JPS62170181A - Manufacture of multielectrode connector - Google Patents

Manufacture of multielectrode connector

Info

Publication number
JPS62170181A
JPS62170181A JP1055386A JP1055386A JPS62170181A JP S62170181 A JPS62170181 A JP S62170181A JP 1055386 A JP1055386 A JP 1055386A JP 1055386 A JP1055386 A JP 1055386A JP S62170181 A JPS62170181 A JP S62170181A
Authority
JP
Japan
Prior art keywords
electrode connector
conductive part
connector
manufacturing
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055386A
Other languages
Japanese (ja)
Inventor
和夫 井上
敏夫 小嶋
晃 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP1055386A priority Critical patent/JPS62170181A/en
Publication of JPS62170181A publication Critical patent/JPS62170181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微細かつ多端子接続用の多電極コネクターの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a multi-electrode connector for fine and multi-terminal connections.

〔従来の技術〕[Conventional technology]

近年、ICのパターンの微細化に伴い、IC電極の効率
の良い配置構成が種々考えられている。
In recent years, with the miniaturization of IC patterns, various efficient arrangement configurations of IC electrodes have been considered.

この中でも細密化に適した電極配置として、IC表面の
全面に渡って電極を形成したマl−IJックス状電電極
配置面積効率が最も高(、広く応用され始めている。こ
の電極配置に於ては、ICの素子領域上に電極を配置す
るため、ボンディング時の熱応力や機械的圧力により、
素子ダメージを受ける危険性が高いといった問題点を有
しており、素子ダメージの少ない接続構造が望まれてい
た。又、さらには、多数個のICを1枚の基板上に搭載
する場合、交換性に優れた接続構造は必須であり、この
問題に対してもボンディングによる接続方式は、必ずし
も良好な方式であるとは言えなかった。
Among these, as an electrode arrangement suitable for miniaturization, the multi-IJ square electrode arrangement, in which electrodes are formed over the entire surface of the IC, has the highest area efficiency (and is beginning to be widely applied. Since electrodes are placed on the IC element area, thermal stress and mechanical pressure during bonding may cause
The problem is that there is a high risk of element damage, and a connection structure that causes less element damage has been desired. Furthermore, when mounting a large number of ICs on a single board, a connection structure with excellent interchangeability is essential, and a connection method using bonding is not necessarily a good method to solve this problem. I couldn't say that.

これらの要求事項を満足する接続構造の1つの候補とし
て、ICの電極群に対応して縦横に導電部群を設けた多
電極コネクターを介してICを基板に圧接する接続構造
が考えられている。この様な多電極コネクターを用いた
接続構造は、ボンディング時に於ける素子ダメージも無
く、ICの交換性にも優れており、多電極ICを多数個
接続する構造に対し大変優れた構造である。
As a candidate for a connection structure that satisfies these requirements, a connection structure is being considered in which an IC is pressed against a substrate via a multi-electrode connector in which groups of conductive parts are provided vertically and horizontally in correspondence with the electrodes of the IC. . A connection structure using such a multi-electrode connector is free from element damage during bonding and has excellent IC exchangeability, and is a very superior structure to a structure in which a large number of multi-electrode ICs are connected.

従来、上記する如き多電極コネクターとしては第5図(
al、(、b)に示す如き、ニッケル等の強磁性微粉末
をシリコーンゴム54中に均等分散させた母材を、IC
の電極群と対応する位置に磁極群を有する治具中で、適
当な温度の下で部分的磁場を加えることにより、強磁性
微粉末を所定の個所に集中配向させシリコーンゴムを硬
化して成る一方向性導電性群53を有する多電極コネク
ターシート52を成形し、しかる後、図中の一点鎖線部
で切断して多電極コネクター51を形成する製造方法が
試みられていた。
Conventionally, the multi-electrode connector as described above is shown in Fig. 5 (
A base material in which ferromagnetic fine powder such as nickel is uniformly dispersed in silicone rubber 54 as shown in al.
The ferromagnetic fine powder is concentrated and oriented in a predetermined location by applying a partial magnetic field at an appropriate temperature in a jig that has a magnetic pole group at a position corresponding to the electrode group, and the silicone rubber is cured. A manufacturing method has been attempted in which a multi-electrode connector sheet 52 having a unidirectional conductive group 53 is molded and then cut along the dot-dashed line in the figure to form a multi-electrode connector 51.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

しかし、この様な従来技術によると、多電極コネクター
51の導電部群56の形状は、強磁性微粉末の混入量、
導電部周辺の体積、磁界及び温度条件によって決定され
、特に導電部周辺の体積効果は大きく、多電極コネクタ
ー51の最外周部の導電部はその周辺体積が他に比べて
太きいため、配向量の増大をもたらし、このため導電部
の広がりや導電部間の強磁性微粉末残りを生じ、歩留り
の低下をもたらしたり、接続時のショート原因となる等
、種々の問題を引起していた。
However, according to such conventional technology, the shape of the conductive part group 56 of the multi-electrode connector 51 depends on the amount of mixed ferromagnetic fine powder,
It is determined by the volume, magnetic field, and temperature conditions around the conductive part, and the volume effect around the conductive part is particularly large.The outermost conductive part of the multi-electrode connector 51 has a larger surrounding volume than other parts, so the orientation amount This causes various problems, such as spreading of the conductive parts and residual ferromagnetic powder between the conductive parts, leading to a decrease in yield and causing short circuits during connection.

本発明はかかる問題点に着目し、多電極コネクター最外
周の導電部への強磁性微粉末の配向量増大がなく、多電
極コネクター有効領域内の導電部が均一な配向を示し、
歩留りが高く、安定接続が可能な多電極コネクターを提
供することを目的としている。
The present invention has focused on this problem, and there is no increase in the amount of ferromagnetic fine powder orientation toward the outermost conductive part of the multi-electrode connector, and the conductive part within the effective area of the multi-electrode connector exhibits uniform orientation.
The objective is to provide a multi-electrode connector that has a high yield and enables stable connections.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明の製造方法は、多電極コ
ネクターの有効領域の外周部に、多電極コネクターの導
電部群ピッチとほぼ等しい間隔で導電部列を配置し、多
電極コネ□クター有効領域内の導電部群への強磁性微粉
末の均一配向性を高めた方法である。
In order to achieve the above object, the manufacturing method of the present invention arranges conductive part rows at intervals approximately equal to the conductive part group pitch of the multi-electrode connector on the outer periphery of the effective area of the multi-electrode connector, thereby making the multi-electrode connector effective. This method improves the uniform orientation of ferromagnetic fine powder to a group of conductive parts within a region.

〔作用〕[Effect]

上記方法によると、多電極コネクターの有効領域内導電
部群の均一化が計られるため、歩留りが高く、接続安定
性の勝れた多電極コネクターを容易に得ることが可能と
なる。
According to the above method, the group of conductive parts within the effective area of the multi-electrode connector is made uniform, so it is possible to easily obtain a multi-electrode connector with a high yield and excellent connection stability.

〔実施例〕〔Example〕

以下、本発明の実施例を図面によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に於ける多電極コネクターを示す平面図
、第2図は第1図に於けるA−A断面図、第3図は本発
明に於ける多電極コネクター作製用治具の断面図を示す
FIG. 1 is a plan view showing a multi-electrode connector according to the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a plan view showing a multi-electrode connector manufacturing jig according to the present invention A cross-sectional view is shown.

工程に従って説明すると、ニッケル等の強磁性微粉末を
混入したシリコーンゴム4を、磁性体基板12にICの
電極に対応した凸起磁極14を形成し、該磁性体基板1
2の凹部を非磁性材料16で埋め込んで形成した上型1
0と下型11とから成る多電極コネクター作成冶具間に
注入し、磁場中で、加熱、加圧成形することにより、I
Cの電極に対応する所定の個所に強磁性微粉末が配向し
た一方向性導電性を示す導電部群6及び多電極コネクタ
ー1の外周部に配した導電部列5とを有するコネクター
7−ト2が形成される。
To explain according to the process, a silicone rubber 4 mixed with ferromagnetic fine powder such as nickel is used to form convex magnetic poles 14 corresponding to the electrodes of an IC on a magnetic substrate 12.
Upper mold 1 formed by filling the recessed portion of No. 2 with non-magnetic material 16
By injecting I into a multi-electrode connector making jig consisting of I
A connector 7-t having a conductive part group 6 exhibiting unidirectional conductivity in which ferromagnetic fine powder is oriented at a predetermined location corresponding to the electrode C, and a conductive part row 5 arranged on the outer periphery of the multi-electrode connector 1. 2 is formed.

この場合、前記導電部列5を多電極コネクター1の導電
部群6ピツチとほぼ等間隔に配置することにより、前記
多電極コネクター1の有効領域の導電部群6の全域に渡
って導電部周辺体積は一様となり、導電部群6への強磁
性微粉末の配向量は均一となる。しかる後、図中の一点
鎖線部より切断することにより多電極コネクター1を形
成するものである。この切断はプレス抜き又は刃物によ
る切込により行うことが出来る。
In this case, by arranging the conductive part rows 5 at substantially equal intervals with the pitches of the conductive part groups 6 of the multi-electrode connector 1, the periphery of the conductive parts can be distributed over the entire area of the conductive part group 6 in the effective area of the multi-electrode connector 1. The volume becomes uniform, and the amount of orientation of the ferromagnetic fine powder to the conductive part group 6 becomes uniform. Thereafter, the multi-electrode connector 1 is formed by cutting along the dashed-dotted line in the figure. This cutting can be done by press punching or cutting with a knife.

この多電極コネクター1の形成は、従来技術の多電極コ
ネクター有効領域外周部に導電部列5を配するのみで形
成でき、治具作製上、成形工程上も従来技術と全く同一
処理が可能で、簡単な手段で歩留りの高い、接続安定性
に勝れた多電極コネクターを形成することが可能となる
The multi-electrode connector 1 can be formed by simply arranging the conductive part array 5 on the outer periphery of the effective area of the conventional multi-electrode connector, and the jig manufacturing and molding process can be performed in exactly the same way as the conventional technique. , it becomes possible to form a multi-electrode connector with high yield and excellent connection stability by simple means.

第4図は本発明に於ける他の実施例であり、基板間を接
続する様な、導電部21.非導電部22を交互に有する
ゼブラ状のコネクターに適応した例であり、導電部21
への強磁性微粉末の配向量安定化のみでな(、導電部2
1の垂直配向性、成形後一点鎖線部での切断時の切断性
に対しても効果を有するものである。
FIG. 4 shows another embodiment of the present invention, in which a conductive portion 21. This is an example adapted to a zebra-shaped connector having non-conductive parts 22 alternately, and conductive parts 21
In addition to stabilizing the amount of orientation of the ferromagnetic fine powder in the conductive part 2
It also has an effect on the vertical orientation of No. 1 and the cuttability when cutting along the dashed line after molding.

〔発明の効果〕〔Effect of the invention〕

上記する説明の如く本発明によると、磁場によって所定
の個所に強磁性微粉末を配向成形して成る多電極コネク
ターの製造方法に於て、該多電極コネクター有効領域の
外周部に導電部列を配置することにより、多電極コネク
ター有効領域内の導電部群への強磁性微粉末の配向量均
一化を計り、これにより配向歩留りの向上をもたらし、
さらに接続時のコネクター導電部間リークやパターン間
ンヨート等の問題の生じ無い安定接続が可能となる。
As described above, according to the present invention, in the method for manufacturing a multi-electrode connector in which fine ferromagnetic powder is oriented and molded at a predetermined location by a magnetic field, a conductive part array is formed on the outer periphery of the effective area of the multi-electrode connector. By arranging the ferromagnetic powder, the amount of ferromagnetic fine powder is uniformly oriented to the group of conductive parts within the effective area of the multi-electrode connector, thereby improving the orientation yield.
Furthermore, stable connection is possible without problems such as leakage between conductive parts of the connector or leakage between patterns during connection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多電極コネクターの製造工程を示す平
面図、第2図は第1図に於けるA−A断面図、第3図は
本発明の多電極コネクター作製用冶具を示す断面図、第
4図は本発明の製造方法により他のコネクターの製造実
施例を示す断面図、第5図(al、(b)は従来の製造
方法に於ける多電極コネクターを示す平面図及び断面図
。 1.51・・・・・・多電極コネクター、2.52・・
・・・・コネクターシート、6.56・・・・・・導電
部群、 4.54・・・・・シリコーンゴム、 5・・・・・・導電部列、10・・・・・・上型、11
・・・−・下型、12・・・・・・磁性体基板、16・
・・・・・非磁性材料、14・・・・・・凸起磁極、2
1・・・・・・導電部、22・・・・・・非導電部。 第1図 第2図 第3図 第4図
Fig. 1 is a plan view showing the manufacturing process of the multi-electrode connector of the present invention, Fig. 2 is a sectional view taken along line AA in Fig. 1, and Fig. 3 is a cross-sectional view showing the jig for manufacturing the multi-electrode connector of the present invention. Figure 4 is a sectional view showing an example of manufacturing another connector by the manufacturing method of the present invention, and Figures 5 (al) and (b) are a plan view and a sectional view showing a multi-electrode connector in the conventional manufacturing method. Fig. 1.51...Multi-electrode connector, 2.52...
... Connector sheet, 6.56 ... Conductive part group, 4.54 ... Silicone rubber, 5 ... Conductive part row, 10 ... Top Type, 11
...-Lower mold, 12... Magnetic substrate, 16.
...Nonmagnetic material, 14...Convex magnetic pole, 2
1... Conductive part, 22... Non-conductive part. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 強磁性体粉末を磁場によって所定の個所に集中配向させ
、ゴム状弾性体で固定して成る一方向性の導電部群を有
する磁気配向型の多電極コネクターの製造方法に於て、
該多電極コネクターの有効領域外周に導電部列を前記導
電部群と同時に配置成形した後、前記有効領域外の導電
部列を切断除去することを特徴とする多電極コネクター
の製造方法。
In a method for manufacturing a magnetically oriented multi-electrode connector having a group of unidirectional conductive parts formed by ferromagnetic powder being concentratedly oriented at a predetermined location by a magnetic field and fixed with a rubber-like elastic body,
A method for manufacturing a multi-electrode connector, comprising: arranging and molding a conductive part array on the outer periphery of an effective area of the multi-electrode connector at the same time as the conductive part group, and then cutting and removing the conductive part array outside the effective area.
JP1055386A 1986-01-21 1986-01-21 Manufacture of multielectrode connector Pending JPS62170181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055386A JPS62170181A (en) 1986-01-21 1986-01-21 Manufacture of multielectrode connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055386A JPS62170181A (en) 1986-01-21 1986-01-21 Manufacture of multielectrode connector

Publications (1)

Publication Number Publication Date
JPS62170181A true JPS62170181A (en) 1987-07-27

Family

ID=11753443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055386A Pending JPS62170181A (en) 1986-01-21 1986-01-21 Manufacture of multielectrode connector

Country Status (1)

Country Link
JP (1) JPS62170181A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050254A (en) * 2008-08-21 2010-03-04 Alps Electric Co Ltd Manufacturing method of magnetic sheet, magnetic sheet, and manufacturing apparatus of magnetic sheet
WO2014065252A1 (en) * 2012-10-24 2014-05-01 ポリマテック・ジャパン株式会社 Electromagnetic wave shield gasket and electromagnetic wave shield structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050254A (en) * 2008-08-21 2010-03-04 Alps Electric Co Ltd Manufacturing method of magnetic sheet, magnetic sheet, and manufacturing apparatus of magnetic sheet
WO2014065252A1 (en) * 2012-10-24 2014-05-01 ポリマテック・ジャパン株式会社 Electromagnetic wave shield gasket and electromagnetic wave shield structure

Similar Documents

Publication Publication Date Title
JP3038859B2 (en) Anisotropic conductive sheet
US4209481A (en) Process for producing an anisotropically electroconductive sheet
US3439416A (en) Method and apparatus for fabricating an array of discrete elements
CA1168764A (en) Encapsulation for semiconductor integrated circuit chip
JP3361689B2 (en) Encapsulated molded electronic component and method of manufacturing the same
KR920000076B1 (en) Semiconductor device
KR20030076199A (en) Semiconductor Device and Method of Manufacturing the Same
JPS62170181A (en) Manufacture of multielectrode connector
JPH054339Y2 (en)
JPH04299851A (en) Lead frame for semiconductor device
US3488615A (en) Magnetic matrix defining pairs of oppositely poled permanent magnets
GB1591740A (en) Single chip moulded magnetic bubble memory package
JPS61118977A (en) Multi-electrode connector construction
JP2782870B2 (en) Lead frame
US3429788A (en) Electrical interconnection of micromodule circuit devices
KR101735520B1 (en) Test socket having top metal plate bump and method for manufacturing thereof
JPS61233981A (en) Multipolar connector
JP2005244158A (en) Bonding structure of high-density pin
JPH07161426A (en) Socket for bare chip burn-in test and its manufacture
US3374306A (en) Printed circuit board
US20230187324A1 (en) Lead frame assembly
JPS6148952A (en) Semiconductor device
JPH01210393A (en) Integrated circuit device
JPS6388775A (en) Manufacture of elastic joint member
KR100306133B1 (en) Multiple-line grid array package