JP2005042819A - Electromagnetic proportional pressure control valve - Google Patents

Electromagnetic proportional pressure control valve Download PDF

Info

Publication number
JP2005042819A
JP2005042819A JP2003277560A JP2003277560A JP2005042819A JP 2005042819 A JP2005042819 A JP 2005042819A JP 2003277560 A JP2003277560 A JP 2003277560A JP 2003277560 A JP2003277560 A JP 2003277560A JP 2005042819 A JP2005042819 A JP 2005042819A
Authority
JP
Japan
Prior art keywords
pressure
valve
pilot
spring
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003277560A
Other languages
Japanese (ja)
Inventor
Masato Ishikawa
正人 石川
Takashi Yamaguchi
高史 山口
Tomonari Hayashi
知得 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toyooki Kogyo Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toyooki Kogyo Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003277560A priority Critical patent/JP2005042819A/en
Publication of JP2005042819A publication Critical patent/JP2005042819A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Safety Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic proportional pressure control valve capable of controlling the fluid pressure in a control passage in a predetermined control mode without enlarging an electromagnetic apparatus even when the diameter of the control passage is increased. <P>SOLUTION: In the electromagnetic proportional pressure control valve, a control passage 4 with pressurized fluid flowing therein and a discharge passage to allow working fluid to flow to the low-pressure side are communicated with a valve hole 2 of a valve body 1, a valve seat 7 is formed between a control passage communication part and a discharge passage communication part of the valve hole 2, and a valve element 12 which is seated on or separated from the valve seat 7 is movably accommodated in the valve hole 2. The spring force of a pressure regulation spring 13 is applied to the valve element 12 in the seating direction, and the fluid pressure of the control passage 4 is applied against the spring force of the pressure regulation spring 13 in the separating direction. In the control valve, a piston 14 to control the spring force of the pressure regulation spring 13 is movably accommodated in the valve hole 2, the pilot pressure corresponding to the working force of an electromagnetic apparatus 21 of a pilot valve 18 is applied to the piston 14, the piston 14 is moved according to the pilot pressure to control the spring force of the pressure regulation spring 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電磁気装置の作用力がゼロであるとき(電磁気装置への通電電流がゼロであるとき)に制御通路の流体圧力を最大圧力に設定し、電磁気装置の作用力の増大(電磁気装置への通電電流の増大)に応じて制御通路の流体圧力を減少する圧力に設定することが可能な電磁比例圧力制御弁に関する。   The present invention sets the fluid pressure in the control passage to the maximum pressure when the acting force of the electromagnetic device is zero (when the energization current to the electromagnetic device is zero), and increases the acting force of the electromagnetic device (the electromagnetic device). The present invention relates to an electromagnetic proportional pressure control valve that can be set to a pressure that decreases the fluid pressure in the control passage in accordance with an increase in the energizing current to the control passage.

この種の電磁比例圧力制御弁は、例えば下記の特許文献1に開示されていて、弁本体の制御通路と排出通路との間に形成した弁座に、可動鉄心の一端側に連結した弁体を着座・離座自在に設け、弁体は調圧ばねのばね力で弁座への着座方向に付勢されている。そして、固定鉄心、可動鉄心、コイル等から成る電磁気装置のコイルへの通電により可動鉄心が固定鉄心に吸引され、調圧ばねのばね力に抗して弁体の離座方向となる電磁気装置の作用力が可動鉄心に生じ、この可動鉄心に生じる電磁気装置の作用力はコイルへの通電電流の増大に応じて増大するようにしている。このため、コイルへの非通電時には、可動鉄心に電磁気装置の作用力が生じず、弁体には調圧ばねのばね力のみが付与されて、制御通路の流体圧力を最大圧力に設定することが可能である。また、コイルへの通電時には、通電電流の増大に応じて電磁気装置の作用力が増大し、調圧ばねのばね力と電磁気装置の作用力の差に相当する力が弁体に付与されて、制御通路の圧力を通電電流の増大に応じて減少する圧力に設定することが可能である。
実公平3−614号公報
This type of electromagnetic proportional pressure control valve is disclosed in, for example, Patent Document 1 below, and is a valve body connected to one end side of a movable iron core in a valve seat formed between a control passage and a discharge passage of a valve body. The valve body is urged in the seating direction to the valve seat by the spring force of the pressure adjusting spring. The electromagnetic core of the electromagnetic device in which the movable iron core is attracted to the fixed iron core by energizing the coil of the electromagnetic device including the fixed iron core, the movable iron core, the coil, etc., and the valve element is in the seating direction against the spring force of the pressure regulating spring. An acting force is generated in the movable iron core, and the acting force of the electromagnetic device generated in the movable iron core is increased in accordance with an increase in the energization current to the coil. For this reason, when the coil is not energized, the electromagnetic force of the electromagnetic device is not generated in the movable iron core, and only the spring force of the pressure adjusting spring is applied to the valve body, and the fluid pressure in the control passage is set to the maximum pressure. Is possible. In addition, when the coil is energized, the acting force of the electromagnetic device increases according to the increase of the energizing current, and a force corresponding to the difference between the spring force of the pressure regulating spring and the acting force of the electromagnetic device is applied to the valve body, It is possible to set the pressure in the control passage to a pressure that decreases as the energization current increases.
Japanese Utility Model Publication No. 3-614

ところが、上記した従来の電磁比例圧力制御弁では、可動鉄心の一端側に連結した弁体の着座・離座により直接制御通路を開閉制御しているため、制御通路の口径が大径になるのに伴い弁体が大型になって、この弁体を連結する可動鉄心が大型になって電磁気装置を大型化しなければならなかった。   However, in the conventional electromagnetic proportional pressure control valve described above, since the control passage is directly controlled to open and close by the seating / separation of the valve body connected to one end side of the movable iron core, the diameter of the control passage becomes large. As a result, the valve body has become large, and the movable iron core connecting the valve bodies has become large and the electromagnetic device has to be enlarged.

本発明は、制御通路の口径が大径になった場合にも電磁気装置を大型化することなく制御通路の流体圧力を所期の制御形態にて制御し得る電磁比例圧力制御弁を提供するためになされたものであり、当該電磁比例圧力制御弁を、弁本体の弁孔には、所要の軸方向間隔で、圧力流体が流通する制御通路と、作動流体を低圧側に流す排出通路とが接続されて連通し、前記弁孔の制御通路連通個所と排出通路連通個所との間には弁座が形成され、この弁座に着座・離座する弁体が前記弁孔に移動自在に収装されていて、この弁体には、前記弁孔に収容した調圧ばねのばね力が着座方向に作用すると共に、前記制御通路の流体圧力が前記調圧ばねのばね力に抗して離座方向に作用し、かつ前記調圧ばねのばね力を増減するピストンが前記弁孔に移動自在に収装されていて、このピストンにはパイロット弁が備える電磁気装置の作用力に応じたパイロット圧力が作用して、同パイロット圧に応じて前記ピストンが移動して前記調圧ばねのばね力が増減するように構成した。   The present invention provides an electromagnetic proportional pressure control valve capable of controlling the fluid pressure in a control passage in an intended control form without increasing the size of the electromagnetic device even when the diameter of the control passage becomes large. The electromagnetic proportional pressure control valve has a control passage through which the pressure fluid flows and a discharge passage through which the working fluid flows to the low pressure side at a required axial interval in the valve hole of the valve body. A valve seat is formed between the control passage communicating portion and the discharge passage communicating portion of the valve hole, and the valve body seated and separated from the valve seat is movably accommodated in the valve hole. In this valve body, the spring force of the pressure adjusting spring accommodated in the valve hole acts in the seating direction, and the fluid pressure in the control passage is separated against the spring force of the pressure adjusting spring. A piston acting in the seat direction and increasing / decreasing the spring force of the pressure regulating spring moves to the valve hole. A pilot pressure corresponding to the acting force of the electromagnetic device provided in the pilot valve acts on this piston, and the piston moves according to the pilot pressure, and the spring force of the pressure regulating spring is It was configured to increase or decrease.

この場合において、前記電磁気装置は、コイルへの通電電流の増大に応じて可動鉄心が固定鉄心に吸引される作用力が増大する電磁気装置であり、前記パイロット弁は前記電磁気装置の作用力の増大に応じて前記パイロット圧力を増大させるパイロット弁体とパイロット弁座を備えていて、前記ピストンには、前記パイロット圧力が前記調圧ばねのばね力を減少させる方向に作用すると共に、前記弁孔に収容した復帰ばねのばね力が前記パイロット圧力に抗して作用するように構成することも可能である。   In this case, the electromagnetic device is an electromagnetic device in which the acting force by which the movable iron core is attracted to the fixed iron core is increased in accordance with an increase in the energization current to the coil, and the pilot valve is an increase in the acting force of the electromagnetic device. A pilot valve body and a pilot valve seat that increase the pilot pressure in response to the pilot pressure, and the pilot pressure acts on the piston in a direction to reduce the spring force of the pressure regulating spring, and the valve hole It is also possible to configure so that the spring force of the housed return spring acts against the pilot pressure.

本発明の電磁比例圧力制御弁においては、電磁気装置の作用力がゼロであるとき(電磁気装置への通電電流がゼロであるとき)、パイロット弁からピストンに付与されるパイロット圧力によりピストンが初期位置から移動しないように設定することが可能であって、この場合には、調圧ばねのばね力は減少されず初期の設定値に維持される。したがって、制御通路の流体圧力は、初期の設定値に維持されている調圧ばねのばね力に相当する最大圧力に設定される。また、電磁気装置の作用力が増大するとき(電磁気装置への通電電流が増大するとき)には、パイロット弁からピストンに付与されて作用するパイロット圧力に応じてピストンが移動して、このピストンの移動に応じて調圧ばねのばね力が減少される。したがって、制御通路の流体圧力は、通電電流の増大に応じて減少する調圧ばねのばね力に相当する圧力に設定される。   In the electromagnetic proportional pressure control valve of the present invention, when the acting force of the electromagnetic device is zero (when the energization current to the electromagnetic device is zero), the piston is moved to the initial position by the pilot pressure applied to the piston from the pilot valve. In this case, the spring force of the pressure adjusting spring is not reduced and is maintained at the initial set value. Therefore, the fluid pressure in the control passage is set to a maximum pressure corresponding to the spring force of the pressure regulating spring maintained at the initial set value. Further, when the acting force of the electromagnetic device increases (when the energization current to the electromagnetic device increases), the piston moves according to the pilot pressure applied to the piston from the pilot valve, and this piston The spring force of the pressure regulating spring is reduced in accordance with the movement. Therefore, the fluid pressure in the control passage is set to a pressure corresponding to the spring force of the pressure regulating spring that decreases as the energization current increases.

ところで、本発明の電磁比例圧力制御弁においては、弁体が制御通路の流体圧力に基づく押圧力で調圧ばねのばね力に抗して押圧されて開作動することにより、制御通路の圧力流体が電磁気装置を備えるパイロット弁を介することなく排出通路より低圧側に流れる。このため、制御通路、弁孔、弁体、排出通路等を大型化する場合にも、電磁気装置を備えるパイロット弁を大型化する必要がない。したがって、電磁気装置を備えるパイロット弁の小型化を維持した状態で、制御通路の流体圧力を上記した所期の制御形態にて制御することが可能である。   By the way, in the electromagnetic proportional pressure control valve of the present invention, the valve body is pressed against the spring force of the pressure adjusting spring by the pressing force based on the fluid pressure in the control passage, thereby opening the pressure passage in the control passage. Flows to the low pressure side of the discharge passage without passing through a pilot valve equipped with an electromagnetic device. For this reason, even when the control passage, the valve hole, the valve body, the discharge passage and the like are enlarged, it is not necessary to enlarge the pilot valve provided with the electromagnetic device. Therefore, it is possible to control the fluid pressure in the control passage in the above-described intended control mode while maintaining the downsizing of the pilot valve including the electromagnetic device.

また、本発明の実施に際して、前記電磁気装置が、コイルへの通電電流の増大に応じて可動鉄心が固定鉄心に吸引される作用力が増大する電磁気装置であり、前記パイロット弁が前記電磁気装置の作用力の増大に応じて前記パイロット圧力を増大させるパイロット弁体とパイロット弁座を備えていて、前記ピストンには、前記パイロット圧力が前記調圧ばねのばね力を減少させる方向に作用すると共に、前記弁孔に収容した復帰ばねのばね力が前記パイロット圧力に抗して作用するように構成した場合には、コイルへの通電電流の増大に応じてパイロット圧力が増大する汎用の電磁気装置を用いて当該電磁比例圧力制御弁を構成することが可能である。   Further, in the implementation of the present invention, the electromagnetic device is an electromagnetic device in which an acting force of the movable iron core attracted to the fixed iron core is increased in accordance with an increase in an energization current to the coil, and the pilot valve is a member of the electromagnetic device. A pilot valve body and a pilot valve seat that increase the pilot pressure in response to an increase in acting force are provided, and the pilot pressure acts on the piston in a direction that reduces the spring force of the pressure regulating spring, When the spring force of the return spring accommodated in the valve hole is configured to act against the pilot pressure, a general-purpose electromagnetic device in which the pilot pressure increases with an increase in the energization current to the coil is used. Thus, the electromagnetic proportional pressure control valve can be configured.

図1は、本発明による電磁比例圧力制御弁の一実施形態を示していて、この電磁比例圧力制御弁の弁本体1には、弁座部材6、弁体12、調圧ばね13、ピストン14、復帰ばね16等を収容する多段の弁孔2が軸方向に貫設されている。弁孔2は、軸方向一方側より中径部2A、中径部2Aより小径の小径部2B、中径部2Aと略同径の中径部2C、中径部2Cより大径の大径部2Dとされていて、中径部2Cと大径部2Dとの連設段部には止め部2Eが形成されている。また、弁孔2には、中径部2Aに継手部材3を介して圧力源Pより圧力流体が流通する制御通路4が接続されて連通すると共に、制御通路4の連通個所より軸方向にて所要の間隔で形成されている中径部2Cに低圧側としてのタンクTに接続された排出通路5が接続されて連通している。   FIG. 1 shows an embodiment of an electromagnetic proportional pressure control valve according to the present invention. A valve body 1 of this electromagnetic proportional pressure control valve includes a valve seat member 6, a valve body 12, a pressure regulating spring 13, and a piston 14. A multistage valve hole 2 for accommodating the return spring 16 and the like is provided in the axial direction. The valve hole 2 has a medium diameter portion 2A from one side in the axial direction, a small diameter portion 2B having a smaller diameter than the medium diameter portion 2A, a medium diameter portion 2C substantially the same diameter as the medium diameter portion 2A, and a large diameter larger than the medium diameter portion 2C. The stop portion 2E is formed at the connecting step portion of the medium diameter portion 2C and the large diameter portion 2D. The valve hole 2 is connected to and communicated with the control hole 4 through which the pressure fluid flows from the pressure source P through the joint member 3 and connected to the intermediate diameter portion 2A in the axial direction from the communicating portion of the control path 4. A discharge passage 5 connected to a tank T as a low pressure side is connected to and communicated with the medium diameter portion 2C formed at a required interval.

また、弁孔2における制御通路4の連通個所と排出通路5の連通個所との間の小径部2Bには、弁座部材6が嵌挿固設されていて、この弁座部材6には弁座7が形成されるとともに、弁座7に連なる段付の貫通孔8が軸方向に貫設されている。また、弁座部材6の先端、すなわち、貫通孔8の制御通路4連通個所と対峙する小径部先端には、絞り孔9を有する絞り部材10が固設されている。また、弁座部材6の中間部には、貫通孔8の大径部先端と連通して弁座部材6の外周面に開口する通路11が斜め径方向に穿設されている。   In addition, a valve seat member 6 is fitted and fixed in a small diameter portion 2B between the communicating portion of the control passage 4 and the communicating portion of the discharge passage 5 in the valve hole 2, and the valve seat member 6 has a valve seat. A seat 7 is formed, and a stepped through hole 8 connected to the valve seat 7 is provided in the axial direction. Further, a throttle member 10 having a throttle hole 9 is fixedly provided at the tip of the valve seat member 6, that is, at the tip of the small-diameter portion facing the control passage 4 communicating portion of the through hole 8. In addition, a passage 11 that opens to the outer peripheral surface of the valve seat member 6 so as to communicate with the distal end of the large-diameter portion of the through hole 8 is formed in the middle portion of the valve seat member 6 in an oblique radial direction.

弁体12は、弁座7に着座・離座するポペット状弁体であり、弁孔2の中径部2Cに軸方向へ移動自在に収装されていて、小径の頭部を弁座部材6の貫通孔8に軸方向へ摺動自在に嵌挿している。この弁体12は、頭部に絞り孔9を通して作用する制御通路4の流体圧力に基づく押圧力で調圧ばね13のばね力に抗して離座方向に押圧される。調圧ばね13は、弁孔2の中径部2Cにて弁体12とピストン14間に介装されていて、そのばね力にて弁体12を着座方向に押圧している。   The valve body 12 is a poppet-like valve body that sits on and separates from the valve seat 7 and is accommodated in the middle diameter portion 2C of the valve hole 2 so as to be movable in the axial direction. 6 are inserted into the through holes 8 so as to be slidable in the axial direction. The valve body 12 is pressed in the separation direction against the spring force of the pressure adjusting spring 13 by a pressing force based on the fluid pressure of the control passage 4 acting through the throttle hole 9 on the head. The pressure regulating spring 13 is interposed between the valve body 12 and the piston 14 at the middle diameter portion 2C of the valve hole 2, and presses the valve body 12 in the seating direction by the spring force.

ピストン14は、調圧ばね13のばね力を増減するためのものであり、中径部14Aと中径部14Aより大径の大径部14Bとを連設して構成されていて、中径部14Aを弁孔2の中径部2Cへ大径部14Bを弁孔2の大径部2Dへそれぞれ移動自在に収装している。また、ピストン14は、中径部14Aと大径部14Bとの連設段部に形成した肩部14Cが弁孔2の止め部2Eに対して接離自在に設けられていて、弁孔2の大径部2Dにおける中径部2C側端部に環状のパイロット室15を区画形成している。   The piston 14 is for increasing or decreasing the spring force of the pressure regulating spring 13, and is constituted by connecting a medium diameter part 14A and a large diameter part 14B larger in diameter than the medium diameter part 14A. The portion 14A is accommodated in the middle diameter portion 2C of the valve hole 2 and the large diameter portion 14B is movably accommodated in the large diameter portion 2D of the valve hole 2. Further, the piston 14 is provided with a shoulder portion 14C formed at a connecting step portion of the medium diameter portion 14A and the large diameter portion 14B so as to be able to contact with and separate from the stopper portion 2E of the valve hole 2. An annular pilot chamber 15 is defined in the end portion on the medium diameter portion 2C side of the large diameter portion 2D.

パイロット室15は、パイロット弁18から付与されるパイロット圧力を導入する室であり、このパイロット室15に導入されたパイロット圧力は、ピストン14に弁体12から離間する方向、すなわち、調圧ばね13のばね力を減少させる方向に作用している。復帰ばね16は、取付状態において調圧ばね13のばね力よりばね力を大きくしたばねであり、弁孔2の大径部2Dに収容されていて、ピストン14と弁孔2の軸方向他方側を閉塞する栓部材17との間に介装されており、ピストン14を弁体12への接近方向、すなわち、調圧ばね13のばね力を増大させる方向に押圧している。   The pilot chamber 15 is a chamber for introducing a pilot pressure applied from the pilot valve 18, and the pilot pressure introduced into the pilot chamber 15 is in a direction away from the valve body 12 to the piston 14, that is, the pressure regulating spring 13. Acting in the direction of decreasing the spring force. The return spring 16 is a spring in which the spring force is larger than the spring force of the pressure regulating spring 13 in the mounted state, and is housed in the large-diameter portion 2D of the valve hole 2, and the other side in the axial direction of the piston 14 and the valve hole 2 The piston 14 is pressed in the approaching direction to the valve body 12, that is, in the direction of increasing the spring force of the pressure regulating spring 13.

かかる構成により、ピストン14は、パイロット圧力に基づく押圧力と調圧ばね13のばね力の和が復帰ばね16のばね力を上回らなければ、調圧ばね13のばね力を初期の最大値に設定するよう弁体12に最接近して、肩部14Cが弁孔2の止め部2Eに当接すると共に、パイロット圧力の増大に応じて調圧ばね13のばね力を減少するよう調圧ばね13のばね力およびパイロット圧力に基づく押圧力と復帰ばね16のばね力との平衡位置へ弁体12から離間する方向へ移動自在に設けられている。   With this configuration, the piston 14 sets the spring force of the pressure adjusting spring 13 to the initial maximum value unless the sum of the pressing force based on the pilot pressure and the spring force of the pressure adjusting spring 13 exceeds the spring force of the return spring 16. The shoulder 14C comes into contact with the stop portion 2E of the valve hole 2 as close as possible to the valve body 12, and the spring force of the pressure regulating spring 13 is reduced so that the spring force of the pressure regulating spring 13 is reduced as the pilot pressure increases. It is provided so as to be movable in a direction away from the valve body 12 to an equilibrium position between the pressing force based on the spring force and pilot pressure and the spring force of the return spring 16.

パイロット弁18は、ピストン14に作用するパイロット圧力を調整可能なリリーフ弁であり、そのパイロット弁本体19は弁本体1の上方に装着されている。パイロット弁本体19には、多段のパイロット弁孔20が軸方向に貫設されている。パイロット弁孔20は、軸方向一方側より大径部20A、大径部20Aより小径の小径部20B、小径部20Bより大径で大径部20Aより小径の中径部20Cとされていて、大径部20A側開口を閉塞するようパイロット弁本体19に電磁気装置21が装着されている。また、弁孔20の中径部20Cには、パイロット圧力源P1からのパイロット圧力流体が流通するパイロット制御通路22が圧力補償付流量調整弁23を介して連通接続されている。   The pilot valve 18 is a relief valve capable of adjusting the pilot pressure acting on the piston 14, and the pilot valve main body 19 is mounted above the valve main body 1. A multistage pilot valve hole 20 is provided in the pilot valve main body 19 in the axial direction. The pilot valve hole 20 has a large diameter portion 20A from one side in the axial direction, a small diameter portion 20B having a smaller diameter than the large diameter portion 20A, a medium diameter portion 20C having a diameter larger than the small diameter portion 20B and smaller than the large diameter portion 20A. An electromagnetic device 21 is mounted on the pilot valve main body 19 so as to close the large-diameter portion 20A side opening. A pilot control passage 22 through which pilot pressure fluid from the pilot pressure source P1 flows is connected to the middle diameter portion 20C of the valve hole 20 via a pressure compensating flow rate adjusting valve 23.

圧力補償付流量調整弁23は、パイロット圧力源P1側の圧力変動にかかわりなく内蔵した絞りの前後差圧を略一定に制御して所定の流量のパイロット圧力流体を中径部20Cに導入している。また、パイロット弁孔20の小径部20Bには、パイロット弁座部材24が嵌挿固設されていて、このパイロット弁座部材24にはパイロット弁座25が形成されるとともに、パイロット弁座25に連なる段付の貫通孔26が軸方向に貫設されていて、中径部20Cと大径部20Aとの間をパイロット弁座25を介して連通している。また、パイロット弁孔20の中径部20Cは、パイロット通路27、28を介してパイロット室15に連通し、パイロット弁孔20の大径部20Aは、パイロット通路29、30を介して弁孔2の中径部2Cに連通している。   The flow rate adjusting valve with pressure compensation 23 introduces a predetermined flow rate of pilot pressure fluid into the middle diameter portion 20C by controlling the differential pressure across the built-in throttle substantially constant regardless of the pressure fluctuation on the pilot pressure source P1 side. Yes. A pilot valve seat member 24 is fitted and fixed to the small diameter portion 20B of the pilot valve hole 20. A pilot valve seat 25 is formed on the pilot valve seat member 24. A continuous stepped through hole 26 is provided in the axial direction, and the intermediate diameter portion 20 </ b> C and the large diameter portion 20 </ b> A communicate with each other via the pilot valve seat 25. The pilot valve hole 20 has an intermediate diameter portion 20C communicating with the pilot chamber 15 via pilot passages 27 and 28, and a large diameter portion 20A of the pilot valve hole 20 is connected to the valve hole 2 via pilot passages 29 and 30. It communicates with the medium diameter portion 2C.

電磁気装置21は、磁路となるケース31内にコイル32、固定鉄心33、可動鉄心34を有していて、固定鉄心33と対向して可動鉄心34が軸方向へ移動自在に設けられ、ケース31の固定鉄心33側にてパイロット弁本体19に装着され、ケース31の可動鉄心34側に蓋部材35が装着されて内部を閉塞している。また、可動鉄心34には、径方向中心に棒状部材36が軸方向の両端より突出して一体的に設けられていて、突出した棒状部材36の両端は軸受37、38を介して固定鉄心33、蓋部材35に支持されており、パイロット弁座25と同芯に設けられている。   The electromagnetic device 21 includes a coil 32, a fixed iron core 33, and a movable iron core 34 in a case 31 serving as a magnetic path. The movable iron core 34 is provided so as to be movable in the axial direction so as to face the fixed iron core 33. 31 is attached to the pilot valve main body 19 on the fixed iron core 33 side, and a lid member 35 is attached to the movable iron core 34 side of the case 31 to close the inside. Further, the movable iron core 34 is integrally provided with a rod-shaped member 36 projecting from both ends in the axial direction at the center in the radial direction, and both ends of the projecting rod-shaped member 36 are fixed to the fixed core 33, via bearings 37, 38. It is supported by the lid member 35 and provided concentrically with the pilot valve seat 25.

また、棒状部材36のパイロット弁座25側端部には、パイロット弁体39が同芯かつ一体的に設けられている。パイロット弁体39は、パイロット弁座25に着座・離座するポペット状弁体であり、パイロット弁孔20の大径部20Aに移動自在に収装されていて、貫通孔26を通して頭部に作用するパイロット弁孔20の中径部20Cに導入されるパイロット圧力流体の圧力に基づく押圧力でパイロット弁座25から離座する方向に押圧される。   A pilot valve body 39 is provided concentrically and integrally at the end of the rod-shaped member 36 on the pilot valve seat 25 side. The pilot valve body 39 is a poppet-like valve body that is seated on and separated from the pilot valve seat 25, is movably accommodated in the large-diameter portion 20 </ b> A of the pilot valve hole 20, and acts on the head through the through hole 26. The pilot valve hole 20 is pressed in the direction away from the pilot valve seat 25 by a pressing force based on the pressure of the pilot pressure fluid introduced into the medium diameter portion 20C of the pilot valve hole 20.

かかる構成により、この電磁気装置21では、コイル32への通電電流の増大に応じて可動鉄心34が固定鉄心33に吸引される作用力が増大する。また、パイロット弁18では、電磁気装置21の作用力の増大に応じてパイロット圧力を増大するよう固定鉄心33を挿通してパイロット弁体39の先端を可動鉄心34の棒状部材36に連結し、電磁気装置21の作用力をパイロット弁体39にパイロット弁座25への着座方向に付与している。   With this configuration, in the electromagnetic device 21, the acting force by which the movable iron core 34 is attracted to the fixed iron core 33 increases as the energization current to the coil 32 increases. Further, in the pilot valve 18, the stationary iron core 33 is inserted so as to increase the pilot pressure in response to an increase in the acting force of the electromagnetic device 21, and the tip of the pilot valve body 39 is connected to the rod-like member 36 of the movable iron core 34. The acting force of the device 21 is applied to the pilot valve body 39 in the seating direction on the pilot valve seat 25.

上記のように構成したこの実施形態の電磁比例圧力制御弁においては、パイロット弁18の電磁気装置21への通電電流がゼロであるとき、パイロット弁体39を着座方向へ押圧する電磁気装置21の作用力が生じておらず、パイロット弁体39はパイロット圧力源P1からパイロット制御通路22を流れてパイロット弁孔20の中径部20Cに導入したパイロット圧力流体の圧力に基づく押圧力で押圧されてパイロット弁座25から離座する。このため、パイロット圧力流体は、パイロット弁座25よりパイロット弁孔20の大径部20A、パイロット通路29、30、弁孔2の中径部2C、排出通路5を流れてタンクTに排出される。   In the electromagnetic proportional pressure control valve of this embodiment configured as described above, when the energization current to the electromagnetic device 21 of the pilot valve 18 is zero, the operation of the electromagnetic device 21 that presses the pilot valve body 39 in the seating direction. No force is generated, and the pilot valve body 39 flows through the pilot control passage 22 from the pilot pressure source P1 and is pressed by the pressing force based on the pressure of the pilot pressure fluid introduced into the intermediate diameter portion 20C of the pilot valve hole 20 and pilot. Separate from the valve seat 25. Therefore, the pilot pressure fluid flows from the pilot valve seat 25 through the large diameter portion 20A of the pilot valve hole 20, the pilot passages 29 and 30, the middle diameter portion 2C of the valve hole 2 and the discharge passage 5, and is discharged to the tank T. .

このときには、パイロット弁孔20の中径部20Cよりパイロット通路27、28を介してパイロット室15に導入されてピストン14に作用するパイロット圧力が最低となっている。このため、ピストン14は復帰ばね16のばね力に抗して移動せず、図1に示したように、復帰ばね16のばね力で押圧されて肩部14Cが止め部2Eに当接して弁体12に最接近しており、調圧ばね13のばね力は減少されず初期の設定値(最大値)に維持される。   At this time, the pilot pressure introduced into the pilot chamber 15 from the intermediate diameter portion 20C of the pilot valve hole 20 via the pilot passages 27 and 28 and acting on the piston 14 is the lowest. For this reason, the piston 14 does not move against the spring force of the return spring 16, but is pressed by the spring force of the return spring 16 as shown in FIG. It is closest to the body 12, and the spring force of the pressure regulating spring 13 is not reduced but is maintained at the initial set value (maximum value).

また、このときには、弁体12が初期の設定値(最大値)に維持された調圧ばね13のばね力で押圧されて弁座7に着座し、絞り孔9を通して頭部に作用する制御通路4の流体圧力に基づく押圧力が上記した調圧ばね13のばね力を上回ると、弁体12が開作動して弁座7から離座する。この離座状態では、制御通路4の圧力流体が通路11、弁座7、中径部20C等を通して排出通路5を流れてタンクTに排出され、これに伴って制御通路4の流体圧力が低下して、初期の設定値に維持されている調圧ばね13のばね力に相当する最大圧力に設定される。   Further, at this time, the valve body 12 is pressed by the spring force of the pressure regulating spring 13 maintained at the initial set value (maximum value) and is seated on the valve seat 7 and acts on the head through the throttle hole 9. When the pressing force based on the fluid pressure 4 exceeds the spring force of the pressure adjusting spring 13 described above, the valve body 12 is opened and separated from the valve seat 7. In this disengaged state, the pressure fluid in the control passage 4 flows through the discharge passage 5 through the passage 11, the valve seat 7, the middle diameter portion 20C, etc., and is discharged to the tank T. Accordingly, the fluid pressure in the control passage 4 decreases. Thus, the maximum pressure corresponding to the spring force of the pressure regulating spring 13 maintained at the initial set value is set.

この状態で、電磁気装置21のコイル32へ所定電流を通電すると、可動鉄心34が固定鉄心33に吸引される作用力が生じ、この作用力によりパイロット弁体39がパイロット弁座25に着座してパイロット圧力が増大する。このため、ピストン14は、増大したパイロット圧力に基づく押圧力および調圧ばね13のばね力と、復帰ばね16のばね力との平衡位置へ肩部14Cが止め部2Eから離脱して弁体12から離間する方向へ移動し、調圧ばね13のばね力を減少する。したがって、弁体12は弁座7に押圧される調圧ばね13のばね力の減少により制御通路4の流体圧力を減少して設定する。   In this state, when a predetermined current is applied to the coil 32 of the electromagnetic device 21, an acting force is generated in which the movable iron core 34 is attracted to the fixed iron core 33, and the pilot valve body 39 is seated on the pilot valve seat 25 by this acting force. Pilot pressure increases. For this reason, the piston 14 is separated from the stopper portion 2E by the shoulder portion 14C to the equilibrium position of the pressing force based on the increased pilot pressure and the spring force of the pressure adjusting spring 13 and the spring force of the return spring 16. It moves to the direction away from, and the spring force of the pressure regulation spring 13 is decreased. Therefore, the valve body 12 sets the fluid pressure in the control passage 4 by decreasing the spring force of the pressure regulating spring 13 pressed against the valve seat 7.

また、電磁気装置21のコイル32への通電電流を所定電流以上で増大すると、その通電電流の増大に応じてパイロット圧力が増大する。このため、ピストン14は、パイロット圧力の増大に応じて弁体12から一層離間する方向でパイロット圧力に基づく押圧力および調圧ばね13のばね力と復帰ばね16のばね力との平衡位置へ、復帰ばね16のばね力に抗して移動して、調圧ばね13のばね力を通電電流の増大に応じて減少する。したがって、電磁気装置21のコイル32への通電電流の増大に応じて、通電電流の増大に応じて減少する調圧ばね13のばね力に相当する圧力に制御通路4の流体圧力が減少設定される。   Further, when the energization current to the coil 32 of the electromagnetic device 21 is increased by a predetermined current or more, the pilot pressure increases according to the increase in the energization current. Therefore, the piston 14 moves to a balance position between the pressing force based on the pilot pressure and the spring force of the pressure adjusting spring 13 and the spring force of the return spring 16 in a direction further away from the valve body 12 in accordance with the increase of the pilot pressure. It moves against the spring force of the return spring 16, and the spring force of the pressure regulating spring 13 is reduced according to the increase of the energization current. Accordingly, the fluid pressure in the control passage 4 is set to be reduced to a pressure corresponding to the spring force of the pressure regulating spring 13 that decreases as the energization current increases as the energization current to the coil 32 of the electromagnetic device 21 increases. .

かかる作動において、制御通路4の圧力流体は、弁体12の開作動により弁孔2の中径部2Cに連通する排出通路5を通してタンクTに排出され、電磁気装置21を備えるパイロット弁18を介することなく排出通路5より低圧側に流れる。このため、制御通路4、弁孔2、弁体12、排出通路5等を大型化する場合にも、電磁気装置21を備えるパイロット弁18を大型化する必要がない。したがって、電磁気装置21を備えるパイロット弁18の小型化を維持した状態で、制御通路の流体圧力を上記した所期の制御形態にて制御することが可能である。   In such an operation, the pressure fluid in the control passage 4 is discharged to the tank T through the discharge passage 5 communicating with the middle diameter portion 2C of the valve hole 2 by the opening operation of the valve body 12, and via the pilot valve 18 including the electromagnetic device 21. Without flowing through the discharge passage 5 to the low pressure side. For this reason, even when the control passage 4, the valve hole 2, the valve body 12, the discharge passage 5 and the like are enlarged, it is not necessary to enlarge the pilot valve 18 including the electromagnetic device 21. Therefore, it is possible to control the fluid pressure in the control passage in the above-described intended control mode while maintaining the downsizing of the pilot valve 18 including the electromagnetic device 21.

また、この実施形態においては、パイロット弁18の電磁気装置21が、コイル32への通電電流の増大に応じて可動鉄心34が固定鉄心33に吸引される作用力が増大する電磁気装置であり、パイロット弁18が電磁気装置21の作用力の増大に応じてパイロット圧力を増大させるパイロット弁体39とパイロット弁座25を備えている。また、ピストン14には、パイロット圧力が調圧ばね13のばね力を減少させる方向に作用すると共に、弁孔2に収容した復帰ばね16のばね力がパイロット圧力に抗して作用するように構成されている。このため、コイル32への通電電流の増大に応じてパイロット圧力が増大する汎用の電磁気装置21を用いて当該電磁比例圧力制御弁を構成することが可能である。   In this embodiment, the electromagnetic device 21 of the pilot valve 18 is an electromagnetic device in which the acting force by which the movable iron core 34 is attracted to the fixed iron core 33 increases as the energization current to the coil 32 increases. The valve 18 includes a pilot valve body 39 and a pilot valve seat 25 that increase the pilot pressure in response to an increase in the acting force of the electromagnetic device 21. Further, the piston 14 acts on the piston 14 in a direction to reduce the spring force of the pressure adjusting spring 13, and the spring force of the return spring 16 accommodated in the valve hole 2 acts against the pilot pressure. Has been. For this reason, it is possible to constitute the electromagnetic proportional pressure control valve using the general-purpose electromagnetic device 21 in which the pilot pressure increases as the energization current to the coil 32 increases.

上記実施形態においては、コイル32への通電電流の増大に応じてパイロット圧力が増大する汎用の電磁気装置21を用いて当該電磁比例圧力制御弁を構成したが、上記した電磁気装置21に代えて、コイルへの通電電流の増大に応じてパイロット圧力が減少する電磁気装置を用いて当該電磁比例圧力制御弁を構成することも可能である。この場合には、上記実施形態の復帰ばね16とピストン14の軸方向に貫設した孔とを無くすと共に、この復帰ばね16が収容されている室をパイロット室として同パイロット室に上記実施形態のパイロット通路28を連通接続し、かつ上記実施形態のパイロット室15をタンクTに連通する必要がある。   In the above-described embodiment, the electromagnetic proportional pressure control valve is configured using the general-purpose electromagnetic device 21 in which the pilot pressure increases in accordance with the increase in the energization current to the coil 32. However, instead of the electromagnetic device 21 described above, It is also possible to configure the electromagnetic proportional pressure control valve using an electromagnetic device in which the pilot pressure decreases in accordance with an increase in the energization current to the coil. In this case, the return spring 16 of the embodiment and the hole penetrating in the axial direction of the piston 14 are eliminated, and the chamber in which the return spring 16 is accommodated is used as a pilot chamber in the pilot chamber. It is necessary to connect the pilot passage 28 in communication and to connect the pilot chamber 15 of the above embodiment to the tank T.

上記実施形態の制御通路4を主弁(図示省略)のパイロット通路とすることによって、本発明の電磁比例圧力制御弁をパイロット作動形リリーフ弁、パイロット作動形減圧弁、パイロット作動形シーケンス弁等圧力弁のパイロット弁としても適用することが可能である。   By making the control passage 4 of the above embodiment a pilot passage of a main valve (not shown), the electromagnetic proportional pressure control valve of the present invention can be used as a pilot operated relief valve, a pilot operated pressure reducing valve, a pilot operated sequence valve, etc. It can also be applied as a pilot valve of a valve.

本発明による電磁比例圧力制御弁の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the electromagnetic proportional pressure control valve by this invention.

符号の説明Explanation of symbols

1 弁本体
2 弁孔
4 制御通路
5 排出通路
7 弁座
12 弁体
13 調圧ばね
14 ピストン
16 復帰ばね
18 パイロット弁
21 電磁気装置
32 コイル
33 固定鉄心
34 可動鉄心
25 パイロット弁座
39 パイロット弁体
DESCRIPTION OF SYMBOLS 1 Valve body 2 Valve hole 4 Control passage 5 Discharge passage 7 Valve seat 12 Valve body 13 Pressure regulating spring 14 Piston 16 Return spring 18 Pilot valve 21 Electromagnetic device 32 Coil 33 Fixed iron core 34 Movable iron core 25 Pilot valve seat 39 Pilot valve body

Claims (2)

弁本体の弁孔には、所要の軸方向間隔で、圧力流体が流通する制御通路と、作動流体を低圧側に流す排出通路とが接続されて連通し、前記弁孔の制御通路連通個所と排出通路連通個所との間には弁座が形成され、この弁座に着座・離座する弁体が前記弁孔に移動自在に収装されていて、この弁体には、前記弁孔に収容した調圧ばねのばね力が着座方向に作用すると共に、前記制御通路の流体圧力が前記調圧ばねのばね力に抗して離座方向に作用し、かつ前記調圧ばねのばね力を増減するピストンが前記弁孔に移動自在に収装されていて、このピストンにはパイロット弁が備える電磁気装置の作用力に応じたパイロット圧力が作用して、同パイロット圧に応じて前記ピストンが移動して前記調圧ばねのばね力が増減するように構成したことを特徴とする電磁比例圧力制御弁。   The valve hole of the valve body is connected to and communicated with a control passage through which the pressure fluid flows at a required axial interval and a discharge passage through which the working fluid flows to the low pressure side. A valve seat is formed between the discharge passage communicating portion, and a valve body that is seated on and separated from the valve seat is movably accommodated in the valve hole. The spring force of the accommodated pressure regulating spring acts in the seating direction, the fluid pressure in the control passage acts in the separation direction against the spring force of the pressure regulating spring, and the spring force of the pressure regulating spring is reduced. An increasing / decreasing piston is movably accommodated in the valve hole, and a pilot pressure corresponding to the operating force of an electromagnetic device provided in the pilot valve acts on the piston, and the piston moves according to the pilot pressure. And the spring force of the pressure adjusting spring is increased or decreased. Electromagnetic proportional pressure control valve to. 請求項1に記載の電磁比例圧力制御弁において、前記電磁気装置は、コイルへの通電電流の増大に応じて可動鉄心が固定鉄心に吸引される作用力が増大する電磁気装置であり、前記パイロット弁は前記電磁気装置の作用力の増大に応じて前記パイロット圧力を増大させるパイロット弁体とパイロット弁座を備えていて、前記ピストンには、前記パイロット圧力が前記調圧ばねのばね力を減少させる方向に作用すると共に、前記弁孔に収容した復帰ばねのばね力が前記パイロット圧力に抗して作用するように構成したことを特徴とする電磁比例圧力制御弁。
2. The electromagnetic proportional pressure control valve according to claim 1, wherein the electromagnetic device is an electromagnetic device in which an acting force of the movable iron core attracted to the fixed iron core increases in accordance with an increase in an energization current to the coil, and the pilot valve Comprises a pilot valve body and a pilot valve seat that increase the pilot pressure in response to an increase in the acting force of the electromagnetic device, and the pilot pressure is applied to the piston in a direction in which the spring force of the pressure regulating spring decreases. And an electromagnetic proportional pressure control valve configured so that the spring force of the return spring accommodated in the valve hole acts against the pilot pressure.
JP2003277560A 2003-07-22 2003-07-22 Electromagnetic proportional pressure control valve Withdrawn JP2005042819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277560A JP2005042819A (en) 2003-07-22 2003-07-22 Electromagnetic proportional pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277560A JP2005042819A (en) 2003-07-22 2003-07-22 Electromagnetic proportional pressure control valve

Publications (1)

Publication Number Publication Date
JP2005042819A true JP2005042819A (en) 2005-02-17

Family

ID=34264255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277560A Withdrawn JP2005042819A (en) 2003-07-22 2003-07-22 Electromagnetic proportional pressure control valve

Country Status (1)

Country Link
JP (1) JP2005042819A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225039A (en) * 2010-04-16 2011-11-10 Tgk Co Ltd Control valve and vehicle air conditioner
CN102959296A (en) * 2010-06-28 2013-03-06 谢夫勒科技股份两合公司 Fluid control valve, in particular a seat valve
CN103542151A (en) * 2013-10-21 2014-01-29 北京天地玛珂电液控制系统有限公司 Hydraulic-control switch throttle valve
KR20220058711A (en) * 2020-10-29 2022-05-10 한국수력원자력 주식회사 Apparatus and method for controlling survo valve using flow control
CN115559830A (en) * 2022-09-30 2023-01-03 蓝箭航天空间科技股份有限公司 Electromagnetic pilot control valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225039A (en) * 2010-04-16 2011-11-10 Tgk Co Ltd Control valve and vehicle air conditioner
CN102959296A (en) * 2010-06-28 2013-03-06 谢夫勒科技股份两合公司 Fluid control valve, in particular a seat valve
CN103542151A (en) * 2013-10-21 2014-01-29 北京天地玛珂电液控制系统有限公司 Hydraulic-control switch throttle valve
KR20220058711A (en) * 2020-10-29 2022-05-10 한국수력원자력 주식회사 Apparatus and method for controlling survo valve using flow control
KR102446972B1 (en) * 2020-10-29 2022-09-27 한국수력원자력 주식회사 Apparatus and method for controlling survo valve using flow control
CN115559830A (en) * 2022-09-30 2023-01-03 蓝箭航天空间科技股份有限公司 Electromagnetic pilot control valve
CN115559830B (en) * 2022-09-30 2023-09-26 蓝箭航天空间科技股份有限公司 Electromagnetic pilot control valve

Similar Documents

Publication Publication Date Title
JP5615286B2 (en) Solenoid valve
WO2010067853A1 (en) Solenoid-driven flow rate control valve
US20040154672A1 (en) Proportional pilot-operated flow control valve
US8418723B2 (en) Electromagnetic proportional flow rate control valve
US8100142B2 (en) Bleed-type electromagnetic valve
JPH07139516A (en) Displacement control type oil pressure proportional control valve
US10458509B2 (en) Damping valve and shock absorber
US8061384B2 (en) Pressure control device
JP2005042819A (en) Electromagnetic proportional pressure control valve
JP4872868B2 (en) Pressure control device
JP4491284B2 (en) Hydraulic shock absorber
JP2012073886A (en) Regulator
JPH06185667A (en) Pilot operated pressure control valve
JPH05215269A (en) Control valve
JP6997655B2 (en) Valve device and shock absorber
JP4923806B2 (en) Pressure control device
JP4826567B2 (en) Pressure control device
JP2001108138A (en) Solenoid pressure control valve
JPH08193670A (en) Solenoid valve
JPS62171504A (en) Fluid control device
JP4858402B2 (en) solenoid valve
JP2002295708A (en) Solenoid valve
JP4081592B2 (en) Constant flow solenoid valve
JP5269391B2 (en) Control valve for variable displacement compressor
JPH0357352B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003