) 、 (9
c)を切替えろ場合、第2段の活性炭処理槽(9a) 
、 (9b) 、 (9c)の通水量を基準にとり、通
水量が50〔r+1′/kg−活性炭〕となるとそれに
第1段活性炭処理槽(9a)。
In addition, activated carbon treatment tanks (9a), (9h), (9
If c) is changed, the second stage activated carbon treatment tank (9a)
, (9b) and (9c), and when the water flow rate reaches 50 [r+1'/kg-activated carbon], the first stage activated carbon treatment tank (9a) is added.

(9h) 、 (9clとして使用し、新しく第2段の
活性炭処理槽(9a) 、 (9b) 、 (9c)の
通水量が次の50〜100[m” / kg−活性炭〕
になると、それを第1段の活性炭処理槽(Qa) 、 
(9b) 、 (9c)として使用するようにすればよ
い。
(9h), (Used as 9cl, the flow rate of the new second-stage activated carbon treatment tanks (9a), (9b), and (9c) is as follows: 50 to 100 [m”/kg-activated carbon]
Then, it is transferred to the first stage activated carbon treatment tank (Qa),
(9b) and (9c) may be used.

また上記実験の結果から、第1段および第2段の活性炭
処理槽(9a) 、 (9b) 、 (9c)の空塔接
触時間は約4〜8分にするのが好適である。さらに、第
1段の活性炭処理槽(9a) 、 (9b) 、 (9
c)の操作条件は、通水線速度約8〜13 am / 
lll1n、空塔接触時間約5〜8 win1逆洗の頻
度は1日1回程度が好適である。さらにまた活性炭の粒
経は0.5〜0.7mm程度にするのが吸竹または適切
な被処理水の流速を確保するのに好ましい。
Furthermore, from the results of the above experiments, it is preferable that the superficial contact time of the first and second stage activated carbon treatment tanks (9a), (9b), and (9c) be approximately 4 to 8 minutes. Furthermore, the first stage activated carbon treatment tanks (9a), (9b), (9
The operating conditions for c) are water flow linear velocity of approximately 8-13 am/
lll1n, superficial column contact time about 5 to 8 win1 It is preferable that the frequency of backwashing is about once a day. Furthermore, it is preferable that the grain size of the activated carbon is approximately 0.5 to 0.7 mm in order to ensure a suitable flow rate for sucking bamboo or water to be treated.

なお、上記第1図に示す実施例では前段に砂ろ過プロセ
ス(5)がある場合を示したが、砂ろ過プ11セス(5
)がない時には、第1段および第2段の活性炭処理槽(
9al 、 (9b)によりろ過機能をも発揮させて懸
濁物の除去を行なうことができる。しかし、従来の高度
処1里プロセスで(よ、活性炭処理槽が単一であるので
、この槽全体を切繁に逆洗する必要があるので実際上困
難である。また上記実験1〜3の結果では、懸濁物は第
1段、第2段の活性炭処理槽(rt+)、(rtd、(
R:l)のうち、その大部分が第1段の活性炭処理槽(
Rl)で捕捉されろことが明らかになった。これにより
、第づて示ず水処理ゴV7セスて水を処理する場合、第
1段の活性炭処理槽(9a)にろ過装置としての機能を
もたせろt:め、第2段の活性炭処理槽(9b)は懸濁
物を洗い流す逆洗は必要がなくなる。
In addition, in the embodiment shown in FIG.
) is not available, the first and second stage activated carbon treatment tanks (
9al, (9b) can also exhibit a filtration function to remove suspended matter. However, in the conventional 1-ri process, it is difficult in practice to use a single activated carbon treatment tank, which requires frequent backwashing of the entire tank. The results show that the suspended matter is present in the first stage, second stage activated carbon treatment tank (rt+), (rtd, (
Of R:l), most of it is in the first stage activated carbon treatment tank (
It became clear that it should be captured by Rl). As a result, when treating water without using water treatment, the first stage activated carbon treatment tank (9a) should have a function as a filtration device. (9b) eliminates the need for backwashing to wash away suspended matter.

そこで、第2の発明として前段に砂ろ過プロセス(5)
がない水処理方法を完成した。第2の発明は活性炭処理
を第1段と第2段に分けて行なう点については第1の発
明と同様であるが、砂ろ過プロセス(5)を設けず、原
水をろ過しないで活性炭処理槽プロセス(9)で処理し
て、第1段の活性炭処理槽(9a)で主としてろ過する
ようにしたものである。
Therefore, as the second invention, we introduced a sand filtration process (5) in the first stage.
A new water treatment method has been developed. The second invention is similar to the first invention in that the activated carbon treatment is performed separately in the first stage and the second stage, but the sand filtration process (5) is not provided and the raw water is not filtered in the activated carbon treatment tank. It is treated in process (9) and mainly filtered in the first stage activated carbon treatment tank (9a).

なお、第1段および第2段の活性炭処理槽(9a) 。In addition, the first and second stage activated carbon treatment tanks (9a).

(9b)は、同一の水処理量について従来高度処理プロ
セスの単一の活性炭処理槽の半分の容量でよい。
(9b) requires half the capacity of a single activated carbon treatment tank in a conventional advanced treatment process for the same amount of water treated.

17たがって、第1段の活性炭処理槽(9a)の粒状活
性炭がろ過により目詰まりして懸濁物を逆洗する場合、
その逆洗に必要な水量および時間は著しく低減ずろ。
17 Therefore, when the granular activated carbon in the first stage activated carbon treatment tank (9a) becomes clogged due to filtration and the suspended matter is backwashed,
The amount of water and time required for backwashing will be significantly reduced.

なお、活性炭処理槽(9a) 、 (9bl 、 (9
c)および操作条件等は第1の発明と同様である。
In addition, activated carbon treatment tank (9a), (9bl, (9
c), operating conditions, etc. are the same as in the first invention.

上記実施例で(よ浄水場の活性炭処理について述べたが
、活性炭を用いる下水処理場の高度処理などにも利用で
きることはいうまでもない。
In the above embodiment, activated carbon treatment at a water purification plant was described, but it goes without saying that activated carbon can also be used for advanced treatment at a sewage treatment plant.

〔発明の効果〕〔Effect of the invention〕

第1の発明は、以上説明したように水処理プロセスの活
性炭処理において、第1段にl3AC効里のある積算通
水量の多い活性炭処理槽を使用し、第2段に有機物吸着
能力の大きい積算通水量の少ない活性炭処理槽を使用し
て、第1段、第2段の順に通水して活性炭処理するよう
にしたので、アンモニア性窒素の硝化と有機物の除去が
常時品効率に行なわれ柩と共にその除去率を平滑化させ
、かつアンモニア性窒素の硝化が常時高効率に行なわれ
る結果、活性炭処理プロセス以後のプロヒスで塩素を注
入する場合、省薬品とT HM生成量を低減化する効果
がある。
As explained above, in the activated carbon treatment in the water treatment process, the first invention uses an activated carbon treatment tank with a high cumulative water flow rate with 13AC efficiency in the first stage, and an activated carbon treatment tank with a large cumulative flow rate of organic matter adsorption capacity in the second stage. By using an activated carbon treatment tank with a low flow rate, water is passed through the first stage and then the second stage to perform the activated carbon treatment, so that nitrification of ammonia nitrogen and removal of organic matter are always carried out efficiently. At the same time, the removal rate is smoothed out, and as a result of the nitrification of ammonia nitrogen being carried out at high efficiency at all times, when chlorine is injected with pro-hys after the activated carbon treatment process, it has the effect of saving chemicals and reducing the amount of THM produced. be.

また第2の発明においては、水処理プロセスにおいて活
性炭処理を第1の発明と同様とし、活性炭処理より前の
工程からろ過プロセスを省略し、第1段の活性炭処理槽
にろ過による懸濁物の負荷を偏在させるようにしたので
、沈水の水量を大幅に減少させろと共に水処理プロセス
を前単にすることができろ効果がある。
In addition, in the second invention, the activated carbon treatment in the water treatment process is performed in the same manner as in the first invention, the filtration process is omitted from the step before the activated carbon treatment, and the suspended matter caused by filtration is placed in the first stage activated carbon treatment tank. Since the load is distributed unevenly, the amount of submerged water can be significantly reduced and the water treatment process can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
〜第5図は実験結果を示す線図、第6図は従来の高度処
理方法を示すブロック図である。 図において、(1)は導水施設、+21.(4)はオ・
j:、、処理プロセス、(3)ば擬集沈殴ゴ11セス、
(5)は砂ろ過プロセス、(6)は活性炭処理プロセス
、(7)(よ後塩素処理プロセス、(8)は送水施設、
(9)は活性炭処理プロセス、(9a)は第1段の活性
炭処理槽、(9b)は2段の活性炭処理槽、(9c)I
ま待機中の活性炭処理槽を示す。 尚、図中同一符号は同−圭たは相当部分を示す。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIGS. 2 to 5 are diagrams showing experimental results, and FIG. 6 is a block diagram showing a conventional advanced processing method. In the figure, (1) is the water conveyance facility, +21. (4) is o.
j:, processing process, (3) 11th process,
(5) is a sand filtration process, (6) is an activated carbon treatment process, (7) is a post-chlorination process, (8) is a water supply facility,
(9) is the activated carbon treatment process, (9a) is the first stage activated carbon treatment tank, (9b) is the second stage activated carbon treatment tank, (9c) I
This shows an activated carbon treatment tank on standby. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (8)

【特許請求の範囲】[Claims] (1)水処理プロセスにおいて、前の工程で少なくとも
ろ過プロセスによりろ過した被処理水を先ず第1段の積
算通水量の多い活性炭処理槽に通水することにより、上
記活性炭処理槽の活性炭の生物活性炭効果によって主と
して上記被処理水のアンモニア性窒素の硝化を行ない、
次いで第2段の積算通水量の少ない活性炭処理槽を通し
て、この活性炭処理槽の吸着容量の大きい活性炭により
主として有機物の吸着を行なうことを特徴とする水処理
方法。
(1) In the water treatment process, by first passing the water to be treated that has been filtered by at least the filtration process in the previous step to the activated carbon treatment tank with a large cumulative water flow rate in the first stage, the activated carbon in the activated carbon treatment tank The activated carbon effect mainly nitrates the ammonia nitrogen in the water to be treated,
Next, the water treatment method is characterized in that organic matter is mainly adsorbed by activated carbon having a large adsorption capacity in the activated carbon treatment tank through a second stage activated carbon treatment tank with a small cumulative flow rate.
(2)上記第1段の活性炭処理槽の活性炭が破過するよ
うになると被処理水の導入流路を変え、上記第2段の活
性炭処理槽に先ず通水し、次に新炭または再生炭を充填
した活性炭処理槽に通水することにより、2段の活性炭
処理による被処理水のアンモニア性窒素の硝化と有機物
除去を連続して行なうことを特徴とする特許請求の範囲
第1項記載の水処理方法。
(2) When the activated carbon in the first-stage activated carbon treatment tank breaks through, the flow path for introducing the water to be treated is changed, and the water is first passed through the second-stage activated carbon treatment tank, and then fresh or recycled Claim 1, characterized in that by passing water through an activated carbon treatment tank filled with charcoal, the nitrification of ammonia nitrogen and the removal of organic matter in the water to be treated are continuously performed by two-stage activated carbon treatment. water treatment methods.
(3)上記第1段および第2段のの活性炭処理槽の空塔
接触時間を4〜8分にすることを特徴とする特許請求の
範囲第1項記載の水処理方法。
(3) The water treatment method according to claim 1, characterized in that the superficial contact time of the first and second stage activated carbon treatment tanks is set to 4 to 8 minutes.
(4)上記第1段および第2段の活性炭処理槽に通水す
る被処理水をオゾン処理により酸素飽和百分率で100
%程度にすることを特徴とする特許請求の範囲第1項記
載の水処理方法。
(4) The water to be treated that passes through the first and second stage activated carbon treatment tanks is treated with ozone to reduce the oxygen saturation percentage to 100%.
% of the water treatment method according to claim 1.
(5)水処理プロセスにおいて、前の工程にろ過プロセ
スを設けず、ろ過していない被処理水を先ず第1段の積
算通水量の多い活性炭処理槽に通水することにより、上
記活性炭処理槽の活性炭の生物活性炭効果によって、上
記被処理水のアンモニア性窒素の硝化を行なうと共に上
記被処理水のろ過を行ない、次いで第2段の積算通水処
理量の少ない活性炭処理槽を通して、この活性炭処理槽
の吸着容量の大きい活性炭により主として有機物の吸着
を行なうことを特徴とする水処理方法。
(5) In the water treatment process, without providing a filtration process in the previous step, by first passing unfiltered water to be treated to the first stage activated carbon treatment tank with a large cumulative water flow rate, the activated carbon treatment tank Due to the biological activated carbon effect of the activated carbon, the ammonia nitrogen in the water to be treated is nitrified and the water to be treated is filtered, and then the activated carbon treatment is carried out through the second stage activated carbon treatment tank which has a small cumulative water flow throughput. A water treatment method characterized by mainly adsorbing organic matter using activated carbon having a large adsorption capacity in a tank.
(6)上記第1段の活性炭処理槽を活性炭1kg当たり
積算通水量50〜100^3とし、上記第2段の活性炭
処理槽を活性炭1kg当たり積算通水量50m^3以下
のものを使用することを特徴とする特許請求の範囲第1
項または第5項記載の水処理方法。
(6) The first stage activated carbon treatment tank has a cumulative water flow rate of 50 to 100^3 per 1 kg of activated carbon, and the second stage activated carbon treatment tank has a cumulative water flow rate of 50 m^3 or less per 1 kg of activated carbon. Claim 1 characterized by
The water treatment method according to item 5 or item 5.
(7)上記第1段および第2段の活性炭処理槽に平均粒
径0.5〜0.7mmの活性炭を充填して使用すること
を特徴とする特許請求の範囲第1項または第5項記載の
水処理方法。
(7) The first and second stage activated carbon treatment tanks are filled with activated carbon having an average particle size of 0.5 to 0.7 mm. Water treatment method described.
(8)上記第1段の活性炭処理槽の操作条件を、通水線
速度を8〜13cm/分、空塔接触時間を5〜8分およ
び逆洗の頻度を1日1回とすることを特徴とする特許請
求の範囲第1項または第5項記載の水処理方法。
(8) The operating conditions for the first stage activated carbon treatment tank are as follows: water flow linear velocity is 8 to 13 cm/min, superficial column contact time is 5 to 8 minutes, and backwashing frequency is once a day. A water treatment method according to claim 1 or 5, characterized in that:
JP61013664A 1986-01-27 1986-01-27 Treatment of water Pending JPS62171797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61013664A JPS62171797A (en) 1986-01-27 1986-01-27 Treatment of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61013664A JPS62171797A (en) 1986-01-27 1986-01-27 Treatment of water

Publications (1)

Publication Number Publication Date
JPS62171797A true JPS62171797A (en) 1987-07-28

Family

ID=11839466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61013664A Pending JPS62171797A (en) 1986-01-27 1986-01-27 Treatment of water

Country Status (1)

Country Link
JP (1) JPS62171797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203996A (en) * 1989-01-31 1990-08-13 Dick Deguremon Kk Method for treating city water and the like

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270563A (en) * 1975-12-08 1977-06-11 Japan Gasoline Method of treating waste water
JPS54136748A (en) * 1978-04-17 1979-10-24 Hitachi Ltd Water disposal process by means of powdery absorbent
JPS5549558A (en) * 1978-10-06 1980-04-10 Hitachi Ltd Altitude compensator for carburetor
JPS6087810A (en) * 1983-10-20 1985-05-17 Kirin Brewery Co Ltd Adsorption apparatus using active carbon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270563A (en) * 1975-12-08 1977-06-11 Japan Gasoline Method of treating waste water
JPS54136748A (en) * 1978-04-17 1979-10-24 Hitachi Ltd Water disposal process by means of powdery absorbent
JPS5549558A (en) * 1978-10-06 1980-04-10 Hitachi Ltd Altitude compensator for carburetor
JPS6087810A (en) * 1983-10-20 1985-05-17 Kirin Brewery Co Ltd Adsorption apparatus using active carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203996A (en) * 1989-01-31 1990-08-13 Dick Deguremon Kk Method for treating city water and the like

Similar Documents

Publication Publication Date Title
US5259972A (en) Apparatus and method for purifying water
US3932278A (en) Filter cleaning method
US3779909A (en) Method of and apparatus for the purification of water containing organic contaminants
WO1995029128A1 (en) Water purification system and method
JP3491328B2 (en) Ultrapure water production equipment
JPH07124593A (en) Highly advanced water purifying treatment method
US5407572A (en) Systematic tertiary effluent polishing
JPH10192851A (en) Water purifying treatment apparatus
JPH03249990A (en) High-degree treatment of service water
JPH07232197A (en) Advanced treatment of water and its device
JPS62171797A (en) Treatment of water
JPH02164500A (en) Water purifying treatment apparatus
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JPH119908A (en) Operation method of sand filtration/ozonation apparatus
JPH0199689A (en) Method for removing organic matter in water
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
Constantine Advanced water treatment for color and organics removal
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
JPH0141115B2 (en)
JPH05293494A (en) Apparatus for producing pure water
JPH02203996A (en) Method for treating city water and the like
JPH10309576A (en) Water treatment by ozone resistant membrane
JP3491794B2 (en) Advanced nitrogen removal method and apparatus for sewage
KR0139853B1 (en) Ultra water cleaning apparatus containing multi-stage biological activated carbon contactor and air suction injector
JPS5864190A (en) Treatment of malodorous gas and organic waste water