JPS62171139A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62171139A
JPS62171139A JP1200186A JP1200186A JPS62171139A JP S62171139 A JPS62171139 A JP S62171139A JP 1200186 A JP1200186 A JP 1200186A JP 1200186 A JP1200186 A JP 1200186A JP S62171139 A JPS62171139 A JP S62171139A
Authority
JP
Japan
Prior art keywords
cavity
groove
dummy
chemical vapor
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1200186A
Other languages
Japanese (ja)
Inventor
Fumio Yanagihara
柳原 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1200186A priority Critical patent/JPS62171139A/en
Publication of JPS62171139A publication Critical patent/JPS62171139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid gas pockets by a method wherein a dummy part is added to a U-groove and the dummy part form a crossing part or a large width part which has a larger aperture than the other part of the U-groove and chemical vapor deposition of filling material is carried out under depressurized conditions. CONSTITUTION:Even if polycrystalline silicon is made to grow on the other part of a U-groove, a cavity 20a remains at the center part of a dummy part 22c. If chemical vapor phase deposition is continued in this state, growth gas, for instance SiH4, is made to flow into a tunnel cavity 20b in the part other than the dummy part 22c from the cavity 20a at the center part of the dummy part 22c to fill the cavity 20b with polycrystalline silicon. Although the cavity 20a is not yet completely filled when the cavity 20b is completely filled with polycrystalline silicon, the chemical vapor phase deposition is discontinued at this stage. If Al is applied like conventional examples and patterned, an Al dot 18b is left between electrode wirings 18. However, the Al dot 18b does not cause the short-circuit between the electrode wirings 18.

Description

【発明の詳細な説明】 〔概要〕 半導体基板に形成したUm埋込み手法において、ダミー
溝を設は多結晶シリコン(ポリシリコン)の充填を補う
[Detailed Description of the Invention] [Summary] In a Um burying method formed in a semiconductor substrate, a dummy trench is provided to supplement filling with polycrystalline silicon (polysilicon).

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に関するもので、さらに
詳しく言えば、U溝を充填材すなわちポリシリコンで埋
め込んで絶縁分離をなす際に、従来認められたすの発生
を防止する方法に関するものである。
The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for preventing the generation of holes that have conventionally been observed when a U-groove is filled with a filler, that is, polysilicon, to provide insulation isolation. .

〔従来の技術〕[Conventional technology]

半導体装置の製造工程において、U溝埋込み絶縁分離手
法がとられることが多い。それを第5図の断面図を参照
して説明すると、半導体基板11の表面にシリコン窒化
膜(Si5Nu膜)12を形成し、それをパターニング
した後にエツチングで基板にU溝13を形成し、U溝の
表面を酸化して酸化膜(SiO2膜)14を形成し、次
いで化学気相成長法で充填材(ポリシリコン)を成長し
てポリシリコン15を形成する。
In the manufacturing process of semiconductor devices, a U-trench buried insulation isolation method is often used. To explain this with reference to the cross-sectional view of FIG. 5, a silicon nitride film (Si5Nu film) 12 is formed on the surface of a semiconductor substrate 11, and after patterning it, a U groove 13 is formed in the substrate by etching. The surface of the trench is oxidized to form an oxide film (SiO2 film) 14, and then a filler (polysilicon) is grown by chemical vapor deposition to form polysilicon 15.

次いで、ポリッシングによって第5図(blに示される
如く基板の表面を平坦にする。
Next, the surface of the substrate is made flat by polishing as shown in FIG.

次に、シリコン窒化膜12を除去し、ポリシリコン15
の表面を酸化して5i02膜16を作る。このとき、シ
リコン窒化膜が除去された後の基板表面も酸化されて基
板面にも5i02膜16が形成される(第5図(C))
Next, the silicon nitride film 12 is removed, and the polysilicon film 15 is removed.
A 5i02 film 16 is formed by oxidizing the surface of the 5i02 film 16. At this time, the substrate surface after the silicon nitride film has been removed is also oxidized, and a 5i02 film 16 is also formed on the substrate surface (FIG. 5(C)).
.

次いで、第5図(d)に示される如く電極窓17を窓開
けし、全面にアルミニウム(Anり1Bを堆積する。
Next, as shown in FIG. 5(d), the electrode window 17 is opened and aluminum (An 1B) is deposited on the entire surface.

最後に、Alを例えば異方性エツチングでバターニング
して電極配線18を第5図(e)に示される如く形成す
る。
Finally, Al is patterned by, for example, anisotropic etching to form electrode wiring 18 as shown in FIG. 5(e).

第6図は上記の如くにして形成された埋込み絶縁分離層
19の平面図で、埋込み絶縁分離層19はポリシリコン
15の表面に5i02膜16が形成されてなるものであ
る。1つの例において、埋込み絶縁分離層によって囲ま
れる領域は5μm×10〜15μmの寸法のものである
FIG. 6 is a plan view of the buried insulating isolation layer 19 formed as described above, and the buried insulating isolation layer 19 is formed by forming a 5i02 film 16 on the surface of the polysilicon 15. In one example, the area surrounded by the buried insulating isolation layer has dimensions of 5 μm x 10-15 μm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記したU溝埋込み絶縁分離手法において、U溝形状が
狭口開口となる例が多く、かかる狭口開口部をポリシリ
コンなどの充填物で充填する場合に、ポリシリコンはU
溝表面から均等に成長するので、溝内が十分に埋りきら
ないうちに溝の上部の狭口部が閉じてしまい溝内に第5
図fa)に空洞20が生じることがある。これをポリッ
シングなどの手法で平坦化すると、溝中央部にす21が
発生する(第5図(b))。
In the above-described U-trench embedding insulation isolation method, there are many cases where the U-trench shape becomes a narrow opening, and when filling such a narrow opening with a filler such as polysilicon, the polysilicon is
Because it grows evenly from the groove surface, the narrow part at the top of the groove closes before the inside of the groove is fully filled, resulting in a fifth layer inside the groove.
A cavity 20 may occur in figure fa). When this is flattened by a technique such as polishing, a groove 21 is generated at the center of the groove (FIG. 5(b)).

このようなす21が存在すると、第5図(elを参照し
て説明したAIのバターニングにおいて、異方性エツチ
ングでAIをエツチングしたとき、す21の段差の急な
ところにA/ 18aがエツチングされずに残る。この
ようにAn2の残り18aが存在すると、電極配線18
が第6図に示される如く短絡される問題がある。
If such a step 21 exists, when the AI is etched by anisotropic etching in the AI patterning explained with reference to FIG. If the remainder 18a of An2 exists in this way, the electrode wiring 18
There is a problem in that the wires are short-circuited as shown in FIG.

本発明はこのような点に鑑みて創作されたもので、U溝
埋込み絶縁分離手法において、すの発生を防止する方法
を提供することを目的とする。
The present invention was created in view of these points, and an object of the present invention is to provide a method for preventing the occurrence of scratches in a U-groove buried insulation isolation method.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の平面図である。 FIG. 1 is a plan view of an embodiment of the present invention.

本発明においては、従来の埋込み絶縁分R層19を、白
抜き矢印で示す如くに、ダミー部22a、 22b。
In the present invention, the conventional buried insulating R layer 19 is formed into dummy portions 22a and 22b as shown by the white arrows.

22cをもった形状に構成し、充填材成長のための充填
気体(成長ガス)の平均自由行程(mean free
pass)を長くする系(例えば0.1〜1.OTor
rの減圧系)で気相成長することによって有効素子部の
充填を補うものである。
22c, and the mean free path of the filling gas (growth gas) for filling material growth.
system that lengthens the pass) (e.g. 0.1 to 1.OTor
The filling of the effective element portion is supplemented by vapor phase growth in a reduced pressure system (r).

〔作用〕[Effect]

上記した方法においては、ダミー部22a、 22b。 In the method described above, the dummy parts 22a and 22b.

22cを設けであるので、化学気相成長において、ダミ
ー部では開口部が充填材(ポリシリコン)で埋め込まれ
るのに時間がかかり、そこにできた空洞が小さくなるま
でにはダミー部以外の部分の空洞が完全に埋め込まれる
ので、従来埋込み絶縁分離層のほとんどにわたって発生
したすかなくなり、他方ダミー部の小さくなった空洞は
そのまま点状に残るが、そこに点状のAgが残ってもそ
れは電極配線の短絡を生じるおそれのないものである。
22c, during chemical vapor deposition, it takes time for the opening in the dummy part to be filled with the filler (polysilicon), and it takes time for the opening in the dummy part to be filled with the filler (polysilicon). Since the cavities in the dummy part are completely buried, the cavities that were previously generated over most of the buried insulating separation layer are completely eliminated.On the other hand, the small cavities in the dummy part remain in the form of dots, but even if the dots of Ag remain there, they are not in contact with the electrodes. There is no risk of wiring short-circuiting.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図(alは本発明実施例の平面図で、それは第1図
のダミー部22cの拡大図、第2図山)は同図(a)の
B−B線に沿う断面図である。
FIG. 2 (Al is a plan view of the embodiment of the present invention, it is an enlarged view of the dummy portion 22c in FIG. 1, and FIG. 2 (mountain) is a sectional view taken along line BB in FIG. 2(a).

化学気相成長において、充填材すなわちポリシリコンは
U溝の表面から均等に成長するので、第2図(alに見
てU溝の他の部分にポリシリコンが成長しても、ダミー
部22cの中心部には空洞20aが残る。この状態で化
学気相成長を続けると、ダミー部22cの中心の空洞2
0aからダミー部以外の部分のトンネル状の空洞20b
に成長ガス(例えばSth )が流れ込み、空洞20b
をポリシリコンで埋め込む。空洞 20bが完全にポリ
シリコンで埋め込まれたとき空洞20aはまだ完全に埋
め込まれていないが、この段階で化学気相成長を中止す
る。
In chemical vapor deposition, the filler, that is, polysilicon, grows uniformly from the surface of the U-groove, so even if polysilicon grows in other parts of the U-groove as seen in FIG. A cavity 20a remains in the center.If chemical vapor deposition is continued in this state, the cavity 20a in the center of the dummy part 22c will remain.
Tunnel-shaped cavity 20b in the part other than the dummy part from 0a
A growth gas (for example, Sth) flows into the cavity 20b.
Embed with polysilicon. When the cavity 20b is completely filled with polysilicon, the cavity 20a is not yet completely filled, but the chemical vapor deposition is stopped at this stage.

次いで、従来例の場合と同様にポリッシュすると、第3
図の平面図に示される如く点状のす21がダミー部22
cの中心に残る。引続き、従来例と同様にAIを被着し
、それをバターニングすると、第4図の平面図に示され
る如く、電極配線18の間に点状のA18bが残るが、
第4図と第6図との比較から理解されるように、従来は
電極配線18の間にAl18aが線状に延在していて短
絡を発生したのに比べ、点状のA/ 18bが電極配線
18の短絡の原因となるおそれはない。
Then, when polished in the same manner as in the conventional example, the third
As shown in the plan view of the figure, the dotted holes 21 are connected to the dummy part 22.
remains at the center of c. Subsequently, when AI is deposited and buttered in the same manner as in the conventional example, dot-shaped A18b remains between the electrode wirings 18, as shown in the plan view of FIG.
As can be understood from a comparison between FIG. 4 and FIG. 6, in the past, Al 18a was linearly extended between the electrode wirings 18, causing a short circuit, but dotted A/ 18b There is no risk of causing a short circuit in the electrode wiring 18.

上記したトンネル状の空洞20b内の充填材(ポリシリ
コン)の成長を促進するために、本発明においては、成
長ガスの平均自由行程が長くなるような系、すなわち0
,1〜1.Q Torrの減圧系で化学気相成長を行い
、有効素子部(例えば空洞20b)の充填を補う。
In order to promote the growth of the filling material (polysilicon) in the tunnel-like cavity 20b, the present invention uses a system in which the mean free path of the growth gas is long, that is, 0
, 1-1. Chemical vapor deposition is performed in a reduced pressure system of Q Torr to supplement the filling of the effective element portion (for example, the cavity 20b).

ダミー部の形状は、第1図に符号22a、 22cで示
す交叉部形状だけでなく、同図に符号22bで示す幅広
部に形成する。重要なことは、狭口でなく広口開口部を
提供する構造を余分に設けるにある。
The shape of the dummy portion is not only the shape of the intersection shown by reference numerals 22a and 22c in FIG. 1, but also the wide part shown by the reference numeral 22b in the figure. The key is to provide extra structure to provide a wide opening rather than a narrow opening.

なお、U溝の形成、U溝表面の酸化ポリッシュ、ポリシ
リコン表面の酸化、Aρの被着とそのバターニングなど
は従来例と全く同様にして素子絶縁分離層を形成する。
Incidentally, the formation of the U-groove, oxidation polishing of the surface of the U-groove, oxidation of the polysilicon surface, deposition of Aρ and its patterning, etc., are performed in exactly the same manner as in the conventional example to form the element insulation isolation layer.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、Ui埋込み絶縁
分離手法において、ダミー溝を設けることによってポリ
シリコンの充填を補い、電極配線の短絡などが防止され
、半導体装置の信頼性を高めるに有効である。
As described above, according to the present invention, in the Ui buried insulation isolation method, by providing a dummy trench, filling with polysilicon is supplemented, short circuits of electrode wiring, etc. are prevented, and it is effective for increasing the reliability of semiconductor devices. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の平面図、 第2図(a)は第1図のダミー部の拡大部、同図(bl
は同図(alのB−B線に沿う断面図、第3図は第2図
のダミー部のポリッシュ後の平面図、 第4図は電極配線形成後のすに残るlを示す平面図、 第5図は従来例の断面図、 第6図は従来例の問題点を示す平面図である。 第1図ないし第6図において、 11は半導体基板、 12はシリコン窒化膜、 13はU溝、 14は SiO2膜、 15はポリシリコン、 16は SiO2膜、 17は電極窓、 18は電極配線、 18aと18bは残ったl。 19は埋込み絶縁分離層、 20、20a、 20bは空洞、 21はす、 22a、 22b、 22cはダミー部である。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 本発明東上寄り平面図 第1図 ポリシリコン15 7′“″“1ry15 尤1 凹のり゛S−名Pめl 第2図 ′t21 功+面図 第3図 電極配J集躬へ゛を支のす1ユ残るAftネ↑平面図第
4図 5i02月116 記(東う列 #r面圓 第5図 At +8      電睦凋17 7、′ /             tI己♂馳 ]8ノ′ ′4廻克1りl]訴面圓 第5図
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2(a) is an enlarged portion of the dummy part in FIG.
3 is a plan view of the dummy part in FIG. 2 after polishing, and FIG. 4 is a plan view showing l remaining in the hole after electrode wiring is formed. Fig. 5 is a cross-sectional view of the conventional example, and Fig. 6 is a plan view showing problems of the conventional example. In Figs. 1 to 6, 11 is a semiconductor substrate, 12 is a silicon nitride film, and 13 is a U-groove. , 14 is a SiO2 film, 15 is a polysilicon, 16 is a SiO2 film, 17 is an electrode window, 18 is an electrode wiring, 18a and 18b are remaining parts, 19 is a buried insulating separation layer, 20, 20a, and 20b are cavities, 21 Lotus, 22a, 22b, and 22c are dummy parts. Agent: Patent attorney Moto Kuki Agent: Yoshiyuki Osuga Concave glue ゛S-name PmeL Fig. 2 't21 G+ side view Fig. 3 Electrode arrangement 1 unit remaining to support the J assembly ↑ Plan view Fig. 4 #R -faced En, 58 AT +8 electrulbles 177, ' / Ti self -♂ treat] 8 ノ''4 times Katsu 1 L].

Claims (1)

【特許請求の範囲】 半導体基板(11)にU溝(13)を形成し、U溝(1
3)に充填材(15)を埋め込むU溝埋込み絶縁分離法
において、 U溝(13)にU溝の他の部分より大なる開口部をもつ
交叉部または幅広部を形成するダミー部分(22a、2
2b、22c)を付加し、 充填材(15)の化学気相成長を減圧系で行うことを特
徴とする半導体装置の製造方法。
[Claims] A U-groove (13) is formed in a semiconductor substrate (11), and a U-groove (13) is formed in a semiconductor substrate (11).
3) In the U-groove embedding insulation isolation method in which a filler (15) is embedded in the U-groove (13), a dummy portion (22a, 2
2b, 22c), and chemical vapor deposition of the filler (15) is performed in a reduced pressure system.
JP1200186A 1986-01-24 1986-01-24 Manufacture of semiconductor device Pending JPS62171139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1200186A JPS62171139A (en) 1986-01-24 1986-01-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1200186A JPS62171139A (en) 1986-01-24 1986-01-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62171139A true JPS62171139A (en) 1987-07-28

Family

ID=11793347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1200186A Pending JPS62171139A (en) 1986-01-24 1986-01-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62171139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226465A (en) * 1992-02-18 1993-09-03 Nec Corp Semiconductor device
JP2014086467A (en) * 2012-10-19 2014-05-12 Tohoku Univ Semiconductor device manufacturing method and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226465A (en) * 1992-02-18 1993-09-03 Nec Corp Semiconductor device
JP2014086467A (en) * 2012-10-19 2014-05-12 Tohoku Univ Semiconductor device manufacturing method and semiconductor device

Similar Documents

Publication Publication Date Title
US5470793A (en) Method of via formation for the multilevel interconnect integrated circuits
US4876223A (en) Method of manufacturing semiconductor devices
JPH04142061A (en) Formation of tungsten plug
JPH0427702B2 (en)
JP2822430B2 (en) Method of forming interlayer insulating film
JPS62171139A (en) Manufacture of semiconductor device
JPH10335459A (en) Semiconductor device and its manufacture
JP2616134B2 (en) SOI transistor stacked semiconductor device and method of manufacturing the same
JPH02231739A (en) Semiconductor and its manufacture
JPH0249017B2 (en)
JPS6254427A (en) Manufacture of semiconductor device
JP2770398B2 (en) Method of forming contact hole
JPS62222654A (en) Manufacture of semiconductor device
JPS63237441A (en) Semiconductor device
JPH10209521A (en) Semiconductor device having magnetoresistance element
JPH05304150A (en) Fabrication of semiconductor integrated circuit device
JPH07245345A (en) Wiring forming method
JPH02103954A (en) Semiconductor device
JPS61287146A (en) Formation of multilayer interconnection
JPH0855863A (en) Manufacture of field-effect semiconductor device
JPH08186083A (en) Metal film forming method
JPH0328061B2 (en)
JPS58135651A (en) Manufacture of semiconductor device
JPS6230335A (en) Manufacture of semiconductor device
JPS63164339A (en) Manufacture of semiconductor integrated circuit device