JPS62171115A - Reaction tube of vapor growth device - Google Patents

Reaction tube of vapor growth device

Info

Publication number
JPS62171115A
JPS62171115A JP1352886A JP1352886A JPS62171115A JP S62171115 A JPS62171115 A JP S62171115A JP 1352886 A JP1352886 A JP 1352886A JP 1352886 A JP1352886 A JP 1352886A JP S62171115 A JPS62171115 A JP S62171115A
Authority
JP
Japan
Prior art keywords
reaction
gas
tube
reaction tube
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1352886A
Other languages
Japanese (ja)
Inventor
Hidenori Kamei
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1352886A priority Critical patent/JPS62171115A/en
Publication of JPS62171115A publication Critical patent/JPS62171115A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress contamination within a reaction tube by inserting a reaction gas supply tube from the one end of reaction tube up to the part near to the susceptor, providing a purge gas supply port to the outer end and coupling a gas exhaust port to the space between the reaction gas supply tube and internal wall of said reaction tube. CONSTITUTION:When the reaction gas is supplied from a reaction gas supply tube 8 into a reaction tube 1, simultaneously the purge gas is supplied from a purge gas supply port 9 and the gas is exhausted from a gas exhaust port 11, the non-decomposed reaction gas not used for formation of thin film passes on the substrate 7 and flows upward in the space 10 with the purge gas, passes the gas exhaust port 11 and is exhausted to the outside of reaction tube 1. Thereby, the non-decomposed reaction gas not used for formation of a thin film does not pass the periphery of susceptor heated in the course of exhaustion. Accordingly, non-volatile product generated by thermal decomposition of non-decomposed reaction gas included in the exhaust gas is adhered to the internal wall of reaction tube ranged from the region near the susceptor to the down-stream, thereby preventing contamination of internal wall of the reaction tube. The single-sided flow of purge gas and exhaust gas in the reaction tube 1 can be prevented by providing the purge gas supply port 9 and gas exhaust port 11 with an equal interval.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、気相成長において、成長に寄与しない反応
ガスの熱分解を抑制し、反応炉内の汚れを低減する気相
成長装置の反応管に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a reaction system in a vapor phase growth apparatus that suppresses thermal decomposition of a reaction gas that does not contribute to growth in vapor phase growth, and reduces contamination in a reactor. Regarding pipes.

〔従来の技術〕[Conventional technology]

反応ガスの熱分解を利用した気相成長法で半導体薄膜等
を成長する方法を、反応管として縦型反応管を用いる場
合を例にとって説明すると、第3図に示すように、反応
管1の上端2に連結された反応ガス供給管4より、成長
しようとする薄膜を構成する元素を成分として含む適当
な反応ガス(あるいは蒸気)を反応管1内に導入し、こ
の反応ガスを、反応管1内に収納保持されて高周波誘導
加熱法等によって加熱されたサセプタ6上に装着された
高温の基板7に吹き付け、この基板7の表面あるいは近
傍で上記反応ガスを熱分解し、遊離した元素あるいは分
子を基板7の表面に結合させ薄膜を形成する。一方、薄
膜形成に関与しない未分解の反応ガスや、反応ガスの熱
分解で生じた副生成物(ガスあるいは不揮発性生成物)
はサセプタ6の周囲を通過して、反応管1の下端8に連
結されたガス排出口5より排気される。
To explain a method for growing semiconductor thin films etc. by vapor phase growth using thermal decomposition of a reaction gas, using a vertical reaction tube as an example, as shown in FIG. A suitable reaction gas (or vapor) containing the elements constituting the thin film to be grown is introduced into the reaction tube 1 through the reaction gas supply pipe 4 connected to the upper end 2, and this reaction gas is fed into the reaction tube 1. The reaction gas is pyrolyzed on the surface of or near the substrate 7, and the liberated elements or The molecules are bonded to the surface of the substrate 7 to form a thin film. On the other hand, undecomposed reaction gases that do not participate in thin film formation and byproducts (gases or nonvolatile products) generated from thermal decomposition of reaction gases
The gas passes around the susceptor 6 and is exhausted from the gas outlet 5 connected to the lower end 8 of the reaction tube 1.

〔発明が解決し上うとする問題点〕[Problems that the invention attempts to solve]

しかしながら、反応ガスの熱分解を利用した気相成長法
では一般的に反応炉内に導入した反応ガスのうち、一部
が基板上で熱分解し、薄膜形成に寄与するが、残りのか
なりの割合の反応ガスは未分解のまま基板上を通過し、
ガス排出口の方に導かれることから、上記の従来法では
、薄膜形成に寄与しない多量の未分解の反応ガスが高温
に加熱されたサセプタ6の外周と、反応管1の内壁の間
を通過し、このとき、多くの未分解の反応ガスが熱分解
し、生じた不揮発性生成物がサセプタ6付近からその下
流にかけての反応管1の内壁に付着し、管内を汚し、従
って高品質の薄膜を長時間(あるいは多数回)にわたっ
て成長させることができず、頻繁に反応管1を洗浄クリ
ーニングする必要があり、装置の稼動率をより高めたり
するには無理があった。
However, in the vapor phase growth method that utilizes thermal decomposition of a reactive gas, a portion of the reactive gas introduced into the reactor is thermally decomposed on the substrate and contributes to thin film formation, but a considerable amount of the remaining gas is thermally decomposed on the substrate. A proportion of the reactant gas passes over the substrate undecomposed,
In the conventional method described above, a large amount of undecomposed reaction gas that does not contribute to thin film formation passes between the outer periphery of the susceptor 6 heated to a high temperature and the inner wall of the reaction tube 1 because it is guided toward the gas outlet. However, at this time, much of the undecomposed reaction gas is thermally decomposed, and the resulting nonvolatile products adhere to the inner wall of the reaction tube 1 from the vicinity of the susceptor 6 to the downstream thereof, contaminating the inside of the tube, and thus preventing the formation of a high-quality thin film. could not be grown for a long time (or many times), and the reaction tube 1 had to be washed and cleaned frequently, making it impossible to further increase the operating rate of the apparatus.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記の問題点を無くすことを目的として提
案でれたものであり、反応管として縦型反応管を用いる
場合を例にとって説明すると、第1図に示すように、反
応管1の上端2より、反応管1の内部に、その上端部で
反応ガス供給管4と連結されてその上端部付近が水冷さ
れた反応ガス導入管8を、反応ガス導入管8の全周にお
いて、反応管1の内壁との間に空間10の生じる状態で
サセプタ6の近傍まで挿入し、反応管1の下端部3にパ
ージガス導入口9を複数個設け、反応管lの上端2にお
いて、空間10にガス排出口11を複数個連結し、この
構造で特にサセプタ6の基板7を装着する面の径を、反
応ガス導入管8の下端の反応ガス放出口径より太きくシ
、かつ、この面と反応ガス導入管8の下端との距離がど
の下端においてもほぼ等しくしたものである。
This invention was proposed with the aim of eliminating the above-mentioned problems.To explain the case using a vertical reaction tube as an example, as shown in FIG. A reaction gas introduction tube 8, which is connected to the reaction gas supply tube 4 at its upper end and water-cooled near the upper end, is inserted into the reaction tube 1 from the upper end 2, around the entire circumference of the reaction gas introduction tube 8. The tube 1 is inserted into the vicinity of the susceptor 6 with a space 10 formed between it and the inner wall of the reaction tube 1, and a plurality of purge gas inlets 9 are provided at the lower end 3 of the reaction tube 1, and the space 10 is filled at the upper end 2 of the reaction tube 1. A plurality of gas discharge ports 11 are connected, and in this structure, the diameter of the surface of the susceptor 6 on which the substrate 7 is mounted is larger than the diameter of the reaction gas discharge port at the lower end of the reaction gas introduction tube 8, and the surface reacts with this surface. The distance from the lower end of the gas introduction pipe 8 is approximately equal at any lower end.

〔作 用〕[For production]

このようにして反応管1内に反応ガス導入管8より反応
ガスを導入し、同時にパージガス導入口9よりパージガ
スを導入し、ガス排出口11より排気すると、薄膜形成
に寄与しなかった未分解の反応ガスは基板7上を通過し
た後、パージガスとともに空間10を上方へ流れガス排
出口11を通って反応管1外へ排気されるので、薄膜形
成に寄与しなかった未分解の反応ガスが排気の途中で加
熱されたサセプタの周囲を通過することなく、シたがっ
て、排出ガス中の未分解の反応ガスが熱分解して生じる
不揮発性生成物がサセプタ付近から下流にかけての反応
管内壁に付着することによって生じる反応管内の汚れが
防止される。
In this way, a reaction gas is introduced into the reaction tube 1 through the reaction gas inlet tube 8, a purge gas is simultaneously introduced through the purge gas inlet 9, and the gas is exhausted through the gas outlet 11. After the reaction gas passes over the substrate 7, it flows upward through the space 10 together with the purge gas and is exhausted to the outside of the reaction tube 1 through the gas outlet 11, so that undecomposed reaction gas that did not contribute to thin film formation is exhausted. Therefore, the non-volatile products generated by thermal decomposition of the undecomposed reaction gas in the exhaust gas adhere to the inner wall of the reaction tube from near the susceptor to downstream. This prevents the inside of the reaction tube from becoming contaminated.

ここで、パージガス導入口9およびガス排出口 ・11
を反応管1の下端部3および上端部2においてそれぞれ
ほぼ等間隔に設けることにより、反応管l内でのパージ
ガスおよび排出ガスの片流れを防ぐことができる。また
、サセプタ6の基板7を装着する面の径を反応ガス導入
管8の下端の反応ガス放出口の開口径より太キ<シ、か
つ、この面と反応ガス導入管8の下端との距離をどの下
端においても等しくし適当な距離を保つことにより、パ
ージガスの反応ガス導入管8内への流入を防ぎ、反応ガ
スがサセプタ6の基板7を装着する面と反応ガス導入管
8の下端との隙間を均一に反応ガス導入管8の外へ流出
させることができる。また、反応ガス導入管8のサセプ
タ6に近接する部分を水冷することにより、この部分で
の反応ガスの熱分解を防ぐことができる。
Here, purge gas inlet 9 and gas outlet ・11
By providing these at approximately equal intervals in the lower end 3 and upper end 2 of the reaction tube 1, it is possible to prevent one-sided flow of the purge gas and exhaust gas within the reaction tube 1. In addition, the diameter of the surface of the susceptor 6 on which the substrate 7 is attached should be larger than the opening diameter of the reactive gas discharge port at the lower end of the reactive gas inlet tube 8, and the distance between this surface and the lower end of the reactive gas inlet tube 8. By making them equal at all lower ends and maintaining an appropriate distance, the purge gas can be prevented from flowing into the reaction gas introduction tube 8, and the reaction gas can be connected between the surface of the susceptor 6 on which the substrate 7 is mounted and the lower end of the reaction gas introduction tube 8. The reaction gas can be uniformly flowed out of the reaction gas introduction pipe 8 through the gap. Furthermore, by water-cooling the portion of the reaction gas introduction pipe 8 that is close to the susceptor 6, thermal decomposition of the reaction gas in this portion can be prevented.

〔実施例〕〔Example〕

第2図に、反応炉として縦型反応管を用いた装置の一例
を示す。
FIG. 2 shows an example of an apparatus using a vertical reaction tube as a reactor.

図の符号1は石英からなる円筒状の反応管であり、反応
管1の上方から反応管l内に導入される反応ガス18(
例えば、(CHa)sGaとAsHs  の混合ガス)
をサセプタ6上に装着された基板7の近傍まで導く石英
からなる円筒状の反応ガス導入管8は、その外周を反応
管1により同心的に取り巻かれ、反応管1の内壁と反応
ガス導入管8の外周の間に環状の空間lOを生じる。反
応管1の外周および反応ガス導入管8のサセプタ6に近
接した下端部の外周は、それぞれ冷却用のウォータジャ
ケット14でおおわれており、反応管1および反応ガス
導入管8は、それぞれの上端部および反応ガス導入管8
の冷却水の給水管15と排水管16で連結され、一体と
なっている。
Reference numeral 1 in the figure is a cylindrical reaction tube made of quartz, and a reaction gas 18 (
For example, a mixed gas of (CHa)sGa and AsHs)
A cylindrical reaction gas introduction tube 8 made of quartz that guides the reaction gas to the vicinity of the substrate 7 mounted on the susceptor 6 is concentrically surrounded by the reaction tube 1 on its outer periphery, and the inner wall of the reaction tube 1 and the reaction gas introduction tube An annular space 10 is created between the outer peripheries of 8. The outer periphery of the reaction tube 1 and the outer periphery of the lower end of the reaction gas introduction tube 8 close to the susceptor 6 are each covered with a water jacket 14 for cooling. and reaction gas introduction pipe 8
It is connected by a cooling water supply pipe 15 and a drain pipe 16, and is integrated.

反応管1の上端部2は、反応ガス導入管8の軸心部に挿
入した反応ガス供給管4、環状の空間10の上端にほぼ
等間隔で連結された複数のガス排出口11.ガス排出口
のもう一方の端が連結された排出ガスの通路となる空間
12、空間12に連結されて排出ガスを排気装置へ導く
ガス排出管5、反応管1との接合界面を気密に封止する
O’Jング21aおよび21bによって構成されている
The upper end 2 of the reaction tube 1 includes a reaction gas supply pipe 4 inserted into the axial center of the reaction gas introduction pipe 8, and a plurality of gas exhaust ports 11 connected to the upper end of the annular space 10 at approximately equal intervals. The other end of the gas exhaust port is connected to a space 12 that serves as a passage for exhaust gas, the gas exhaust pipe 5 is connected to the space 12 and guides the exhaust gas to the exhaust device, and the joint interface with the reaction tube 1 is hermetically sealed. It is constituted by O'J rings 21a and 21b that stop.

反応管1の下端部3はパージガス19(例えばH2) 
 を供給するパージガス供給管17、パージガス供給管
17が連結された環状の空間13、空間18の内側にほ
ぼ等間隔で連結された複数のパージガス導入口9、反応
管1との接合界面を気密に封止するOリング21cによ
って構成されている。
The lower end 3 of the reaction tube 1 is filled with purge gas 19 (for example, H2).
A purge gas supply pipe 17 for supplying purge gas, an annular space 13 to which the purge gas supply pipe 17 is connected, a plurality of purge gas inlets 9 connected at approximately equal intervals inside the space 18, and an airtight joint interface with the reaction tube 1. It is constituted by an O-ring 21c for sealing.

RFコイル24により誘導加熱されるグラファイトから
なる円柱状のサセプタ6は、反応管1の下端部3を貫通
して反応管1の軸心部に挿入されて下端部30貫通部を
Oリング21dによって気密に封止されたサセプタ保持
軸23によって保持および上下位置の調節がなされる。
A cylindrical susceptor 6 made of graphite that is heated by induction by an RF coil 24 is inserted into the axial center of the reaction tube 1 through the lower end 3 of the reaction tube 1, and the lower end 30 is inserted into the axial center of the reaction tube 1 by an O-ring 21d. The susceptor is held and its vertical position is adjusted by a hermetically sealed susceptor holding shaft 23.

反応管1の内壁には、サセプタ6の側面の上端部に近接
してこれを取り巻き、パージガスの通路を狭くしぼる環
状の節22が付けられている。
The inner wall of the reaction tube 1 is provided with an annular knot 22 that surrounds the upper end of the side surface of the susceptor 6 and narrows the purge gas passage.

反応ガス導入管8の下端の反応ガス放出口の開口径は、
基板7を装着するサセプタ6の上端面の径より小さく、
かつ、その開口面は、サセプタ6の上端面に平行となっ
ている。
The opening diameter of the reactive gas discharge port at the lower end of the reactive gas introduction pipe 8 is:
smaller than the diameter of the upper end surface of the susceptor 6 on which the substrate 7 is attached;
Moreover, the opening surface thereof is parallel to the upper end surface of the susceptor 6.

〔効 果〕〔effect〕

以上述べたように、この発明によれば、反応管の一端よ
り反応管内のサセプタ近傍まで挿入した反応ガス導入管
を通して反応ガスを基板上に供給し、反応管の他端より
パージガスをサセプタ側に向けて反応ガスの供給方向と
逆の方向から流し、反応ガス導入管と反応管の内壁との
間の空間を通して反応管の反応ガス導入管が挿入された
一端から排気する構成としであるので、反応ガスは基板
上を通過した後、ガス流方向を反転し、パージガスとと
もに加熱されたサセプタ周囲を通過することなく排気さ
れ、したがって薄膜形成に寄与しなかった未分解の反応
ガスの熱分解によって生じる不揮発性生成物の反応管内
壁への付着が抑制される。
As described above, according to the present invention, the reaction gas is supplied onto the substrate through the reaction gas introduction tube inserted from one end of the reaction tube to the vicinity of the susceptor in the reaction tube, and the purge gas is introduced from the other end of the reaction tube to the susceptor side. The reaction gas is supplied from the direction opposite to the direction in which the reaction gas is supplied, and is exhausted from one end of the reaction tube into which the reaction gas introduction tube is inserted through the space between the reaction gas introduction tube and the inner wall of the reaction tube. After the reaction gas passes over the substrate, the gas flow direction is reversed and the reaction gas is exhausted without passing around the heated susceptor along with the purge gas, resulting from the thermal decomposition of undecomposed reaction gases that did not contribute to thin film formation. Adhesion of non-volatile products to the inner wall of the reaction tube is suppressed.

これにより、反応管内の汚れも抑制きれ、そのために反
応管の洗浄周期を長くすることが可能になり、したがっ
て、長時間にわたる安定した成長反応が期待でき、装置
の稼動率等が高まる。
As a result, contamination inside the reaction tube can be suppressed, making it possible to lengthen the cleaning cycle of the reaction tube.Therefore, a stable growth reaction can be expected over a long period of time, increasing the operating rate of the apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の装置の基本構成を示す線図、第2
図は一実施例の要部を示す断面図、第3図は従来の気相
成長装置を示す線図である。 1101反応管、2.−0反応管上端、3−m−反応管
下端、4−m−反応ガス供給管、5−・−ガス排出管、
61.−サセプタ、70.一基板、8−m−反応ガス導
入管、9−m−パージガス導入口、10.12.13−
−一環状空間、11−−−ガス排出口、14−一一一ウ
オータジャケット、15−m−冷却水給水管、16−−
−冷却水排水管、17−−−バージガス供給管、18−
−− 反応i ス、19−m−バージカス、2゜−m−
排出ガス、21 a、  2 l b、  21 c、
  21 d−−−Oリング、22−m−環状の節、2
3−0−サセプタ保持軸、24−−− RF−yイル、
3o、−反応ガスの流れ、31 +++パージガスの流
れ。 口 「0 函
FIG. 1 is a diagram showing the basic configuration of the device of the present invention, and FIG.
The figure is a sectional view showing the main parts of one embodiment, and FIG. 3 is a diagram showing a conventional vapor phase growth apparatus. 1101 reaction tube, 2. -0 reaction tube upper end, 3-m-reaction tube lower end, 4-m-reaction gas supply pipe, 5-.-gas discharge pipe,
61. -Susceptor, 70. 1 board, 8-m-reaction gas inlet pipe, 9-m-purge gas inlet, 10.12.13-
- Annular space, 11-- Gas outlet, 14-111 water jacket, 15-m- Cooling water supply pipe, 16--
- Cooling water drain pipe, 17-- Barge gas supply pipe, 18-
-- Reaction i Su, 19-m-vergicus, 2゜-m-
Exhaust gas, 21 a, 2 l b, 21 c,
21 d---O-ring, 22-m-annular node, 2
3-0-susceptor holding shaft, 24-- RF-y illumination,
3o, - flow of reactant gas, 31 +++ flow of purge gas. Mouth “0 box”

Claims (5)

【特許請求の範囲】[Claims] (1)適当な方法で加熱されるサセプタをその内部に収
納し、該サセプタ上に装着された基板に反応ガスを吹き
付け、該基板上に薄膜を成長する気相成長装置の反応管
において、該反応管が円筒状の反応管で、該反応管の一
端より、該反応管の内部に、反応ガス導入管を、該反応
ガス導入管の全周において、上記反応管の内壁との間に
空間の生じる状態でサセプタ近傍まで挿入し、上記反応
管の他端部にパージガス(成長反応に不活性なガス)導
入口を設け、上記反応ガス導入管が連結された上記反応
管の一端において、上記反応ガス導入管の外周と上記反
応管内壁との間に生じた上記空間にガス排出口を連結せ
しめたことを特徴とする気相成長装置の反応管。
(1) A susceptor heated by an appropriate method is housed inside the susceptor, and a reaction gas is blown onto a substrate mounted on the susceptor to grow a thin film on the substrate. The reaction tube is a cylindrical reaction tube, and a reaction gas introduction tube is inserted into the reaction tube from one end of the reaction tube, and a space is formed between the reaction gas introduction tube and the inner wall of the reaction tube around the entire circumference of the reaction tube. A purge gas (gas inert to the growth reaction) inlet is provided at the other end of the reaction tube, and at one end of the reaction tube to which the reaction gas inlet tube is connected, the A reaction tube for a vapor phase growth apparatus, characterized in that a gas outlet is connected to the space created between the outer periphery of the reaction gas introduction tube and the inner wall of the reaction tube.
(2)上記サセプタの上記基板を装着する面の径が上記
反応ガス導入管の終端の反応ガス放出口径よりも大きく
、かつ、上記サセプタの上記基板を装着する面と上記反
応ガス導入管の終端との距離が任意の上記終端において
、ほぼ等しいことを特徴とする特許請求の範囲第(1)
項記載の気相成長装置の反応管。
(2) The diameter of the surface of the susceptor on which the substrate is attached is larger than the diameter of the reactive gas discharge port at the terminal end of the reaction gas introduction tube, and the surface of the susceptor on which the substrate is attached and the terminal end of the reaction gas introduction tube. Claim (1) characterized in that the distance from
Reaction tube of the vapor phase growth apparatus described in .
(3)上記パージガス導入口および上記ガス排出口が、
上記反応管の各々の端において、ほぼ同一間隔で複数設
けられたことを特徴とする特許請求の範囲第(2)項記
載の気相成長装置の反応管。
(3) The purge gas inlet and the gas outlet are
2. The reaction tube of a vapor phase growth apparatus according to claim 2, wherein a plurality of reaction tubes are provided at substantially the same intervals at each end of the reaction tube.
(4)上記反応ガス導入管が水冷できることを特徴とす
る特許請求の範囲第(3)項記載の気相成長装置の反応
管。
(4) A reaction tube for a vapor phase growth apparatus according to claim (3), characterized in that the reaction gas introduction tube can be water-cooled.
(5)上記気相成長装置の反応管が縦型反応管で、該反
応管の上端より該反応管の内部に上記反応ガス導入管を
挿入し、上記反応管の下端部に上記パージガス導入口を
設け、上記反応管の上端部に上記ガス排出口を設けたこ
とを特徴とする特許請求の範囲第(4)項記載の気相成
長装置の反応管。
(5) The reaction tube of the vapor phase growth apparatus is a vertical reaction tube, and the reaction gas introduction tube is inserted into the reaction tube from the upper end of the reaction tube, and the purge gas introduction port is inserted into the lower end of the reaction tube. 4. A reaction tube for a vapor phase growth apparatus according to claim (4), characterized in that the gas discharge port is provided at an upper end of the reaction tube.
JP1352886A 1986-01-23 1986-01-23 Reaction tube of vapor growth device Pending JPS62171115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1352886A JPS62171115A (en) 1986-01-23 1986-01-23 Reaction tube of vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1352886A JPS62171115A (en) 1986-01-23 1986-01-23 Reaction tube of vapor growth device

Publications (1)

Publication Number Publication Date
JPS62171115A true JPS62171115A (en) 1987-07-28

Family

ID=11835655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1352886A Pending JPS62171115A (en) 1986-01-23 1986-01-23 Reaction tube of vapor growth device

Country Status (1)

Country Link
JP (1) JPS62171115A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135734U (en) * 1988-03-08 1989-09-18
JPH01251710A (en) * 1988-03-31 1989-10-06 Toshiba Corp Vapor growth apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135734U (en) * 1988-03-08 1989-09-18
JPH01251710A (en) * 1988-03-31 1989-10-06 Toshiba Corp Vapor growth apparatus

Similar Documents

Publication Publication Date Title
TW552315B (en) High throughput cold wall vapor deposition reactor and gas distribution system, and method of controlling gas flow in the reactor
JP2013511622A (en) Fluidized bed reactor
JP5762900B2 (en) Hydride vapor phase epitaxy apparatus and method for producing aluminum group III nitride single crystal
JPS6054919B2 (en) low pressure reactor
JPS62171115A (en) Reaction tube of vapor growth device
WO1993006619A1 (en) Apparatus for introducing gas, and apparatus and method for epitaxial growth
JPH01286306A (en) Crystal growth device
JP5747647B2 (en) Barrel type vapor phase growth system
JPS6168393A (en) Hot wall type epitaxial growth device
JPS6136372B2 (en)
JPS59223294A (en) Vapor phase growth device
JPH0658880B2 (en) Vapor phase epitaxial growth system
JPS6237374A (en) Vapor growth device
JPH04202091A (en) Vapor growth device of compound semiconductor
JPS63291893A (en) Vapor growth device for compound semiconductor
JP2004296639A (en) Vapor deposition equipment
CN217499501U (en) Source carrier gas conveying structure of silicon carbide epitaxial furnace
JPH0613256Y2 (en) Reaction chamber gas introducer
JPH0519949Y2 (en)
JPS6327426B2 (en)
JPS61177713A (en) Apparatus for vapor phase epitaxial growth of silicon carbide compound semiconductor
JPH1145858A (en) Compound semiconductor vapor growth equipment and its method
JPH08310896A (en) Vapor growth apparatus
JPH02246321A (en) Vapor phase crystal growth equipment
JPS58213413A (en) Device for semiconductor vapor growth