JPS62171504A - Fluid control device - Google Patents

Fluid control device

Info

Publication number
JPS62171504A
JPS62171504A JP1171086A JP1171086A JPS62171504A JP S62171504 A JPS62171504 A JP S62171504A JP 1171086 A JP1171086 A JP 1171086A JP 1171086 A JP1171086 A JP 1171086A JP S62171504 A JPS62171504 A JP S62171504A
Authority
JP
Japan
Prior art keywords
valve
oil chamber
pilot
pressure
diameter hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1171086A
Other languages
Japanese (ja)
Other versions
JPH0556402B2 (en
Inventor
Masaru Sugiyama
優 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP1171086A priority Critical patent/JPS62171504A/en
Publication of JPS62171504A publication Critical patent/JPS62171504A/en
Publication of JPH0556402B2 publication Critical patent/JPH0556402B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Lift Valve (AREA)
  • Safety Valves (AREA)

Abstract

PURPOSE:To perform correct flow regulation by constituting a fluid control device with a main valve and first, second and third pilot valves. CONSTITUTION:A fluid control device is constituted with a main valve 40 consisting of a poppet valve part 42a and a piston part 42c, a first pilot valve 50 consisting of a pressure reducing valve 51, a throttle 52 and a current control relief valve 53, a second pilot valve 60 consisting of first and second switching valves 61, 62 and a third pilot valve 70 consisting of a relief valve 71 and a switching valve 72. Then unless the third pilot valve 70 acts, pressure in the flow path acting on the poppet valve part 42a and the piston part 42c is offset. Therefore, position of the valve body of the main valve 40 can be determined by determining the value of current to be supplied to the first pilot valve 50, and correct flow regulation can be made.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体制御装置に係り、特に、流量制御機能と保
圧機能とIJ IJ−フ機能を備えた流体制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fluid control device, and particularly to a fluid control device having a flow rate control function, a pressure holding function, and an IJ-F function.

〔従来技術〕[Prior art]

この種の流体制御装置としては、従来、第6図にて示し
たものがあり、同図に示した流体制御装置は、主弁10
とパイロット弁20とリリーフ弁30を主体としている
。主弁10は、大径孔11aと小径孔11bを連設して
連設段部に弁座11Cを形成してなり同弁座11Cを間
にして小径孔側を図示しないアクチュエータに接続され
る流入路lidとしかつ大径孔側をリザーバに接続され
る流出路lieとしてなる弁本体11と、同弁本体11
の大径孔11a内にOリング、バックアップリング等の
シール部材12を介して摺動自在に嵌挿されて背圧室R
Oを形成しかつ弁座11cに着座したり離脱して流入路
lidと流出路lie間を連通遮断するポペット弁体1
3と、背圧室RO内に組込まれてポペット弁体13を弁
座lICに向けて付勢するばね14と、弁本体11に螺
進退可能に組付けられてポペット弁体13の弁座11c
からのリフト量を調整可能に規定するストッパねじ15
によって構成されている。一方、バイロフト弁20は、
背圧室ROへのパイロット圧の給排を行う電磁切換弁で
あって、図示の非作動状態にてパイロット圧を背圧室R
Oに供給し、また作動状態にて背圧室Roからバイロフ
ト圧を排出する。また、リリーフ弁30は、主弁10に
対して並列的に設けられていて、流入路lid内油圧が
所定値に達したとき同油圧をリリーフする。
A conventional fluid control device of this type is shown in FIG. 6, and the fluid control device shown in FIG.
The main components are a pilot valve 20 and a relief valve 30. The main valve 10 has a large-diameter hole 11a and a small-diameter hole 11b connected to each other, and a valve seat 11C is formed at the step of the connection, and the small-diameter hole side is connected to an actuator (not shown) with the valve seat 11C in between. A valve body 11 that serves as an inflow passage lid and an outflow passage lie whose large diameter hole side is connected to a reservoir;
is slidably inserted into the large diameter hole 11a of the back pressure chamber R via a sealing member 12 such as an O ring or a backup ring.
A poppet valve body 1 that forms an O and seats on or leaves the valve seat 11c to interrupt communication between the inflow path lid and the outflow path lie.
3, a spring 14 that is incorporated in the back pressure chamber RO and urges the poppet valve element 13 toward the valve seat IC, and a valve seat 11c of the poppet valve element 13 that is attached to the valve body 11 so as to be able to be screwed back and forth.
Stopper screw 15 that adjustably defines the amount of lift from
It is made up of. On the other hand, the virofft valve 20 is
This is an electromagnetic switching valve that supplies and discharges pilot pressure to the back pressure chamber RO, and in the non-operating state shown in the figure, the pilot pressure is supplied to and discharged from the back pressure chamber R.
2, and discharges the viroft pressure from the back pressure chamber Ro in the operating state. Further, the relief valve 30 is provided in parallel with the main valve 10, and relieves the oil pressure in the inflow passage lid when the oil pressure reaches a predetermined value.

上記構成により、第6図に示した装置においては、パイ
ロット弁20が非作動状態にあってパイロット圧が背圧
室ROに供給されておれば、ポペット弁体13がパイロ
ット圧及びばね14の力により弁座11cに着座させら
れるため、流入路11dと流出路lie間の連通は遮断
され、流入路lid内油圧は保持される(保圧機能)。
With the above configuration, in the device shown in FIG. 6, if the pilot valve 20 is in an inoperative state and pilot pressure is supplied to the back pressure chamber RO, the poppet valve body 13 is activated by the pilot pressure and the force of the spring 14. Since the valve seat 11c is seated on the valve seat 11c, communication between the inflow path 11d and the outflow path lie is cut off, and the hydraulic pressure in the inflow path lid is maintained (pressure holding function).

この状態において、流入路lid内油圧が所定値に達す
ると、リリーフ弁30が作動して流入路lid内の圧油
がリザーバに向けて流れ、流入路lid内油圧の過度な
上昇が抑制されてアクチュエータ等が保護される(リリ
ーフ機能)。
In this state, when the oil pressure in the inflow path lid reaches a predetermined value, the relief valve 30 is activated and the pressure oil in the inflow path lid flows toward the reservoir, suppressing an excessive increase in the oil pressure in the inflow path lid. Actuators etc. are protected (relief function).

また、パイロット弁20が作動されてパイロット圧が背
圧室ROから排出されると、ポペット弁体13が流入路
lidから流出路11eに流れようとする作動油の圧力
によりストッパねじ15に当接するまで押し開かれるた
め、流入路lidから流出路lieにはストッパねじ1
5によって設定された流量の作動油が流れる(流量制御
機能)。
Further, when the pilot valve 20 is operated and the pilot pressure is discharged from the back pressure chamber RO, the poppet valve body 13 comes into contact with the stopper screw 15 due to the pressure of the hydraulic oil that is about to flow from the inflow path lid to the outflow path 11e. The stopper screw 1 is inserted from the inflow path lid to the outflow path lie.
Hydraulic oil flows at a flow rate set by 5 (flow rate control function).

なお、パイロット弁20と主弁10間には流!i量調整
弁1.32が介装されているため、ポペット弁体13の
開閉速度が調整される。
Note that there is no flow between the pilot valve 20 and the main valve 10! Since the i amount adjusting valve 1.32 is interposed, the opening/closing speed of the poppet valve body 13 is adjusted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記した従来の流体制御装置においては、流
量を調整する場合、受圧面積が大きくて大きな力を受け
ているポペット弁体13を直接ストッパねじ15により
動かさなければならず、その操作に大きな力が必要であ
る。また、ストッパねじ15により主弁10のポペット
弁体13を動かして流量を調整するものであってポペッ
ト弁体13のわずかな移動によって流量が大きく変るた
め、ストッパねじ15のピンチを如何に小さくしても流
量の設定(微凋整)が難しい。
By the way, in the conventional fluid control device described above, when adjusting the flow rate, the poppet valve body 13, which has a large pressure receiving area and receives a large force, must be directly moved by the stopper screw 15, and the operation requires a large force. is necessary. Furthermore, the flow rate is adjusted by moving the poppet valve body 13 of the main valve 10 using the stopper screw 15, and since the flow rate changes greatly with a slight movement of the poppet valve body 13, it is important to minimize the pinch of the stopper screw 15. However, it is difficult to set the flow rate (fine adjustment).

また、上記した従来の流体制御装置においては、両流量
調整弁31.32によりポペット弁体13の開閉速度を
調整し得るものの、ポペット弁体13はその両側に作用
する押圧力の差によって動(ものであるため、背圧室R
Oに供給されるパイロット圧の変動や流入路lid及び
流出路lie内圧力の変動によってポペット弁体13の
開閉速度が変動してしまう。
In addition, in the above-described conventional fluid control device, although the opening and closing speed of the poppet valve body 13 can be adjusted by both the flow rate adjustment valves 31 and 32, the poppet valve body 13 moves due to the difference in the pressing force acting on both sides thereof. Since it is a back pressure chamber R
The opening/closing speed of the poppet valve body 13 fluctuates due to fluctuations in the pilot pressure supplied to O and fluctuations in the internal pressures of the inflow passage lid and the outflow passage lie.

更に、上記した従来の流体制御装置においては、その構
成部材である主弁10とリリーフ弁30が大流量を制御
するものであって大型であるため、当該装置が大型とな
り、取付スペースやコスト面で問題がある。
Furthermore, in the conventional fluid control device described above, the main valve 10 and the relief valve 30, which are its constituent members, control a large flow rate and are large. There is a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した問題を解決するために、当該流体制御
装置を、 大径孔の両端に同一径の小径孔をそれぞれ連設してなり
一方の連設段部に弁座を形成してなる弁本体と、前記大
径孔内に嵌挿されて一側に流入路に常時連通する第1油
室を形成し前記弁座に着座した/J離脱して同弁座を開
閉するポペット弁部と同ポペット弁部の一例に連設され
て前記一方の小径孔内に延び同小径孔との間に流出路に
常時連通しかつ前記弁座を通して前記第1油室に連通ず
る第2油室を形成する連結部と同連結部に連設されて前
記一方の小径孔に摺動自在に嵌挿され同小径孔端に第3
油室を形成するピストン部を一体的に備えるとともに前
記ポペット弁部の他側に連設されて前記他方の小径孔に
摺動自在に嵌挿され同小径孔端に前記流入路側に絞りを
介して接続される第4油室を形成するとともに前記大径
孔端に第2の絞りを介して前記流入路側に連通ずる第5
油室を形成する小径部を一体的に備える弁体と、同弁体
を前記第3油室に向けて付勢するばねを具備してなる主
弁と、 前記第3油室に付与されるパイロット圧を電流付与値に
応じて比例制御する第1パイロット弁と、前記パイロッ
ト圧により作動を制御されて前記パイロット圧が設定値
未満であるとき前記第4油室と戻り路の連通を遮断しま
た前記パイロット圧が設定値以上であるとき前記第4油
室と前記戻り路を連通させる第2パイロット弁と、 前記流入路内油圧及び前記第5油室内油圧により作動を
制御されて前記第5油室内油圧が所定値に達したとき作
動して同油圧をリリーフするとともに前記第4油室内油
圧をリリーフする第3パイロット弁を備える構成とした
In order to solve the above-mentioned problems, the present invention provides a fluid control device in which small diameter holes of the same diameter are connected to both ends of a large diameter hole, and a valve seat is formed in one of the connected steps. a valve body, and a poppet valve part that is fitted into the large diameter hole and forms a first oil chamber on one side that constantly communicates with the inflow passage, and that is seated on the valve seat and opens and closes the valve seat when separated. and a second oil chamber connected to one example of the poppet valve portion, extending into the one small diameter hole, and constantly communicating with the outflow passage between the small diameter hole and communicating with the first oil chamber through the valve seat. and a third connecting portion connected to the connecting portion and slidably inserted into the one small diameter hole and at the end of the small diameter hole.
A piston part that forms an oil chamber is integrally provided, and the piston part is connected to the other side of the poppet valve part, and is slidably inserted into the other small diameter hole, and a throttle is provided at the end of the small diameter hole on the inflow path side. A fifth oil chamber is formed at the end of the large diameter hole and communicates with the inflow passage through a second throttle.
a main valve provided with a valve body integrally having a small diameter portion forming an oil chamber, and a spring that urges the valve body toward the third oil chamber; a first pilot valve that proportionally controls pilot pressure according to a current applied value; and a first pilot valve whose operation is controlled by the pilot pressure to cut off communication between the fourth oil chamber and the return path when the pilot pressure is less than a set value. a second pilot valve that communicates the fourth oil chamber with the return passage when the pilot pressure is equal to or higher than a set value; The third pilot valve is configured to operate when the oil pressure in the oil chamber reaches a predetermined value to relieve the oil pressure and also to relieve the oil pressure in the fourth oil chamber.

〔発明の作用〕[Action of the invention]

本発明による流体制御装置においては、第3パイロット
弁が作動しないかぎり、流入路側油圧が第1油室及び第
5油室に付与されてポペット弁部に作用する押圧力が相
殺されているため、第1油室及び第5油室に付与される
流入路側油圧の変動によって主弁の弁体が押動されるこ
とはない。一方、流出路側油圧は第2油室にて主弁の弁
体のポペット弁部とピストン部に作用してその押圧力が
相殺されているため、流出路側油圧の変動によって主弁
の弁体が押動されることはない。
In the fluid control device according to the present invention, unless the third pilot valve operates, the inflow passage side hydraulic pressure is applied to the first oil chamber and the fifth oil chamber, and the pressing force acting on the poppet valve portion is canceled out. The valve body of the main valve is not pushed by fluctuations in the inflow passage side oil pressure applied to the first oil chamber and the fifth oil chamber. On the other hand, the oil pressure on the outflow side acts on the poppet valve part and the piston part of the valve body of the main valve in the second oil chamber, and the pressing force is canceled out, so the fluctuation in the oil pressure on the outflow side causes the valve body of the main valve to You will not be pushed.

また第1パイロット弁への電流付与値が設定値未満であ
って第3油室に付与されるパイロット圧が設定値未満で
ある場合、第2パイロット弁が第4油室と戻り路の連通
を遮断している。このため、主弁の弁体は流入路側から
絞りを通して第4油室に付与される油圧及びばねの作用
により第3油室内のパイロット圧に抗して押圧されてい
てポペット弁部を弁座に着座させており、流入路と流出
路の連通が遮断され、流入路側油圧が保持されている(
保圧機能)。かかる状態にて流入路側油圧が所定値に達
すると、第3パイロット弁が作動して第4油室及び第5
油室内の油圧をリリーフするため、主弁の弁体は第1油
室内油圧と第5油室内油圧との差圧と第3油室内油圧と
第4油室内油圧との差圧(主として前者の差圧)により
ばねの作用に抗して摺動する。したがって、弁体のポペ
ット弁部が弁座から離れて流入路から流出路に圧油が流
れ、流入路側油圧の過度な上昇が抑制される(リリーフ
機能)。
Furthermore, when the current applied to the first pilot valve is less than the set value and the pilot pressure applied to the third oil chamber is less than the set value, the second pilot valve closes the communication between the fourth oil chamber and the return path. It's blocked. For this reason, the valve body of the main valve is pressed against the pilot pressure in the third oil chamber by the hydraulic pressure applied to the fourth oil chamber from the inflow path side through the throttle and the action of the spring, and the poppet valve part is pressed against the valve seat. is seated, communication between the inflow and outflow channels is cut off, and the hydraulic pressure on the inflow channel is maintained (
pressure holding function). When the inflow passage side oil pressure reaches a predetermined value in such a state, the third pilot valve is activated and the fourth oil chamber and the fifth oil chamber are activated.
In order to relieve the hydraulic pressure in the oil chamber, the valve body of the main valve is operated by the differential pressure between the first oil chamber hydraulic pressure and the fifth oil chamber hydraulic pressure, and the differential pressure between the third oil chamber hydraulic pressure and the fourth oil chamber hydraulic pressure (mainly the former). differential pressure) causes it to slide against the action of the spring. Therefore, the poppet valve portion of the valve body separates from the valve seat, and pressure oil flows from the inflow path to the outflow path, suppressing an excessive increase in the oil pressure on the inflow path side (relief function).

しかして、第1パイロット弁への電流付与値を設定値以
上として第3油室に付与されるパイロット圧を設定値以
上とすると、第2パイロット弁が作動して第4油室を戻
り路に連通させる。このため、第4油室内の油圧は減少
し、主弁の弁体は第3油室内のパイロット圧(第1パイ
ロット弁によって設定値以上の成る値に設定されている
)による押圧力とばねの作用力(詳細には、同作用力と
第4油室内に残っている油圧による押圧力の合力)がバ
ランスする位置にて保持され流入路から流出路へ流れる
流量が規定される。したがって、第1パイロット弁への
電流付与値を変えて第3油室に付与されるパイロット圧
を変えることにより、主弁の弁体の位置を調整でき、流
入路から流出路へ流れる流量を調整することができる(
流量制御機能)。
However, when the current applied to the first pilot valve is equal to or higher than the set value and the pilot pressure applied to the third oil chamber is equal to or higher than the set value, the second pilot valve operates and the fourth oil chamber is directed to the return path. communicate. Therefore, the oil pressure in the fourth oil chamber decreases, and the valve body of the main valve is pressed by the pilot pressure in the third oil chamber (which is set to a value higher than the set value by the first pilot valve) and the spring pressure. The acting force (specifically, the resultant force of the acting force and the pressing force due to the hydraulic pressure remaining in the fourth oil chamber) is maintained at a balanced position, and the flow rate from the inflow path to the outflow path is regulated. Therefore, by changing the current applied to the first pilot valve and the pilot pressure applied to the third oil chamber, the position of the valve body of the main valve can be adjusted, and the flow rate flowing from the inflow path to the outflow path can be adjusted. can do(
flow control function).

また、本発明による流体制御装置においては、第1パイ
ロット弁への電流付与値を適宜に時定数制御して第3油
室に付与されるパイロット圧の増大又は減少速度を適宜
に調整すれば、主弁の弁体の開弁速度及び閉弁速度を適
宜に調整することができる。
In addition, in the fluid control device according to the present invention, if the value of current applied to the first pilot valve is appropriately time constant controlled to appropriately adjust the rate of increase or decrease of the pilot pressure applied to the third oil chamber, The opening speed and closing speed of the valve body of the main valve can be adjusted as appropriate.

〔発明の効果〕〔Effect of the invention〕

上述した作用説明から明らかなように、本発明による流
体制御装置においては、第3パイロット弁が作動しない
かぎり、主弁の弁体のポペット弁部に作用する流入路側
油圧による押圧力が相殺されるとともにポペット弁部と
ピストン部に作用する流出路側油圧による押圧力が相殺
されていて、流入路側油圧や流出路側油圧の変動に拘わ
らず、第1パイロット弁への電流付与値を決定すること
により、主弁の弁体の位置を設定できるため、その操作
が極めて容易であるばかりか、弁体の位置の設定を正確
に行うことができて、正確な流量調整を行うことができ
る。
As is clear from the above explanation of the operation, in the fluid control device according to the present invention, unless the third pilot valve is operated, the pressing force due to the inflow passage side hydraulic pressure acting on the poppet valve portion of the valve body of the main valve is canceled out. At the same time, the pressing force due to the oil pressure on the outflow passage side acting on the poppet valve part and the piston part is canceled out, and by determining the value of the current applied to the first pilot valve, regardless of fluctuations in the oil pressure on the inflow passage side and the oil pressure on the outflow passage side, Since the position of the valve body of the main valve can be set, the operation is not only extremely easy, but also the position of the valve body can be set accurately, allowing accurate flow rate adjustment.

また、本発明による流体制御装置においては、第3パイ
ロット弁が作動しないかぎり、主弁の弁体のポペット弁
部に作用する流入路側油圧による押圧力が相殺されると
ともにポペット弁部とピストン部に作用する流出路側油
圧による押圧力が相殺されていて、第2パイロット弁の
作動により第4油室が戻り路に連通している場合には、
流入路側油圧や流出路側油圧の変動によって主弁の弁体
が押動されることはないため、第1パイロット弁への電
流付与値を適宜に時定数制御して設定した主弁の弁体の
開閉速度が流入路側油圧や流出路側油圧の変動による影
響を受けず、常に安定して得られる。
In addition, in the fluid control device according to the present invention, unless the third pilot valve operates, the pressing force due to the inflow passage side hydraulic pressure acting on the poppet valve portion of the valve body of the main valve is canceled out, and the poppet valve portion and the piston portion are If the pressing force due to the acting oil pressure on the outflow path side is canceled out and the fourth oil chamber is communicated with the return path due to the operation of the second pilot valve,
Since the valve body of the main valve is not pushed due to fluctuations in the inflow passage side oil pressure or the outflow passage side oil pressure, the valve body of the main valve is set by appropriately controlling the time constant of the current applied to the first pilot valve. The opening/closing speed is not affected by fluctuations in the inflow passage side oil pressure or the outflow passage side oil pressure, and can always be obtained stably.

更に、本発明による流体制御装置においては、大流量を
制御する単一の主弁と、小流量を制御する第1.第2及
び第3パイロット弁をその構成部材としているため、第
6図に示した従来の流体制御装置に比して小型化するこ
とができて、取付スペースの削減やコスト低減を図るこ
とができる。
Furthermore, the fluid control device according to the present invention includes a single main valve that controls a large flow rate, and a first valve that controls a small flow rate. Since it uses the second and third pilot valves as its constituent members, it can be made smaller compared to the conventional fluid control device shown in Figure 6, reducing installation space and cost. .

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below based on the drawings.

第1図は本発明による流体制御装置を示していて、同装
置は主弁40.第1パイロット弁50゜第2.パイロッ
ト弁60及び第3パイロット弁70によって構成されて
いる。
FIG. 1 shows a fluid control device according to the present invention, which includes a main valve 40. 1st pilot valve 50° 2nd. It is composed of a pilot valve 60 and a third pilot valve 70.

主弁40は、第1図及び第2図にて示したように、第1
部材41A、第2部材41B及び第3部材41Cからな
る弁本体41と、この弁本体41内に上下方向へ摺動自
在に嵌挿した。弁体42と、この弁体42を下方へ付勢
するばね43によって構成されている。弁本体41は、
大径孔41aの上下両端に同一径の小径孔41b、41
cをそれぞれ連設してなり下方の連設段部に弁座41d
を形成してなる段付内孔を有するとともに、流入路P1
が連通ずる環状溝41eや流出路P2が連通ずる環状溝
41fを有している。
As shown in FIGS. 1 and 2, the main valve 40 has a first
The valve body 41 is made up of a member 41A, a second member 41B, and a third member 41C, and the valve body 41 is fitted into the valve body 41 so as to be slidable in the vertical direction. It is composed of a valve body 42 and a spring 43 that urges the valve body 42 downward. The valve body 41 is
Small diameter holes 41b and 41 with the same diameter are provided at both upper and lower ends of the large diameter hole 41a.
The valve seats 41d are connected to each other and the valve seats 41d are connected to each other.
It has a stepped inner hole formed by forming an inflow path P1.
It has an annular groove 41e that communicates with the annular groove 41e and an annular groove 41f that communicates with the outflow path P2.

弁体42は、大径孔41a内に摺動自在に嵌挿されて図
示しないアクチュエータに接続される流入路PLに常時
連通する第1油室R1を形成し弁座41dに着座したり
l1lI説して流入路P1とリザーバ80に接続される
流出路22間を連通遮断(開閉)するポペット弁部42
aと、同ポペット弁部42aの下側に連設されて下方の
小径孔41b内に延び同小径孔41bとの間に流出路P
2が常時連通し弁座41dを通して第1油室R1に連通
ずる第2油室R2を形成する連結部42bと、同連結部
42bに連設されて下方の小径孔41bに摺動自在に嵌
挿され同小径孔41b端に第3油室R3を形成するピス
トン部42cを一体的に備えるとともに、ポペット弁部
42aの上側に上方の小径孔41cに摺動自在に嵌挿さ
れ同小径孔41C端に第4油室R4を形成するとともに
大径孔41a端に第5油室R5を形成する小径筒部42
dを一体的に備えている。しかして、第3油室R3は第
1パイロット弁50に接続されるとともに第2パイロッ
ト弁60の第1切換弁61に接続され、第4油室R4は
流入路P1に絞り44を介して接続されるとともに第2
パイロット弁60の第2切換弁62に接続され、第5油
室R5は流入路P1に第2の絞り45を介して連通ずる
とともに第3バイロフト弁70に接続されている。
The valve body 42 is slidably inserted into the large-diameter hole 41a, forms a first oil chamber R1 that is always in communication with an inflow path PL connected to an actuator (not shown), and is seated on a valve seat 41d. A poppet valve section 42 that opens and closes communication between the inflow path P1 and the outflow path 22 connected to the reservoir 80.
an outflow path P that is connected to the lower side of the poppet valve part 42a and extends into the lower small diameter hole 41b;
2 is connected to the connecting portion 42b forming a second oil chamber R2 that is always in communication and communicates with the first oil chamber R1 through the valve seat 41d, and the connecting portion 42b is connected to the connecting portion 42b and is slidably fitted into the small diameter hole 41b below. A piston part 42c is integrally inserted into the small diameter hole 41b and forms a third oil chamber R3 at the end of the small diameter hole 41b, and the small diameter hole 41C is slidably inserted into the upper small diameter hole 41c above the poppet valve part 42a. A small diameter cylindrical portion 42 that forms a fourth oil chamber R4 at the end and a fifth oil chamber R5 at the end of the large diameter hole 41a.
d is integrally provided. Thus, the third oil chamber R3 is connected to the first pilot valve 50 and the first switching valve 61 of the second pilot valve 60, and the fourth oil chamber R4 is connected to the inflow path P1 via the throttle 44. The second
It is connected to the second switching valve 62 of the pilot valve 60, and the fifth oil chamber R5 communicates with the inflow path P1 via the second throttle 45, and is also connected to the third viroft valve 70.

第1バイロフト弁50は、供給路P3を通して導入され
た圧油を所定値に減圧する減圧弁51と、この減圧弁5
1から絞り52を通して第3油室R3に付与されるパイ
ロット圧を電流付与値に応じて比例制御する電流制御リ
リーフ弁53によって構成されている。第2パイロット
、If−60は、第1図及び第3図にて示したように、
第3油室R3に付与されるパイロット圧により゛作動を
制御される第1切換弁61と、この第1切換弁61によ
って作動を制御される第2切換弁62によって構成され
ている。第1切換弁61は、スプール弁体61aとばね
61bを備えていて、第3油室R3から油室R6に通路
P5を通して付与されるパイロット圧が設定値未満であ
るとき図示のように非作動状態にあって供給路P3と第
2切換弁62の接続を断ちまたパイロット圧が設定値以
上であるとき作動状態となって供給路P3を第2切換弁
62に接続させる。第2切換弁62は、突起を一体的に
有するピストン62a、ポペット弁体62b及びばね6
2cを備えていて、第1切換弁61によって油室R7が
供給路P3に接続されたとき作動して第4油室R4に連
通する通路P6とリザーバ80に連通ずる戻り路P4を
連通させ、また第1切換弁61によって油室R7が供給
路P3との接続を断たれて戻り路P4に接続されたとき
図示のように非作動となって第4油室R4に連通ずる通
路P6と戻り路P4の連通を遮断する。
The first viroft valve 50 includes a pressure reducing valve 51 that reduces the pressure of pressure oil introduced through the supply path P3 to a predetermined value, and this pressure reducing valve 5.
The current control relief valve 53 proportionally controls the pilot pressure applied from 1 to the third oil chamber R3 through the throttle 52 in accordance with the current applied value. The second pilot, If-60, as shown in Figures 1 and 3,
It is comprised of a first switching valve 61 whose operation is controlled by the pilot pressure applied to the third oil chamber R3, and a second switching valve 62 whose operation is controlled by the first switching valve 61. The first switching valve 61 includes a spool valve body 61a and a spring 61b, and is inoperative as shown in the figure when the pilot pressure applied from the third oil chamber R3 to the oil chamber R6 through the passage P5 is less than a set value. In this state, the connection between the supply path P3 and the second switching valve 62 is cut off, and when the pilot pressure is equal to or higher than the set value, the operation state is established and the supply path P3 is connected to the second switching valve 62. The second switching valve 62 includes a piston 62a that integrally has a protrusion, a poppet valve body 62b, and a spring 6.
2c, which operates when the oil chamber R7 is connected to the supply path P3 by the first switching valve 61, and connects the passage P6 communicating with the fourth oil chamber R4 and the return path P4 communicating with the reservoir 80, Further, when the oil chamber R7 is disconnected from the supply path P3 and connected to the return path P4 by the first switching valve 61, it becomes inactive as shown in the figure, and the passage P6 communicating with the fourth oil chamber R4 and the return path P4 become inactive as shown in the figure. The communication of path P4 is cut off.

第3パイロット弁70は、流入路P1から絞り45を通
して付与される第5油室R5内の油圧が所定値に達した
とき作動して第5油室R5内の作動油を戻り路P4に流
すリリーフ弁71とこのリリーフ弁71の作動に応答し
て作動する切換弁72によって構成されている。切換弁
72は、第1図及び第4図にて示したように、弁体72
aとばね72bを備えていて、油室R8に通路P7を通
して付与される第5油室R5内の油圧がリリーフ弁71
によってリリーフされていないとき図示のように非作動
状態にあって第4油室R4に連通する油室R9と戻り路
P4の接続を断ち、また油室R8に付与される油圧がリ
リーフ弁71によってリリーフされたとき通路P8を通
して油室RIOに付与される流入路Pl内の油圧によっ
て弁体72aがばね72bに抗して摺動して油室R9を
戻り路P4に接続させる。
The third pilot valve 70 operates when the oil pressure in the fifth oil chamber R5, which is applied from the inflow path P1 through the throttle 45, reaches a predetermined value, and causes the hydraulic oil in the fifth oil chamber R5 to flow into the return path P4. It is composed of a relief valve 71 and a switching valve 72 that operates in response to the operation of the relief valve 71. As shown in FIGS. 1 and 4, the switching valve 72 has a valve body 72.
a and a spring 72b, and the oil pressure in the fifth oil chamber R5, which is applied to the oil chamber R8 through the passage P7, is applied to the relief valve 71.
When it is not relieved by the relief valve 71, it is in an inactive state as shown in the figure, and the connection between the oil chamber R9 communicating with the fourth oil chamber R4 and the return path P4 is cut off, and the oil pressure applied to the oil chamber R8 is controlled by the relief valve 71. When relieved, the valve body 72a slides against the spring 72b by the hydraulic pressure in the inflow path Pl applied to the oil chamber RIO through the path P8, thereby connecting the oil chamber R9 to the return path P4.

上記のように構成した本実施例においては、第3パイロ
ット弁70が作動しないかぎり、流入路Pl側油圧が第
1浦室R1及び第5油室R5に付与されてポペット弁部
42aに作用する押圧力が相殺されているため、第1油
室R1及び第5油室R5に付与される流入路Pl側油圧
の変動によって主弁40の弁体42が押動されることは
ない。
In this embodiment configured as described above, unless the third pilot valve 70 is operated, the inflow passage Pl side hydraulic pressure is applied to the first oil chamber R1 and the fifth oil chamber R5 and acts on the poppet valve portion 42a. Since the pressing forces are offset, the valve body 42 of the main valve 40 is not pushed by fluctuations in the inflow path Pl side oil pressure applied to the first oil sac R1 and the fifth oil sac R5.

一方、流出路P2側油圧は第2油室R2にて弁体42の
ポペット弁部42aとピストン部42cに作用してその
押圧力が相殺されているため、流出路P2側油圧の変動
によって主弁40の弁体42が押動されることはない。
On the other hand, the oil pressure on the outflow path P2 side acts on the poppet valve part 42a and the piston part 42c of the valve body 42 in the second oil chamber R2, and the pressing force thereof is canceled out. The valve body 42 of the valve 40 is not pushed.

また第1パイロット弁50におけるリリーフ弁53への
電流付与値が設定値未満であって第3油室R3に付与さ
れるパイロット圧が設定値未満である場合には、図示の
ごとく、第2パイロット弁60における第1切換弁61
が非作動状態にあって供給路P3と第2切換弁62の接
続を断っており、第2切換弁62が非作動状態にあって
第4油室R4と戻り路P4の連通を遮断している。この
ため、主弁40の弁体42は流入路−P 1から絞り4
4を通して第4油室R4に付与される油圧及びばね43
の作用により第3油室R3内のバイロフト圧に抗して押
圧されていて、ポペット弁部42aを弁座41dに着座
させており、流入路P1と流出路P2の連通が遮断され
ている。したがって、主弁40から図示しないアクチュ
エータに至る流入路P1を含む回路内の油圧が保持され
、アクチュエータはその停止状態に保持される(保圧機
能)。
Further, when the current applied to the relief valve 53 in the first pilot valve 50 is less than the set value and the pilot pressure applied to the third oil chamber R3 is less than the set value, as shown in the figure, the second pilot First switching valve 61 in valve 60
is in an inoperative state, cutting off the connection between the supply path P3 and the second switching valve 62, and the second switching valve 62 is in an inactive state, cutting off communication between the fourth oil chamber R4 and the return path P4. There is. Therefore, the valve body 42 of the main valve 40 is connected from the inflow path -P1 to the throttle 4.
Hydraulic pressure applied to the fourth oil chamber R4 through 4 and the spring 43
The poppet valve portion 42a is seated on the valve seat 41d, and communication between the inflow path P1 and the outflow path P2 is blocked. Therefore, the oil pressure in the circuit including the inflow path P1 from the main valve 40 to the actuator (not shown) is maintained, and the actuator is maintained in its stopped state (pressure holding function).

かかる状態において、アクチュエータに過大な負荷が作
用して上記した流入路P1を含む油圧回路内の油圧が上
昇し第5油室R5内の油圧が第3パイロット弁70のリ
リーフ弁71にて設定した所定値に達すると、油路P7
内の圧油が戻り路P4に流れて切換弁72が作動し、主
弁40の第4油室R4内の圧油が切換弁72を通して戻
り路P4に流れる。このため、かかる場合には、主弁4
0の弁体42は第1油室R1内油圧と第5油室R5内油
圧との差圧と第3油室R3内油圧と第4油室R4内油圧
との差圧(主として前者の差圧)によりばね43の作用
に抗して摺動する。したがって、弁体42のポペット弁
部42aが弁座41dから離れてアクチュエータからリ
ザーバ80に圧油が流れ、主弁40とアクチュエータ間
の油圧回路内油圧の過度な上昇が抑制されて、アクチュ
エータ等が保護される。
In this state, an excessive load is applied to the actuator, and the oil pressure in the hydraulic circuit including the above-mentioned inflow path P1 increases, and the oil pressure in the fifth oil chamber R5 is set by the relief valve 71 of the third pilot valve 70. When the predetermined value is reached, the oil passage P7
Pressure oil in the fourth oil chamber R4 of the main valve 40 flows to the return path P4 through the changeover valve 72 and operates the switching valve 72. Therefore, in such a case, the main valve 4
The valve body 42 of No. 0 has a pressure difference between the hydraulic pressure in the first oil chamber R1 and the hydraulic pressure in the fifth oil chamber R5, and the differential pressure between the hydraulic pressure in the third oil chamber R3 and the hydraulic pressure in the fourth oil chamber R4 (mainly the difference in the former). pressure), it slides against the action of the spring 43. Therefore, the poppet valve portion 42a of the valve body 42 separates from the valve seat 41d, and pressure oil flows from the actuator to the reservoir 80, suppressing an excessive increase in the oil pressure in the hydraulic circuit between the main valve 40 and the actuator, and causing the actuator, etc. protected.

しかして、第1パイロット弁50におけるリリーフ弁5
3への電流付与値を設定値以上として第3油室R3に付
与されるパイロット圧を設定値以上とすると、第2パイ
ロット弁60における第1切換弁61が作動して供給路
P3を第2切換弁62に接続するため、第2切換弁62
が作動して第4油室R4を戻り路P4に連通させる。こ
のため、第4油室R4内の油圧は減少し、主弁40の弁
体42は第3油室R3内のパイロット圧(第1バイロフ
ト弁50によって設定値以上の成る値に設定されている
)による押圧力とばね43の作用力(詳細には、同作用
力と第4油室R4内に残っている油圧による押圧力の合
力)がバランスする位置にて保持され流入路P1から流
出路P2へ流れる流量が規定される。したがって、第1
パイロット弁50におけるリリーフ弁53への電流付与
値を変えて第3油室R3に付与されるパイロット圧を変
えることにより、主弁40の弁体42の位置を調整でき
、流入路P1から流出路P2へ流れる流量を調整するこ
とができる(流量制御機能)。
Therefore, the relief valve 5 in the first pilot valve 50
When the pilot pressure applied to the third oil chamber R3 is made equal to or higher than the set value by setting the current applied to P3 to the set value or more, the first switching valve 61 in the second pilot valve 60 operates to switch the supply path P3 to the second oil chamber R3. In order to connect to the switching valve 62, the second switching valve 62
operates to communicate the fourth oil chamber R4 with the return path P4. For this reason, the oil pressure in the fourth oil chamber R4 decreases, and the valve body 42 of the main valve 40 releases the pilot pressure in the third oil chamber R3 (which is set to a value equal to or higher than the set value by the first viroft valve 50). ) and the acting force of the spring 43 (more specifically, the resultant force of the acting force and the pressing force due to the hydraulic pressure remaining in the fourth oil chamber R4) are maintained at a position where the pressure is balanced, and the flow from the inflow path P1 to the outflow path is maintained. The flow rate flowing to P2 is defined. Therefore, the first
By changing the value of current applied to the relief valve 53 in the pilot valve 50 and changing the pilot pressure applied to the third oil chamber R3, the position of the valve body 42 of the main valve 40 can be adjusted, and the position of the valve body 42 from the inflow path P1 to the outflow path can be adjusted. The flow rate flowing to P2 can be adjusted (flow rate control function).

また、本実施例の流体制御装置においては、第1パイロ
ット弁50におけるリリーフ弁53への電流付与値を適
宜に時定数制御して第3油室R3に付与されるバイロフ
ト圧の増大又は減少速度を適宜に調整すれば、主弁40
の弁体42の開弁速度及び閉弁速度を適宜に調整するこ
とができる。
In addition, in the fluid control device of the present embodiment, the value of current applied to the relief valve 53 in the first pilot valve 50 is appropriately time constant controlled to increase or decrease the rate of increase or decrease of the biloft pressure applied to the third oil chamber R3. If the main valve 40 is adjusted appropriately, the main valve 40
The opening speed and closing speed of the valve body 42 can be adjusted as appropriate.

上述した作用説明から明らかなように、本実施例の流体
制御装置においては、第3パイロット弁70が作動しな
いかぎり、弁体42のポペット弁部42aに作用する流
入路Pl側油圧による押圧力が相殺されるとともにポペ
ット弁部42aとピストン部42cに作用する流出路P
2側油圧による押圧力が相殺されていて、流入路Pl側
油圧や流出路P 2 (i13油圧の変動に拘わらず、
第1パイロット弁50におけるリリーフ弁53への電流
付与値を決定することにより、主弁40の弁体42の位
置を設定できるため、その操作が極めて容易であるばか
りか、弁体42の位置の設定を正確に行うことができて
、正確な流量調整を行うことができる。
As is clear from the above explanation of the operation, in the fluid control device of the present embodiment, unless the third pilot valve 70 is operated, the pressing force due to the hydraulic pressure on the inflow path Pl side acting on the poppet valve portion 42a of the valve body 42 is The outflow path P acts on the poppet valve part 42a and the piston part 42c while canceling each other out.
The pressing force due to the 2 side oil pressure is canceled out, and regardless of the fluctuations in the inflow path Pl side oil pressure and the outflow path P 2 (i13 oil pressure,
By determining the value of current applied to the relief valve 53 in the first pilot valve 50, the position of the valve body 42 of the main valve 40 can be set. Settings can be made accurately and flow rates can be adjusted accurately.

また、本実施例の流体制御装置においては、第3パイロ
ット弁70が作動しないかぎり、弁体42のポペ7)弁
部42aに作用する流入路Pl側油圧による押圧力が相
殺されるとともにポペット弁部42aとピストン部42
cに作用する流出路P2側油圧による押圧力が相殺され
ていて、第2パイロット弁60の作動により第4油室R
4が戻り路P4に連通している場合には、流入路Pl側
油圧や流出路P2側油圧の変動によって主弁40の弁体
42が押動されることはないため、第1パイロット弁5
0におけるリリーフ弁53への電流付与値を適宜に時定
数制御して設定した主弁40の弁体42の開閉速度が流
入路P1側油圧や流出路P2側油圧の変動による形響を
受けず、常に安定して得られる。
In addition, in the fluid control device of this embodiment, as long as the third pilot valve 70 is not operated, the poppet 7) of the valve body 42 is offset by the pressing force due to the hydraulic pressure on the inflow path Pl side acting on the valve portion 42a, and the poppet Valve part 42a and piston part 42
The pressing force due to the oil pressure on the outflow path P2 side acting on the outflow path P2 side is canceled out, and the operation of the second pilot valve 60 causes the fourth oil chamber R
4 communicates with the return path P4, the valve body 42 of the main valve 40 is not pushed due to fluctuations in the inflow path Pl side oil pressure or the outflow path P2 side oil pressure, so the first pilot valve 5
The opening/closing speed of the valve body 42 of the main valve 40, which is set by appropriately controlling the current applied to the relief valve 53 at 0, is not affected by fluctuations in the oil pressure on the inflow path P1 side or the oil pressure on the outflow path P2 side. , always obtained stably.

更に、本実施例の流体制御装置においては、大流量を制
御する単一の主弁40と、小流量を制御する第1.第2
及び第3パイロット弁50・60・70をその構成部材
としているため、第6図に示した従来の流体制御装置に
比して小型化することができて、取付スペースの削減や
コスト低減を図ることができる。
Further, in the fluid control device of this embodiment, there is a single main valve 40 that controls a large flow rate, and a single main valve 40 that controls a small flow rate. Second
and third pilot valves 50, 60, and 70 as its constituent members, it can be made smaller compared to the conventional fluid control device shown in Fig. 6, reducing installation space and cost. be able to.

第5図は本発明の他の実施例を示していて、同図に示し
た流体制御装置においては、減圧弁51゜絞り52及び
リリーフ弁53からなる第1バイロフト弁50に代えて
電流制御減圧弁からなる第1パイロット弁50Aが採用
され、また第1切換弁61及び第2切換弁62からなる
第2パイロット弁60に代えてパイロット圧により直接
作動されて第4油室R4と戻り路P4を連通遮断する切
換弁からなる第2パイロット弁60Aが採用されており
、第1パイロット弁50Aは上記実施例の第1パイロッ
ト弁50と同様に第3油室R3に付与されるパイロット
圧を電流付与値に応じて比例制御し、また第2パイロッ
ト弁60Aは上記実施例の第2パイロット弁60と同様
にパイロット圧により作動を制御されてパイロット圧が
設定値未満であるとき第4油室R4と戻り路P4の連通
を遮断しまたパイロット圧が設定値以上であるとき第4
油室R4と戻り路P4を連通させる。
FIG. 5 shows another embodiment of the present invention, and in the fluid control device shown in the same figure, a current-controlled pressure reducing valve 51 is used instead of the first viroft valve 50 consisting of a throttle 52 and a relief valve 53. A first pilot valve 50A consisting of a valve is adopted, and is operated directly by pilot pressure in place of the second pilot valve 60 consisting of a first switching valve 61 and a second switching valve 62 to connect the fourth oil chamber R4 and the return path P4. A second pilot valve 60A is employed, which is a switching valve that communicates with and disconnects from the flow. Similarly to the first pilot valve 50 of the above embodiment, the first pilot valve 50A converts the pilot pressure applied to the third oil chamber R3 into a current. Proportional control is performed according to the applied value, and the operation of the second pilot valve 60A is controlled by the pilot pressure similarly to the second pilot valve 60 of the above embodiment, and when the pilot pressure is less than the set value, the operation is controlled in the fourth oil chamber R4. and return path P4, and when the pilot pressure is above the set value, the fourth
The oil chamber R4 and the return path P4 are communicated with each other.

なお、第5図に示した実施例の作用・効果は上述した第
1図〜第4図にて示した実施例の作用・効果と実質的に
同じであり、上述した説明から容易に理解されるため、
その説明は省略する。
The functions and effects of the embodiment shown in FIG. 5 are substantially the same as those of the embodiments shown in FIGS. 1 to 4 described above, and are easily understood from the above explanation. In order to
The explanation will be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による流体制御装置の一実施例を示す全
体構成図、第2図は第1図に示した装置における主弁部
分の詳細な拡大断面図、第3図は第1図に示した装置に
おける第2パイロット弁部分の詳細な拡大断面図、第4
図は第1図に示した装置における第3パイロット弁部分
の詳細な拡大断面図、第5図は本発明の他の実施例を示
す全体構成図、第6図は従来例を示す全体構成図である
。 符号の説明 40・・・主弁、4■・・・弁本体、41a・・・大径
孔、41b、41C・・・小径孔、41d・・・弁座、
42・・・弁体、42a・・・ポペット弁部、42b・
・・連結部、42G・・・ピストン部、42d・・・小
径部、43・・・ばね、44・・・絞り、45・・・第
2の絞り、50゜50A・・・第1パイロット弁、60
.60Δ・・・第2バイロフト弁、70・・・第3パイ
ロット弁、Pl・・・流入路、R2・・・流出路、R3
・・・供給路、R4・・・戻り路、R1・・・第1油室
、R2・・・第2油室、R3・・・第3油室、R4・・
・第4油室、R5・・・第5油室。
FIG. 1 is an overall configuration diagram showing an embodiment of a fluid control device according to the present invention, FIG. 2 is a detailed enlarged sectional view of the main valve portion of the device shown in FIG. 1, and FIG. Detailed enlarged cross-sectional view of the second pilot valve section in the illustrated device, No. 4
The figure is a detailed enlarged sectional view of the third pilot valve part in the device shown in Figure 1, Figure 5 is an overall configuration diagram showing another embodiment of the present invention, and Figure 6 is an overall configuration diagram showing a conventional example. It is. Explanation of symbols 40...Main valve, 4■...Valve body, 41a...Large diameter hole, 41b, 41C...Small diameter hole, 41d...Valve seat,
42... Valve body, 42a... Poppet valve part, 42b.
...Connection part, 42G... Piston part, 42d... Small diameter part, 43... Spring, 44... Throttle, 45... Second throttle, 50° 50A... First pilot valve , 60
.. 60Δ...Second viroft valve, 70...Third pilot valve, Pl...Inflow path, R2...Outflow path, R3
... Supply path, R4... Return path, R1... First oil chamber, R2... Second oil chamber, R3... Third oil chamber, R4...
・4th oil chamber, R5...5th oil chamber.

Claims (1)

【特許請求の範囲】 大径孔の両端に同一径の小径孔をそれぞれ連設してなり
一方の連設段部に弁座を形成してなる弁本体と、前記大
径孔内に嵌挿されて一側に流入路に常時連通する第1油
室を形成し前記弁座に着座したり離脱して同弁座を開閉
するポペット弁部と同ポペット弁部の一側に連設されて
前記一方の小径孔内に延び同小径孔との間に流出路に常
時連通しかつ前記弁座を通して前記第1油室に連通する
第2油室を形成する連結部と同連結部に連設されて前記
一方の小径孔に摺動自在に嵌挿され同小径孔端に第3油
室を形成するピストン部を一体的に備えるとともに前記
ポペット弁部の他側に連設されて前記他方の小径孔に摺
動自在に嵌挿され同小径孔端に前記流入路側に絞りを介
して接続される第4油室を形成するとともに前記大径孔
端に第2の絞りを介して前記流入路側に連通する第5油
室を形成する小径部を一体的に備える弁体と、同弁体を
前記第3油室に向けて付勢するばねを具備してなる主弁
と、 前記第3油室に付与されるパイロット圧を電流付与値に
応じて比例制御する第1パイロット弁と、前記パイロッ
ト圧により作動を制御されて前記パイロット圧が設定値
未満であるとき前記第4油室と戻り路の連通を遮断しま
た前記パイロット圧が設定値以上であるとき前記第4油
室と前記戻り路を連通させる第2パイロット弁と、 前記流入路内油圧及び前記第5油室内油圧により作動を
制御されて前記第5油室内油圧が所定値に達したとき作
動して同油圧をリリーフするとともに前記第4油室内油
圧をリリーフする第3パイロット弁を備えてなる流体制
御装置。
[Scope of Claims] A valve body comprising a large-diameter hole and small-diameter holes of the same diameter connected to each other at both ends thereof, and a valve seat formed in one of the continuous steps, and a valve body that is fitted into the large-diameter hole. A first oil chamber is formed on one side of the poppet valve, and the poppet valve portion is connected to one side of the poppet valve portion to open and close the valve seat by seating on or leaving the valve seat. A connecting portion that extends into the one small diameter hole and forms a second oil chamber that is in constant communication with the outflow passage and communicates with the first oil chamber through the valve seat, and is connected to the same connecting portion. and integrally includes a piston portion that is slidably inserted into the one small diameter hole and forms a third oil chamber at the end of the small diameter hole, and is connected to the other side of the poppet valve portion and is connected to the other side of the poppet valve portion. A fourth oil chamber is formed which is slidably inserted into the small diameter hole and connected to the inlet passage side at the end of the small diameter hole via a throttle, and is connected to the inflow passage side at the end of the large diameter hole through a second throttle. a main valve comprising: a valve body integrally provided with a small diameter portion forming a fifth oil chamber communicating with the third oil chamber; and a main valve comprising a spring that urges the valve body toward the third oil chamber; a first pilot valve that proportionally controls the pilot pressure applied to the chamber according to the current applied value; and a return path to the fourth oil chamber whose operation is controlled by the pilot pressure and when the pilot pressure is less than a set value. a second pilot valve that interrupts communication between the fourth oil chamber and the return passage when the pilot pressure is equal to or higher than a set value; and a third pilot valve that operates when the fifth oil chamber hydraulic pressure reaches a predetermined value to relieve the same hydraulic pressure and also relieve the fourth oil chamber hydraulic pressure.
JP1171086A 1986-01-22 1986-01-22 Fluid control device Granted JPS62171504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171086A JPS62171504A (en) 1986-01-22 1986-01-22 Fluid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171086A JPS62171504A (en) 1986-01-22 1986-01-22 Fluid control device

Publications (2)

Publication Number Publication Date
JPS62171504A true JPS62171504A (en) 1987-07-28
JPH0556402B2 JPH0556402B2 (en) 1993-08-19

Family

ID=11785599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171086A Granted JPS62171504A (en) 1986-01-22 1986-01-22 Fluid control device

Country Status (1)

Country Link
JP (1) JPS62171504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145130A (en) * 2011-01-07 2012-08-02 Ihara Science Corp Piston valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145130A (en) * 2011-01-07 2012-08-02 Ihara Science Corp Piston valve

Also Published As

Publication number Publication date
JPH0556402B2 (en) 1993-08-19

Similar Documents

Publication Publication Date Title
US5421545A (en) Poppet valve with force feedback control
US5645263A (en) Pilot valve for a flow amplyifying poppet valve
US6386509B1 (en) Back pressure control valve
EP0602036B1 (en) Pressure compensated flow amplifying poppet valve
JP5461986B2 (en) Bidirectional force feedback poppet valve
JP2010528243A (en) Force feedback poppet valve with integrated pressure compensator
US20070290152A1 (en) Poppet valve
JPH0233910B2 (en)
JP2003050635A (en) Variable pressure control device
JPS62171504A (en) Fluid control device
JPH0124951B2 (en)
JP2005042819A (en) Electromagnetic proportional pressure control valve
JPH0556401B2 (en)
JPH06185667A (en) Pilot operated pressure control valve
JPH0535446B2 (en)
JPH0381006B2 (en)
JPH081345Y2 (en) Electromagnetic flow control valve
JPH06331050A (en) Proportional solenoid-operated pressure control valve
US4836245A (en) Control valve
JPS6319404A (en) Flow rate control valve
JPS6319403A (en) Flow control valve
JPH01120401A (en) Fluid control device
JPH0384286A (en) Flow rate control valve
JPH0140385Y2 (en)
JPH0640322Y2 (en) Liquid control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees