JPS62170390A - Recording material - Google Patents

Recording material

Info

Publication number
JPS62170390A
JPS62170390A JP61011906A JP1190686A JPS62170390A JP S62170390 A JPS62170390 A JP S62170390A JP 61011906 A JP61011906 A JP 61011906A JP 1190686 A JP1190686 A JP 1190686A JP S62170390 A JPS62170390 A JP S62170390A
Authority
JP
Japan
Prior art keywords
alloy
recording
transformation
zeta
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61011906A
Other languages
Japanese (ja)
Inventor
Tetsuo Minemura
哲郎 峯村
Hisashi Ando
寿 安藤
Yoshihira Maeda
佳均 前田
Shoichi Nagai
正一 永井
Ryuji Watanabe
隆二 渡辺
Toshiteru Kaneko
寿輝 金子
Seiki Shimizu
清水 誠喜
Yoshiaki Kita
北 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61011906A priority Critical patent/JPS62170390A/en
Publication of JPS62170390A publication Critical patent/JPS62170390A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a recording material superior in information recording/ erasing properties, by using a material wherein a change in optical characteristics is locally induced by an endothermic reaction. CONSTITUTION:As a concrete material, a metal and an alloy of semimetal element ranging from Ib to IVb in the periodic table, especially an alloy of 1.45 or more average electron concentration, is used. Particularly, a beta' phase (an order phase of CsCl type) formed in an alloy of Ag-Zn series produces a pink, thus resulting in a remarkable change in an optical characteristics from a zeta phase (silverwhite) existing in the aforesaid alloy series. With an initial state of the zeta phase in the alloy, a transformation zeta beta' corresponds to a recording, and a transformation beta' zeta is an erasing. In this relation, since the transformation zeta beta' is quenched after completion of a transformation zeta betato establish the beta' phase, it is desirable that the transformation zeta beta is substan tially endothermic. It is the most desirable, however, as a recording material that both the above transformations are made endothermic by adding Al, Ga, In, Sn, Sb in the range of 10wt%.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は記録材料に係り、特に光・熱エネルギーが与え
られることにより合金の光学特性の変化に伴い情報を記
録、消去できる材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a recording material, and more particularly to a material capable of recording and erasing information as the optical properties of the alloy change upon application of light or thermal energy.

〔発明の背景〕[Background of the invention]

近年、情報記録の高密度化、デジタル化が進むにつれて
種々の情報記録再生方式の開発が進められている。特に
レーザの光エネルギーを情報の記録消去、再生に利用し
た光ディスクは工業レアメタルHa 80 、1.98
3(光ディスクと材料)に記載されているように磁気デ
ィスクに比べ、高い記録密度が可能であり、今後の情報
記録の有力な方式である。このうち、レーザによる再生
装置はコンパクト・ディスク(CD)として実用化され
ている。
In recent years, as information recording becomes more dense and digital, various information recording and reproducing methods are being developed. In particular, optical discs that use laser light energy for recording, erasing, and reproducing information are manufactured using industrial rare metals Ha 80, 1.98
As described in Section 3 (Optical disks and materials), higher recording densities are possible than with magnetic disks, and this will be a promising method for information recording in the future. Among these, laser playback devices have been put into practical use as compact discs (CDs).

一方、記録可能な方式には追記型と書き換え可能型の大
きく2つに分けられる。前者は1回の書き込みのみが可
能であり、消去はできない。後者はくり返しの記録、消
去が可能な方式である。追記型の記録方法はレーザ光に
より記録部分の媒体を破壊あるいは成形して凹凸をつけ
、再生にはこの凹凸部分でのレーザ光の干渉による光反
射量の変化を利用する。この記録媒体にはTeやその合
金を利用して、その溶解、昇華による凹凸の成形が一般
的に知られているにの種の媒体では毒性など若干の問題
を含んでいる。書き換え可能型の記録媒体としては光磁
気材料が主流である。この方法は光エネルギーを利用し
てキュリ一点あるいは補償点温度付近で媒体の局部的な
磁気異方性を反転させ記録し、その部分での偏光入射光
の磁気ファラデー効果及び磁気カー効果による偏光面の
回転量にて再生する。この方法は書き換え可能型の最も
有望なものとして数年後の実用化を目指し精力的な研究
開発が進められている。しかし、現在のところ偏光面の
回転量の大きな材料がなく多層膜化などの種々の工夫を
してもS/N、C/Nなどの出力レベルが小さいという
大きな問題がある。
On the other hand, recordable methods can be broadly divided into two types: write-once type and rewritable type. The former can only be written once and cannot be erased. The latter is a method that allows repeated recording and erasing. In the write-once type recording method, a laser beam is used to destroy or shape the recording portion of the medium to create unevenness, and for reproduction, a change in the amount of light reflected due to the interference of the laser beam at the uneven portion is used for reproduction. This type of recording medium is generally known to use Te or its alloy to form irregularities by dissolving and sublimating it, but this type of medium has some problems such as toxicity. Magneto-optical materials are the mainstream for rewritable recording media. This method utilizes optical energy to invert and record the local magnetic anisotropy of the medium near the Curie point or compensation point temperature, and the polarization plane of the polarized incident light at that part due to the magnetic Faraday effect and magnetic Kerr effect. Play with the amount of rotation. This method is considered to be the most promising rewritable method, and active research and development is underway with the aim of putting it into practical use in the next few years. However, there is currently no material with a large amount of rotation of the plane of polarization, and even with various measures such as multilayer film formation, there is a big problem that output levels such as S/N and C/N are low.

その他の書き換え可能型方式として記録媒体の非晶質と
結晶質の可逆的相変化による反射率変化を利用したもの
がある。例えばナショナルテクニカルレポート(Nat
ional Tschnieal Report Vo
129 Nu 5 (1983) )に記載TeOxに
少量のGeおよびSnを添加した材料がある。
Other rewritable systems utilize reflectance changes due to reversible phase changes between amorphous and crystalline recording media. For example, the National Technical Report (Nat
ional Tschnieal Report Vo
129 Nu 5 (1983)), there is a material in which small amounts of Ge and Sn are added to TeOx.

しかし、この方式は非晶質相の結晶化温度が低く、常温
における相の不安定さがディスクの信頼性に結びつく大
きな問題点である。
However, this method has a major problem in that the crystallization temperature of the amorphous phase is low, and the instability of the phase at room temperature affects the reliability of the disk.

一方、色調変化を利用した合金として、特開昭57−1
40845がある。この合金は(12〜15)wt%A
 Q −(1〜5 ) w t%Ni−残Cuよりなる
合金でマルテンサイト変態温度を境にして。
On the other hand, as an alloy utilizing color tone change, JP-A-57-1
There are 40845. This alloy is (12-15)wt%A
Q - (1 to 5) wt% Ni-remaining Cu alloy at the martensitic transformation temperature.

赤から黄金色に可逆的に変化することを利用したもので
ある。マルテンサイト変態は温度の低下にともなって必
然的に生ずる変態のため、マルテンサイト変態温度以上
に保持した状態で得られる色調はマルテンサイト変調温
度以下にもってくることはできない。また逆にフルテン
サイ1〜変態温度以下で得られる色調のものをマルテン
サイト変態温度以上にすると、変態をおこして別の色調
に変化してしまう。したがって、フルテンサイ1−変態
のL下でおこる2つの色調は同一温度で同時に得ること
はできない。したがってこの原理では記録材料として適
用することはできない7 〔発明の目的〕 本発明の目的は光学特性の変化する記録、消去特性に優
れた記録材料を提供することにある。
It takes advantage of the reversible change from red to gold. Since martensitic transformation is a transformation that inevitably occurs as the temperature decreases, the color tone obtained when the temperature is maintained above the martensitic transformation temperature cannot be brought below the martensitic modulation temperature. On the other hand, if a color tone obtained at a temperature of 1 to full tensile transformation temperature is heated to a temperature higher than the martensitic transformation temperature, the color tone will undergo transformation and change to a different color tone. Therefore, the two shades that occur under L of the full-strength 1-transformation cannot be obtained simultaneously at the same temperature. Therefore, this principle cannot be applied as a recording material.7 [Object of the Invention] An object of the present invention is to provide a recording material that has excellent recording and erasing characteristics and has variable optical characteristics.

〔発明の概要〕[Summary of the invention]

本発明は光・熱エネルギーによって局所的な光学特性を
変化させて情報を記録・消去できる記録材料にあって、
特に光学特性変化が材料の吸熱反応によって起こる材料
にある。光ディスクなどの記録媒体は主にレーザ光のエ
ネルギーにより局所的な光学特性を変える。本発明にお
いても光・熱エネルギーは広く電磁波でよいが、一般的
にはレーザ光が好ましい、光学的特性とは材料の屈折率
であり、これによって決まる透過率、反射率なども情報
記録として直接変化の得られる特性として好ましい。本
発明の材料は前記のエネルギーを熱に換え、加熱によっ
て光学的特性が変化する。この場合、材料自体が液相状
態にならず固相状態であると変化に伴う歪などが小さく
記録材料として記録、消去の繰返し特性などにおいて優
れる。
The present invention relates to a recording material that can record and erase information by changing local optical properties using light and thermal energy,
This is especially true for materials in which optical property changes occur due to endothermic reactions in the material. Recording media such as optical disks change local optical characteristics mainly by the energy of laser light. In the present invention, the light/thermal energy may broadly be electromagnetic waves, but laser light is generally preferred.The optical property is the refractive index of the material, and the transmittance, reflectance, etc. determined by this are also directly recorded as information. This is preferable as a characteristic that can be changed. The material of the present invention converts the above energy into heat, and its optical properties change upon heating. In this case, if the material itself is in a solid state rather than in a liquid state, the distortion caused by the change is small and the material is excellent in recording and erasing repeatability as a recording material.

本発明は記録材料の使用温度、一般的には室温で少なく
とも2つの光学特性を示す。これは主にそれぞれの状態
に対応した原子配列、一般には結晶構造9組織などの相
異によって実現する。従って光・熱エネルギーによりこ
れらの組織が変化する。たとえば、光学特性に対応した
2つの状態をA、Bとする。記録材料の初期状態をAと
すればA−+Bへの変化が記録であり、B−)Aへの変
化が消去に対応する。本発明はこの2つの変化の少なく
とも一方、好ましくは両方に吸熱反応を伴うことが特徴
である。本材料が加熱によって記録、消去を実現させる
ため、これらの変化が吸熱反応であることがA#B変化
を速く起こらせ、結果として記録、消去感度が著しく向
上する。
The present invention exhibits at least two optical properties at the temperature of use of the recording material, generally room temperature. This is mainly achieved by differences in atomic arrangement corresponding to each state, generally the crystal structure9 organization, etc. Therefore, these tissues change due to light and thermal energy. For example, assume that two states corresponding to optical characteristics are A and B. If the initial state of the recording material is A, a change to A-+B corresponds to recording, and a change to B-)A corresponds to erasing. The present invention is characterized in that at least one of these two changes, preferably both, involves an endothermic reaction. Since this material achieves recording and erasing by heating, the fact that these changes are endothermic reactions causes A#B changes to occur quickly, resulting in a marked improvement in recording and erasing sensitivity.

本発明の具体的な材質としては元素周期律表のrbから
■bまでの金属及び半金属元素の合金である。特に、平
均電子濃度が1.45以上の合金である。平均電子濃度
とは、Ib族を1としてnbを2、以下■bを8、■を
Oとし、合金組成(at%)によりその値を比例配合し
た値の合計値で示す。この値は特に合金の電子構造に影
響を及ぼし、光学的特性を決める因子として重要である
。その内特にこれら合金の金属間化合物は特有の光学特
性を持つことから前記AあるいはB状態に相当するもの
として好適である。また非晶質状態も良好である。この
うち、Ib族を中心とした化合物は特有な色調を持つも
のがあり、これを利用すると可視領域の光学特性も顕著
に変化する。このうち。
The specific material of the present invention is an alloy of metals and metalloid elements from rb to iib in the periodic table of elements. In particular, the alloy has an average electron concentration of 1.45 or more. The average electron concentration is expressed as the total value of the Ib group as 1, nb as 2, below (2) b as 8, and (2) as O, and the values are proportionally blended according to the alloy composition (at%). This value particularly affects the electronic structure of the alloy and is important as a factor determining optical properties. Among these, the intermetallic compounds of these alloys have unique optical properties and are therefore suitable as those corresponding to the A or B state. The amorphous state is also good. Among these, some compounds mainly of group Ib have a unique color tone, and when used, the optical properties in the visible region change significantly. this house.

Ag系合金はこの色調変化においても最適である。Ag-based alloys are also optimal for this color tone change.

特にA g −Z n系合金に形成するβ′相(CsC
Q型規則相)はピンク色を呈し、同合金系に現われるζ
相(銀白色)との間に前記AとBに相当する光常時性変
化が顕著に現われる。これら合金の初期状態をζ相とす
ればζ→β′変態が記録に相当し、β′→ζ変態が消去
となる。このうちζ→β′変態はζ→β変態後急冷され
てβ′となることから実質的にはζ→β変態が吸熱であ
ることが望ましい。これらの両方の変態が吸熱であるこ
とが記録材料として最も望ましいが、これはA Q 、
 G a 。
In particular, the β' phase (CsC
The Q-shaped ordered phase) exhibits a pink color, and the ζ that appears in the same alloy system.
A remarkable change in photoconstancy corresponding to A and B mentioned above appears between the phase (silver white). If the initial state of these alloys is the ζ phase, the ζ→β' transformation corresponds to recording, and the β'→ζ transformation corresponds to erasure. Among these transformations, the ζ→β' transformation is rapidly cooled to become β' after the ζ→β transformation, so it is desirable that the ζ→β transformation is essentially endothermic. It is most desirable for recording materials that both of these transformations are endothermic;
Ga.

In、Sn、Sbを10wt%範囲で添加すると実現す
る。従ってこれらを記録材料とすると非常によい特性が
得られる。
This can be achieved by adding In, Sn, and Sb in a range of 10 wt%. Therefore, when these are used as recording materials, very good characteristics can be obtained.

固相変態ではその吸熱反応の際、異種結晶間での格子歪
が問題となる。従って、反応を容易にするためには、こ
の歪をできるだけ暖和する組織が望まれる。本発明材料
ではこの点について等軸晶でその平均粒径が0.5  
μm以下が望ましい。等軸品とはここでは粒の長径と短
径の比が2倍以下が望ましい。
In solid phase transformation, lattice strain between different types of crystals becomes a problem during the endothermic reaction. Therefore, in order to facilitate the reaction, a structure that softens this strain as much as possible is desired. Regarding this point, the material of the present invention has equiaxed crystals with an average grain size of 0.5
It is desirable that the thickness be less than μm. The equiaxed product is preferably one in which the ratio of the major axis to the minor axis of the grain is twice or less.

以上の材料を記録材料として利用する場合、実質上薄膜
状態で用いる。この作製法としては一般的なPVD、C
VDなどでよい。PVDとしてはスパッタ法、真空蒸着
法などが適している。
When the above materials are used as recording materials, they are used substantially in a thin film state. This manufacturing method is common PVD, C
A DVD or the like is fine. As the PVD, sputtering method, vacuum evaporation method, etc. are suitable.

〔発明の実施例〕[Embodiments of the invention]

実施例I A g −Z n 2元系合金箔を液体急冷法により作
製しその記録、消去に相当する相変態をDSC(元差走
査熱量計)により調べた。液体急冷法には単ロール型の
装置を用いた。Ag−30〜45wt% Zn合金をア
ルゴン雰囲気中高周波炉で溶解し母合金を作製した。こ
れを単ロール急冷装置により厚さ約8 Q ALm、幅
5nnのリボン状箔にした。作製条件はロール(材質:
工具鋼、直径:300ma)を約1100Orpで回転
させ石英ノズル中で再溶解した母合金を約1.0kg/
cn圧のArガスでロール直上に噴出させた。
Example I A g -Z n binary alloy foil was produced by a liquid quenching method, and its phase transformation corresponding to recording and erasing was investigated using a differential scanning calorimeter (DSC). A single roll type device was used for the liquid quenching method. A master alloy was prepared by melting an Ag-30 to 45 wt% Zn alloy in a high frequency furnace in an argon atmosphere. This was made into a ribbon-like foil with a thickness of about 8 Q ALm and a width of 5 nn using a single roll quenching device. The manufacturing conditions are roll (material:
Approximately 1.0 kg/mm of master alloy was remelted in a quartz nozzle by rotating tool steel (diameter: 300 ma) at approximately 1100 Orp.
Ar gas at cn pressure was ejected directly above the roll.

このリボン状箔を350℃で10分加熱後水冷してβ′
相(ピンク色)にした。これから約1mgの片を切り出
し、DSCによる熱分析をした。第2図はZn量による
DSC曲線の変化を示す6いずれも150℃付近と28
0℃付近にピークが現われる。低温ピークはβ′→ζ変
態、高温ピークからζ→β変態に相対し、前者が消去、
後者が記録に対応する。ζ→βはいずれも吸熱反応であ
るが、β′→ζはZn量が増えるに従い発熱から吸熱1
発熱混合ピークに変わる。従って、消去特性は高Zn側
が適し、記録材料としてもZn量が多い方が良いことが
わかる。
This ribbon-shaped foil was heated at 350°C for 10 minutes and then cooled with water to obtain β'
I made it pink (pink). A piece of about 1 mg was cut out from this and subjected to thermal analysis by DSC. Figure 2 shows changes in the DSC curve depending on the amount of Zn6.
A peak appears around 0°C. The low-temperature peak corresponds to the β′→ζ transformation, and the high-temperature peak corresponds to the ζ→β transformation, and the former disappears.
The latter corresponds to records. Both ζ → β are endothermic reactions, but β' → ζ changes from exothermic to endothermic 1 as the amount of Zn increases.
It turns into an exothermic mixed peak. Therefore, it can be seen that the higher the Zn level is, the better the erasing characteristic is, and the higher the Zn content, the better the recording material.

実施例2 実施例1と同様の方法でA g −50at%Zn(3
9,7wt%Zn)−1at%X3元系合金箔を作製し
、そのDSC曲線を調べた。測定用試料の熱処理も実施
例1と同様である。X元素としてはAQ、Ga、In、
Sn、sb、pb、Bi、Teの元素周期律表1b〜■
b族の各元素である。第3図はA g −50at%Z
n  lat%pb及びlat%Bi各3元系合金のD
SC曲線である。この2つの合金のDSC曲線はA g
 −Z n 2元系合金の高Zn組成と同様の低温に吸
・発熱ピーク、高温に吸熱ピークを示すパターンであり
、比較的記録材料として良好なパターンを示す。
Example 2 A g -50at%Zn(3
A 9.7wt%Zn)-1at%X ternary alloy foil was produced, and its DSC curve was examined. The heat treatment of the measurement sample was also the same as in Example 1. X elements include AQ, Ga, In,
Periodic Table of Elements 1b~■ of Sn, sb, pb, Bi, Te
Each element of group b. Figure 3 shows A g -50at%Z
n D of each lat%pb and lat%Bi ternary alloy
It is an SC curve. The DSC curves of these two alloys are A g
-Zn This is a pattern showing endothermic peaks at low temperatures and endothermic peaks at high temperatures, similar to the high Zn composition of binary alloys, and is a relatively good pattern as a recording material.

第1図はAg−50at%Zn−1.at%AQ、la
t%Ga。
FIG. 1 shows Ag-50at%Zn-1. at%AQ, la
t%Ga.

lat%In、 lat%Sn及びlat%sbの各3
元系合金箔のDSC曲線を示す。各合金系での特徴は低
温ピークすなわちβ′→ζ変態に相当するピークが吸熱
ピークとなることである。従って、記録材料としては記
録、消去特性ともに著しく向上する。
3 each of lat%In, lat%Sn and lat%sb
2 shows a DSC curve of a base alloy foil. A feature of each alloy system is that the low-temperature peak, that is, the peak corresponding to the β'→ζ transformation, becomes an endothermic peak. Therefore, as a recording material, both recording and erasing properties are significantly improved.

実施例3 A g −Z n合金及びA g −Z n −X合金
(又は実施例2と同じ)の薄膜をスパッタ法により作製
し半導体レーザによる記録、消去特性を調べた。
Example 3 Thin films of Ag-Zn alloy and Ag-Zn-X alloy (or the same as in Example 2) were produced by sputtering, and their recording and erasing characteristics with a semiconductor laser were investigated.

薄膜の作製にはDC−マグネトロン型スパッタ装置を用
いた。ターゲットは溶解法により作製した100Iφの
合金ターゲットを使用し、スパッタ基板は26n*φ、
厚さ1.2mの石英ガラスを用いた。第4図に作製した
膜の構成を示す。ガラス基板上に約60nmのCrxO
s膜をRF−スパッタ法で形成後、その上に前記合金を
約30〜50nm厚さ形成する。さらにその上に保護膜
としてTa 20δ膜をRF−スパッタ法で約580n
m形成した。
A DC-magnetron type sputtering device was used to prepare the thin film. The target used was a 100Iφ alloy target made by a melting method, and the sputtering substrate was 26N*φ,
A 1.2 m thick quartz glass was used. FIG. 4 shows the structure of the produced membrane. Approximately 60 nm of CrxO on a glass substrate
After forming the S film by RF-sputtering, the alloy is formed thereon to a thickness of about 30 to 50 nm. Furthermore, a Ta 20δ film of about 580 nm was deposited as a protective film on top of it by RF-sputtering.
m was formed.

レーザによる記録、消去はガラス基板側(図中矢印方向
)から行う。CrzOa膜は反射率を低下させ。
Recording and erasing using a laser is performed from the glass substrate side (in the direction of the arrow in the figure). CrzOa film reduces reflectance.

照射したレーザ光を有効に熱に換える役割を果す。It plays the role of effectively converting the irradiated laser light into heat.

半導体レーザは30mWの波長830nmのものを使用
した。記録、再生はレーザの反射光量変化で行い、反射
光量を電圧に変換して記録、再生。
The semiconductor laser used was one with a power of 30 mW and a wavelength of 830 nm. Recording and playback are performed by changing the amount of reflected light from a laser, and converting the amount of reflected light into voltage for recording and playback.

消去を確認した。膜面ヒではレーザ光は約1−06μm
径まで絞られている。前記Ag系合金膜はいずれもζ相
(銀白色)状態にしておき、レーザ光をパルス状に照射
してその反射光量を電圧で記録した。その結果A g 
−Z n 2元系ではZn1lが多いほど消去レーザパ
ルス幅は小さく、さらに第1図で示した合金系ではこれ
より約1桁以上小さいパルス幅で消去が可能であり、消
去特性において顕著な差が見られた。
Confirmed deletion. At the film surface, the laser beam is approximately 1-06 μm.
narrowed down to the diameter. All of the Ag-based alloy films were kept in the ζ phase (silver white) state, and pulsed laser light was irradiated, and the amount of reflected light was recorded as a voltage. As a result A g
- In the Zn binary system, the erasing laser pulse width becomes smaller as the amount of Zn1l increases, and furthermore, in the alloy system shown in Figure 1, erasing is possible with a pulse width that is about one order of magnitude smaller than this, and there is a remarkable difference in erasing characteristics. It was observed.

実施例4 実施例3で示した膜構成のAK系金合金膜3Ta 20
15膜4の間に発熱反応を伴う材料の膜を形成した。こ
の材料としては非晶質膜などで結晶化温度がAg系合金
の吸熱ピーク発生温度付近の材料である。レーザ光で熱
によりこの材料が発熱反応を起こしAg系合金の加熱を
助長し、記録、消去特性を向上させる。この材料は光透
過性のものであればCr203g 2とAg系合金膜:
3との間に形成しても有効である。
Example 4 AK-based gold alloy film 3Ta 20 having the film configuration shown in Example 3
A film of a material that causes an exothermic reaction was formed between the 15 films 4. This material is an amorphous film or the like whose crystallization temperature is near the endothermic peak generation temperature of the Ag-based alloy. This material undergoes an exothermic reaction when heated by laser light, which promotes heating of the Ag-based alloy and improves recording and erasing characteristics. If this material is transparent, Cr203g2 and Ag-based alloy film:
It is also effective to form it between 3 and 3.

〔発明の効果〕〔Effect of the invention〕

本発明によれば記録、消去特性に優れた新規な記録材料
が得られる。
According to the present invention, a novel recording material with excellent recording and erasing properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のAg−50at%Zn−1
at%X (X=AQ、Ga、T II、Sn。 51))合金箔のDSC曲線図、第2図はAg−Zn2
元系合金箔のDSC曲線のZ n量依存性を示す線図、
第3図はAg  50at%Zn−1at%X (X=
Pd、Bi)合金箔(7)DSC曲線図、第4図はスパ
ッタ法により作製した薄膜の膜構成を示す断面図である
。 】・・・石英ガラス、2・・・GrzOs膜、3・・・
Ag系合金膜、佑1 図 夕l  度  (°C) 筋2図
FIG. 1 shows Ag-50at%Zn-1 according to an embodiment of the present invention.
at%
A diagram showing the Z n amount dependence of the DSC curve of the base alloy foil,
Figure 3 shows Ag 50at%Zn-1at%X (X=
Pd, Bi) Alloy Foil (7) DSC Curve Diagram FIG. 4 is a cross-sectional view showing the film structure of a thin film produced by a sputtering method. ]...Quartz glass, 2...GrzOs film, 3...
Ag-based alloy film, Figure 1 Degrees (°C) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、局所的な光学特性が他の部分と異なり、その相異の
変化によつて情報を記録及び消去する記録材料において
、局所的な光学特性の変化が吸熱反応によつて起こるこ
とを特徴とする記録材料。
1. In a recording material where local optical properties are different from other parts and information is recorded and erased by changes in the difference, the local change in optical properties is characterized by an endothermic reaction. Recording materials.
JP61011906A 1986-01-24 1986-01-24 Recording material Pending JPS62170390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61011906A JPS62170390A (en) 1986-01-24 1986-01-24 Recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61011906A JPS62170390A (en) 1986-01-24 1986-01-24 Recording material

Publications (1)

Publication Number Publication Date
JPS62170390A true JPS62170390A (en) 1987-07-27

Family

ID=11790766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61011906A Pending JPS62170390A (en) 1986-01-24 1986-01-24 Recording material

Country Status (1)

Country Link
JP (1) JPS62170390A (en)

Similar Documents

Publication Publication Date Title
US4773059A (en) Information recording and reproducing apparatus having recording medium made of alloy which has at least two different crystalline structures in its solid state
US4743526A (en) Alloy having variable spectral reflectance and information recording material making use of the same
JPS60177446A (en) Optical disk recording medium
JPS6169935A (en) Spectral reflectance variable alloy and recording material
JPS6119747A (en) Spectral reflectance variable alloy and recording material
JPS62170390A (en) Recording material
JPS6119745A (en) Spectral reflectance variable alloy and recording material
JPS6119752A (en) Spectral reflectance variable alloy and recording material
JPS61133352A (en) Alloy capable of varying spectral reflectance and recording material
JPS63167440A (en) Method for recording or recording and erasing information
JPS61133356A (en) Alloy capable of varying spectral reflectance and recording material
JPS61190028A (en) Alloy having variable spectral reflectance and recording material
JPH0530893B2 (en)
JPS61195943A (en) Alloy having variable spectral reflectance and recording material
JPS62112742A (en) Spectral reflectivity variable alloy
JPS61194654A (en) Information recording and reproducing device
JPS61190030A (en) Alloy having variable spectral reflectance and recording material
JPS61133350A (en) Alloy capable of varying spectral reflectance and recording material
JPS6137936A (en) Alloy and recording material capable of varying spectroreflectance
JPS61190033A (en) Alloy having variable spectral reflectance and recording material
JPS61133353A (en) Alloy capable of varying spectral reflectance and recording material
JPS6169934A (en) Variable alloy having spectral reflectance and recording material
JPS6176638A (en) Variable spectral reflectivity alloy and recording material
JPS61110738A (en) Spectral reflection factor variable alloy and recording material
JPS6134153A (en) Alloy having variable spectral reflectance and recording material