JPS6136372B2 - - Google Patents

Info

Publication number
JPS6136372B2
JPS6136372B2 JP11249478A JP11249478A JPS6136372B2 JP S6136372 B2 JPS6136372 B2 JP S6136372B2 JP 11249478 A JP11249478 A JP 11249478A JP 11249478 A JP11249478 A JP 11249478A JP S6136372 B2 JPS6136372 B2 JP S6136372B2
Authority
JP
Japan
Prior art keywords
tube
liner
reaction
reaction tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11249478A
Other languages
Japanese (ja)
Other versions
JPS5539630A (en
Inventor
Masaharu Nogami
Tanji Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11249478A priority Critical patent/JPS5539630A/en
Publication of JPS5539630A publication Critical patent/JPS5539630A/en
Publication of JPS6136372B2 publication Critical patent/JPS6136372B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は気相成長方法に関し、特に化合物半導
体の結晶層を気相反応により基板上に成長させる
場合に好適な気相成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth method, and particularly to a vapor phase growth method suitable for growing a crystal layer of a compound semiconductor on a substrate by a vapor phase reaction.

GaAs,GaAsP等化合物半導体を基材とした発
光ダイオード、電界効果トランジスタ等各種の半
導体装置の製造において、Ga,As,P等のハロ
ゲン化物の蒸気の気相反応によつてGaAs等の基
板上に結晶層を成長させる技術が広く採用されて
いる。
In the production of various semiconductor devices such as light emitting diodes and field effect transistors based on compound semiconductors such as GaAs and GaAsP, semiconductors are formed on substrates such as GaAs through vapor phase reactions of halide vapors such as Ga, As, and P. Techniques for growing crystalline layers are widely employed.

かかる気相成長のために用いられる装置の代表
的な従来例を第1図に示しGaAs気相エピタキシ
ヤル成長の例について説明する。
A typical conventional example of an apparatus used for such vapor phase growth is shown in FIG. 1, and an example of GaAs vapor phase epitaxial growth will be described.

第1図Aは横形反応管の断面図、そして第1図
Bはその温度プロフアイルである。
FIG. 1A is a cross-sectional view of a horizontal reaction tube, and FIG. 1B is its temperature profile.

この装置は主として反応管10、キヤツプ1
1、ガス導入口15、およびガス排出口16より
構成され、反応管10の内部にはボート20によ
つてガリウム(Ga)ソース30と支持棒40に
よつて砒化ガリウム(GaAs)基板50とが設置
される。また反応生成物が反応管10の内壁に付
着するのを防止しそして反応生成物を管外へ除去
するのを容易にするために、いわゆるライナー管
と呼ばれる円筒形の管60がその外径が本体10
の内径と近接するようにそして基板50とボート
20のおよそ中間位置からガス流の下手方向にか
けて挿入される。
This device mainly consists of a reaction tube 10 and a cap 1.
1, a gas inlet 15, and a gas outlet 16. Inside the reaction tube 10, a gallium (Ga) source 30 is placed by a boat 20, and a gallium arsenide (GaAs) substrate 50 is placed by a support rod 40. will be installed. Further, in order to prevent the reaction products from adhering to the inner wall of the reaction tube 10 and to facilitate the removal of the reaction products to the outside of the tube, a cylindrical tube 60 called a so-called liner tube is used. Main body 10
It is inserted so that it is close to the inner diameter of the substrate 50 and the boat 20 from about the middle position toward the downstream direction of the gas flow.

GaAsの気相成長に於いては一般に次の4つの
工程を含む。すなわち、反応管内部を清浄にする
ため管内を気相エツチングする第1の工程、Ga
融液内にAsを飽和させる第2の工程、基板を挿
入しエピタキシヤル成長を行う第3の工程、およ
び成長終了後に基板を反応管外へ取り出した后反
応炉を室温まで冷却する第4の工程である。
GaAs vapor phase growth generally includes the following four steps. In other words, the first step is gas phase etching of the inside of the reaction tube to clean it.
The second step is to saturate As in the melt, the third step is to insert the substrate and perform epitaxial growth, and the fourth step is to cool the reactor to room temperature after the substrate is taken out of the reaction tube after the growth is completed. It is a process.

第一の工程においては、ガリウムソースおよび
基板は挿入せず、反応管周辺に備え付けられた加
熱炉により反応管内が均一温度になるように加熱
し、その後キヤリアガス中に三塩化砒素
(AsCL3)の蒸気を混ぜて導入する。このとき生
成した砒素はライナー管の低温部に付着するが、
この第一工程終了后に新しいライナー管と交換さ
れる。
In the first step, the gallium source and substrate are not inserted, and the inside of the reaction tube is heated to a uniform temperature using a heating furnace installed around the reaction tube, and then arsenic trichloride (AsCL 3 ) is added to the carrier gas. Mix and introduce steam. The arsenic generated at this time adheres to the low temperature part of the liner pipe,
After completing this first step, the liner pipe is replaced with a new liner pipe.

前記第2の工程においては、ガリウムソース3
0を装填した石英ボート20が挿入され加熱条件
下でキヤリヤガスとともにAsCL3ガスが導入さ
れ、反応によつて生成されたAsはGa中に溶解さ
れる。またこのとき生成された多量のGaの塩化
物や少量のAs,GaAs等はライナー管に堆積し、
第2工程終了后再び新しいライナー管と交換され
る。
In the second step, a gallium source 3
A quartz boat 20 loaded with 0 is inserted, and AsCL 3 gas is introduced together with a carrier gas under heating conditions, and As generated by the reaction is dissolved in Ga. Also, a large amount of Ga chloride and small amounts of As, GaAs, etc. generated at this time are deposited on the liner tube.
After the second step, the liner tube is replaced again with a new liner tube.

さらに前記第3の工程においては、基板50を
装填した支持棒40が挿入され、第1図Bの如き
適当な温度プロフアイルの下でAsCL3とキヤリ
アガスとが導入され気相成長が行われる。このと
き生成されたGaAsやGaの塩化物As等はライナー
管に付着・堆積され、このライナー管は第3工程
終了后に管外に取出される。そして第4の工程
で、エピタキシヤル層を成長させた基板を取り出
し、その後第3の工程で使用されたライナー管を
取り出し、新しいライナー管を挿入する。
Furthermore, in the third step, the support rod 40 loaded with the substrate 50 is inserted, and AsCL 3 and carrier gas are introduced under an appropriate temperature profile as shown in FIG. 1B to perform vapor phase growth. GaAs, Ga chloride As, etc. generated at this time are attached and deposited on the liner tube, and this liner tube is taken out of the tube after the third step is completed. In the fourth step, the substrate on which the epitaxial layer has been grown is taken out, and then the liner tube used in the third step is taken out and a new liner tube is inserted.

このように前記4つの各工程に於いては前の工
程の生成物による汚染を避けるために、それぞれ
新しいライナー管が使用される。こうしたライナ
ー管の交換はそれだけ手間取る上に、反応管とラ
イナー管との接触による破損の危険や、交換時の
外気の侵入による反応管内の汚染の度合も高くな
るという問題がある。
Thus, a new liner tube is used in each of the four steps to avoid contamination by products from the previous step. Replacement of such a liner tube is not only time-consuming, but also involves the risk of damage due to contact between the reaction tube and liner tube, and the degree of contamination inside the reaction tube due to intrusion of outside air during replacement.

本発明はかかる問題を解決せんとしてなされた
ものであり、ライナー管の交換の必要のない新規
な気相成長装置を提供せんとするものである。
The present invention has been made to solve this problem, and aims to provide a new vapor phase growth apparatus that does not require replacement of the liner tube.

本発明の気相成長方法は、 反応管内に直径の異なるライナー管を多重に設
置する工程と、 反応管内に所定の反応ガスを導入し反応管内を
清浄した後最内側の第1のライナー管を引出す工
程と、 反応管内に所定の反応ガスを導入し反応管内の
ソース中に反応ガス成分を溶解させた後最内側の
第2のライナー管を引出す工程と、 反応管内に所定の反応ガスを導入し反応管内の
基板上に結晶層を気相成長させた後第3のライナ
ー管を引出す工程とを有することを特徴とする。
たとえば前記4つの工程を含む気相成長の例の場
合には、最初から4つのライナー管を同心円状に
4重に挿入しておき、各工程が終了する毎に最も
内側のライナー管から一本ずつ除去してゆくとい
うものである。
The vapor phase growth method of the present invention includes the steps of installing multiple liner tubes with different diameters in a reaction tube, and after introducing a predetermined reaction gas into the reaction tube and cleaning the inside of the reaction tube, inserting the innermost first liner tube. a drawing step; a step of introducing a predetermined reaction gas into the reaction tube and dissolving the reaction gas components in the source in the reaction tube, and then drawing out the innermost second liner tube; and a step of introducing the predetermined reaction gas into the reaction tube. The method is characterized by comprising the step of vapor-phase growing a crystal layer on the substrate in the reaction tube and then pulling out the third liner tube.
For example, in the case of vapor phase growth that includes the four steps mentioned above, four liner tubes are inserted concentrically in four layers from the beginning, and each time each step is completed, one liner tube is inserted starting from the innermost liner tube. It is to be removed one by one.

次に実施例により本発明の気相成長装置を詳述
する。第2図は本発明の気相成長装置の一実施例
に於けるライナー管挿入部分の断面図である。反
応管10の内壁に近接して4つのライナー管6
1,62,63および64が設置されている。1
つのライナー管61の外壁は反応管10の内壁に
近接し、他の3つのライナー管62,63および
64の外壁は各々ライナー管61,62および6
3の内壁に近接し、各々の間隙は反応ガスを殆ん
ど通さずしかもお互いが容易に摺動できるように
設計されている。通常この間隙は1mm程度が望ま
しい。各ライナー管の長さは同一であつても良い
が、図のように内側の管程長くした方が一本づつ
取り出す場合に便利である。
Next, the vapor phase growth apparatus of the present invention will be explained in detail with reference to Examples. FIG. 2 is a cross-sectional view of the liner tube insertion portion in one embodiment of the vapor phase growth apparatus of the present invention. Four liner tubes 6 are arranged adjacent to the inner wall of the reaction tube 10.
1, 62, 63 and 64 are installed. 1
The outer walls of one liner tube 61 are close to the inner wall of reaction tube 10, and the outer walls of the other three liner tubes 62, 63 and 64 are close to the inner wall of reaction tube 10, respectively.
3, and each gap is designed so that almost no reaction gas passes through, yet they can easily slide against each other. Normally, this gap is preferably about 1 mm. The lengths of each liner tube may be the same, but it is more convenient to make the inner tube longer as shown in the figure when taking out one liner at a time.

またライナー管のガス上流側に於いては内側の
ライナー管が外側のライナー管を充分に覆うよう
に整合されていることが好ましいが、その点を考
慮した本発明の他の3つの実施例を第3図第4図
および第5図に示す。第3図に於いては最も外側
のライナー管61の上流端に61′の如きストツ
パーを設け、また第4図に於いては反応管本体1
0の内部にストツパー10′を設けている。第5
図に於いては反応管の径を変え、段差をつけその
部分がストツパーとしての役目をもつ。特に第3
図の構造では、複数のライナー管を重ねたまま取
扱う場合により便利である。
Further, on the gas upstream side of the liner pipe, it is preferable that the inner liner pipe is aligned so as to sufficiently cover the outer liner pipe. It is shown in FIG. 3, FIG. 4, and FIG. In FIG. 3, a stopper such as 61' is provided at the upstream end of the outermost liner tube 61, and in FIG.
A stopper 10' is provided inside the 0. Fifth
In the figure, the diameter of the reaction tube is changed and a step is added, which serves as a stopper. Especially the third
The structure shown in the figure is more convenient when handling multiple liner pipes in a stacked state.

次に本発明の成長装置を用いてGaAs単結晶基
板にGaAs単結晶層を成長させる場合の一実施例
について説明する。
Next, an example of growing a GaAs single crystal layer on a GaAs single crystal substrate using the growth apparatus of the present invention will be described.

あらかじめ4つのライナー管61,62,63
および64を反応管10の内部に設置したあと、
第1図Aと同様にキヤツプ11をかぶせ、ガス導
入口15よりキヤリアガス(例えば窒素)を導入
し、反応管のソース・基板間l1〜l3を約850℃に加
熱する。しかる后キヤリアガスにAsCL3蒸気を
適当量混入し反応管内に導入し、管内の気相エツ
チを行う。反応管内を清浄にする充分な時間だけ
この状態を持続したのち、AsCL3の導入を停止
し、キヤリアガスが水素の場合は、不活性ガスと
置換する。しかるのちキヤツプ11を開け、反応
生成物であるAsの付着した最も内側のライナー
管64を引出し、石英ボート20に高純度ガリウ
ム30を充填し反応管内のl1,l2間の位置に挿込
する。温度プロフアイルは前の状態と同じであ
る。
4 liner tubes 61, 62, 63 in advance
After installing and 64 inside the reaction tube 10,
The cap 11 is placed in the same manner as in FIG. 1A, and a carrier gas (for example, nitrogen) is introduced from the gas inlet 15, and the area between the source and the substrate l1 to l3 of the reaction tube is heated to about 850°C. After that, an appropriate amount of AsCL 3 vapor is mixed into the carrier gas and introduced into the reaction tube to etch the gas phase inside the tube. After maintaining this state for a sufficient time to clean the inside of the reaction tube, the introduction of AsCL 3 is stopped, and if the carrier gas is hydrogen, replace it with an inert gas. Thereafter, the cap 11 is opened, the innermost liner tube 64 to which As, a reaction product, is attached is pulled out, and the quartz boat 20 is filled with high purity gallium 30 and inserted into the reaction tube at a position between l 1 and l 2 . do. The temperature profile is the same as before.

次いで約30℃のAsCL3の蒸気を約300c.c./min
の窒素ガスと共に導入し、Gaソース中にAsを溶
解させる。飽和濃度まで充分Asを溶解させたの
を、AsCL3の導入を停止する。しかるのちキヤ
ツプを開け、反応生成物である多量のGaの塩化
物や、少量のAs,GaAs等の付着したライナー管
63を引き出し、支持棒40によりGaAs単結晶
基板50を挿入する。
Next, AsCL 3 steam at about 30℃ is heated at about 300c.c./min.
is introduced together with nitrogen gas to dissolve As in the Ga source. The introduction of AsCL 3 is stopped after As has been sufficiently dissolved to the saturation concentration. Thereafter, the cap is opened, the liner tube 63 to which a large amount of Ga chloride, which is a reaction product, and small amounts of As, GaAs, etc. are attached, is pulled out, and the GaAs single crystal substrate 50 is inserted using the support rod 40.

この後第1図Bの如き温度プロフイルに加熱す
る。この場合ソース位置l1〜l2間の温度t1は約850
℃、基板位置l3の温度t2は約700℃、そして基板位
置近傍の温度勾配は約−5℃/cmである。この状
態でメインラインよりAsCL3蒸気を含んだキヤ
リアガスを300c.c./minバイパスラインよりキヤ
リアガスを700c.c./min流し基板50の表面に
GaAsの単結晶層のエピタキシヤル成長が行われ
る。
This is followed by heating to a temperature profile as shown in FIG. 1B. In this case the temperature t 1 between source positions l 1 and l 2 is approximately 850
The temperature t2 at the substrate position l3 is about 700°C, and the temperature gradient near the substrate position is about -5°C/cm. In this state, carrier gas containing AsCL 3 vapor is flowed from the main line at 300 c.c./min from the bypass line at 700 c.c./min onto the surface of the substrate 50.
Epitaxial growth of a single crystal layer of GaAs is performed.

所定の厚さだけ成長させたのち、AsCL3の導
入と反応管の加熱とを停止し、最后に基板温度が
400〜500℃になつたとき支持棒40とともに
GaAs結晶50を取り出し反応生成物であるGaAs
やGaの塩化物、As等の付着したライナー管62
を引出す。ライナー管61は、その後反応管が室
温まで下がる間に管内に残留しているGa塩化物
またはAsの蒸気が管壁に付着するのを防ぐため
のものである。
After growing to a predetermined thickness, the introduction of AsCL 3 and heating of the reaction tube are stopped, and finally the substrate temperature is
With the support rod 40 when the temperature reaches 400 to 500℃
GaAs crystal 50 is taken out and the reaction product is GaAs.
Liner tube 62 with adhesion of chloride of Ga, As, etc.
Pull out. The liner tube 61 is provided to prevent Ga chloride or As vapor remaining in the tube from adhering to the tube wall while the reaction tube is subsequently cooled to room temperature.

以上のように本発明の気相成長装置を用いれ
ば、各工程の終了時に前以つて多量に挿入された
ライナー管を1つづつ引出すだけで良く新しいラ
イナー管と交換する必要がないので、操作を容易
にかつ短時間で行うことができ、したがつて反応
管やライナー管の破損および外気の混入による汚
染を著しく低減することが出来また前の工程での
汚染を次の工程に持ちこまない。
As described above, if the vapor phase growth apparatus of the present invention is used, the liner tubes that have been inserted in large quantities can be pulled out one by one at the end of each process, and there is no need to replace them with new liner tubes. This can be carried out easily and in a short time, and contamination caused by breakage of reaction tubes and liner tubes and contamination by outside air can be significantly reduced, and contamination from the previous step is not carried over to the next step.

その結果、エピタキシヤル結晶層が成長工程毎
にばらつくことはなく、再現性よく均一な膜質を
得ることができる。
As a result, the epitaxial crystal layer does not vary depending on the growth process, and a uniform film quality can be obtained with good reproducibility.

尚、本発明の装置に用いられるライナー管は円
筒形に限らず、反応管の形状に合わせて矩形等他
の任意の形状が可能であり、また反応工程に応じ
て2つ以上の任意の数だけ多量にすることもでき
る。さらに反応管本体にはドーピング機構等目的
に応じて種々の機構を付与することも可能であ
る。
Note that the liner tube used in the apparatus of the present invention is not limited to a cylindrical shape, but can have any other shape such as a rectangle depending on the shape of the reaction tube, and can have any number of liners from two or more depending on the reaction process. You can also increase the amount. Furthermore, it is also possible to provide various mechanisms such as a doping mechanism to the reaction tube body depending on the purpose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の気相反応装置を説明するための
図、第2図から第5図は本発明の実施例を説明す
るための図である。 10……反応管、20……ボート、30……ガ
リウムソース、40……支持棒、50……基板、
60,61,62,63,64……ライナー管。
FIG. 1 is a diagram for explaining a conventional gas phase reactor, and FIGS. 2 to 5 are diagrams for explaining embodiments of the present invention. 10...Reaction tube, 20...Boat, 30...Gallium source, 40...Support rod, 50...Substrate,
60, 61, 62, 63, 64...Liner pipe.

Claims (1)

【特許請求の範囲】 1 反応管内に直径の異なるライナー管を多重に
設置する工程と、 反応管内に所定ガスを導入し反応管内を清浄し
た後最内側の第1のライナー管を引出す工程と、 反応管内に所定の反応ガスを導入し反応管内の
ソース中に反応ガス成分を溶解させた後最内側の
第2のライナー管を引出す工程と、 反応管内に所定の反応ガスを導入し反応管内の
基板上に結晶層を気相成長させた後第3のライナ
ー管を引出す工程とを有することを特徴とする気
相成長方法。
[Scope of Claims] 1. A step of installing multiple liner tubes with different diameters in a reaction tube, and a step of introducing a predetermined gas into the reaction tube to clean the inside of the reaction tube, and then pulling out the innermost first liner tube. A step of introducing a predetermined reaction gas into the reaction tube and dissolving the reaction gas components in the source inside the reaction tube, and then pulling out the innermost second liner tube; A vapor phase growth method comprising the step of growing a crystal layer on a substrate in a vapor phase and then pulling out a third liner tube.
JP11249478A 1978-09-13 1978-09-13 Vapor phase growth device Granted JPS5539630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11249478A JPS5539630A (en) 1978-09-13 1978-09-13 Vapor phase growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11249478A JPS5539630A (en) 1978-09-13 1978-09-13 Vapor phase growth device

Publications (2)

Publication Number Publication Date
JPS5539630A JPS5539630A (en) 1980-03-19
JPS6136372B2 true JPS6136372B2 (en) 1986-08-18

Family

ID=14588043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11249478A Granted JPS5539630A (en) 1978-09-13 1978-09-13 Vapor phase growth device

Country Status (1)

Country Link
JP (1) JPS5539630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824935A (en) * 2016-12-08 2017-06-13 尚涛 A kind of cleaning method of gas-chromatography glass bushing pipe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221005Y2 (en) * 1980-12-19 1987-05-28
JPS58181796A (en) * 1982-04-19 1983-10-24 Matsushita Electric Ind Co Ltd Method for growing crystal
JPS6167915A (en) * 1984-09-12 1986-04-08 Hitachi Tokyo Electronics Co Ltd Heat treating device
JPH04180619A (en) * 1990-11-15 1992-06-26 Nec Yamagata Ltd Horizontal type reactor for semiconductor manufacturing
JP4734950B2 (en) * 2005-02-17 2011-07-27 株式会社デンソー Heat treatment equipment
WO2007095873A1 (en) 2006-02-23 2007-08-30 Siemens Aktiengesellschaft Device for short-circuiting power semiconductor modules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824935A (en) * 2016-12-08 2017-06-13 尚涛 A kind of cleaning method of gas-chromatography glass bushing pipe

Also Published As

Publication number Publication date
JPS5539630A (en) 1980-03-19

Similar Documents

Publication Publication Date Title
JPS63119226A (en) Chemical evaporation system
JPS6136372B2 (en)
JPS63316425A (en) Manufacturing apparatus for semiconductor device
JPS5927611B2 (en) Vapor phase growth method
JPH0658880B2 (en) Vapor phase epitaxial growth system
JPS62128518A (en) Vapor growth equipment
JPS6226171B2 (en)
JPS6122619A (en) Vapor-phase epitaxial growing device
JPS58176196A (en) Apparatus for growing crystal from compound
JP2753009B2 (en) Compound semiconductor growth method
JPH01144620A (en) Semiconductor growth device
JPS6344988Y2 (en)
JPS62182196A (en) Vapor growth apparatus
JPS60109218A (en) Device for epitaxial growth by molecular beam
JPH0388325A (en) Vapor growth apparatus
JPS63202909A (en) Vapor growth method
JPS60109222A (en) Device for vapor growth of compound semiconductor of iii-v group
JPH0794428A (en) Vapor growth device for semiconductor thin film
JPS6399524A (en) Crystal growth apparatus
JPS62230693A (en) Vapor growth apparatus
JPS6169115A (en) Vapor-phase epitaxial growing method
JPS62247521A (en) Organic metal compound accommodating unit
JPH0244800B2 (en) TANKETSUSHOSEICHOSOCHI
JPH01218010A (en) Vapor growth method and apparatus, and method of cleaning reactor in apparatus
JPH0415913A (en) Organicmetal vapor growth method and susceptor therein used