JPS6217003B2 - - Google Patents

Info

Publication number
JPS6217003B2
JPS6217003B2 JP20654983A JP20654983A JPS6217003B2 JP S6217003 B2 JPS6217003 B2 JP S6217003B2 JP 20654983 A JP20654983 A JP 20654983A JP 20654983 A JP20654983 A JP 20654983A JP S6217003 B2 JPS6217003 B2 JP S6217003B2
Authority
JP
Japan
Prior art keywords
furnace
amount
exhaust gas
gas
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20654983A
Other languages
Japanese (ja)
Other versions
JPS60100611A (en
Inventor
Isamu Tsuboi
Toshio Edane
Masachika Fukuda
Teruyuki Hasegawa
Yoichi Nimura
Hiroaki Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP20654983A priority Critical patent/JPS60100611A/en
Publication of JPS60100611A publication Critical patent/JPS60100611A/en
Publication of JPS6217003B2 publication Critical patent/JPS6217003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、酸素転炉における未燃焼排ガスを回
収するための排ガス回収制御装置に係り、特に排
ガス流量の制御によつてCO濃度の高い転炉排ガ
スをより多量に回収する転炉の排ガス回収制御装
置に関する。
[Detailed Description of the Invention] The present invention relates to an exhaust gas recovery control device for recovering unburned exhaust gas in an oxygen converter, and in particular recovers a larger amount of converter exhaust gas with a high CO concentration by controlling the exhaust gas flow rate. The present invention relates to an exhaust gas recovery control device for a converter.

一般に、酸素転炉では、ランスまたは炉底ある
いは両方より酸素を炉内鋼浴に吹込み、さらに石
灰などの副原料を投入して鋼浴中のC(炭素)、
P(りん)およびMn(マンガン)などを酸化除
去している。このとき、COガスに富んだガスが
多量に発生するため、このガスを炉口上部にフー
ドを設置して捕集し、よつて作業環境の清浄化お
よび危険防止を図り、更にはCOガスの再利用に
よつて省エネルギ化を図ることが行なわれてい
る。このフードの上端は排ガス吸引ダクトに接続
され、一方、フード下端側には炉口上部を覆うよ
うなスカートが設けられている。このような設備
配置は安全対策のためであるが、フードと転炉と
が離れているために誘引される排ガスは適切な量
でなければならない。即ち、吸引量が過大である
と、スカートと炉口の間より大気を吸引してフー
ド内に巻き込み、排ガスのカロリーを低下させる
のみならず、排ガス中のCOと大気O2とが燃焼反
応を起してフードやダクトなどを配損させる事故
を招く恐れがある。また、吸引量が過小である
と、炉口とスカートの間からCO富化の排ガスが
噴出し、作業環境の汚染、危険化をもたらし、か
つエネルギー損失を招く問題がある。
Generally, in an oxygen converter, oxygen is blown into the steel bath in the furnace from a lance or the bottom of the furnace, or both, and auxiliary materials such as lime are added to reduce C (carbon) in the steel bath.
P (phosphorus) and Mn (manganese) are removed by oxidation. At this time, a large amount of gas rich in CO gas is generated, so a hood is installed above the furnace mouth to collect this gas, thereby cleaning the working environment and preventing danger. Efforts are being made to save energy through reuse. The upper end of this hood is connected to the exhaust gas suction duct, while the lower end of the hood is provided with a skirt that covers the upper part of the furnace mouth. Although this equipment arrangement is for safety reasons, the amount of exhaust gas induced must be appropriate due to the distance between the hood and the converter. In other words, if the amount of suction is too large, the atmosphere will be sucked in between the skirt and the furnace mouth and drawn into the hood, which will not only reduce the calorie content of the exhaust gas, but also cause a combustion reaction between CO in the exhaust gas and atmospheric O2 . This may cause an accident that may cause damage to the hood, ducts, etc. Furthermore, if the amount of suction is too low, CO-enriched exhaust gas will blow out from between the furnace mouth and the skirt, contaminating the working environment, making it dangerous, and causing energy loss.

そこで、従来、以上のような問題点を解決する
ためにフード内に検出端を設け、この検出端によ
る炉内圧の測定値に基づいて、炉内圧が大気圧と
同値かもしくはほぼ同値になるように排ガス吸引
量を制御している。この制御系は、炉内圧フイー
ドバツクによるPI(比例積分)制御ループを用い
たものであつて、オペレータの経験的判断に基づ
く炉内圧設定値の変更により、排ガス流量を適宜
可変制御できるものである。
Conventionally, in order to solve the above-mentioned problems, a detection end was installed inside the hood, and based on the value of the furnace pressure measured by this detection end, the furnace pressure was set to be the same or almost the same as the atmospheric pressure. The amount of exhaust gas suction is controlled. This control system uses a PI (proportional-integral) control loop based on furnace pressure feedback, and can appropriately control the exhaust gas flow rate by changing the furnace pressure setting based on the operator's empirical judgment.

しかし、かかる炉内圧制御手段には次のような
問題点がある。その1つは、副原料投入および酸
素送給量変更時に発生するガス量の急変に対して
十分対応し得ない。即ち、副原料投入・酸素送給
量変更時に炉内発生ガス量が急変して炉口大気巻
込または排ガス炉外噴出が生じたとき、オペレー
タの判断で炉内圧設定値を変更実施するが、その
とき既に設定値変更遅れが生じており、さらに設
定値変更後に操作端の操作によつて変化された炉
内圧の測定にも遅れが生じ、これに加えて制御ル
ープの伝達遅れなどを含めると、制御ループの操
作遅れは避けられない。また、他の1つの問題点
は、急激な大気巻込み・排ガス噴出の防止によつ
て作業環境の汚染防止および排ガス回収作業の安
全性を保持しているため、多少とも巻込気味な回
収となることが多く、このためCO富化のガスを
みすみす損失してしまうことである。さらに、他
の1つの問題点は、オペレータの個人差が大きい
ことである。即ち、オペレータによる手動調節の
ため、オペレータ個々の作業熟練度に応じて調節
量が異なり、これが排ガス流量制御性に直接影響
を与える不具合がある。
However, such furnace internal pressure control means has the following problems. One of them is that it cannot adequately cope with sudden changes in the amount of gas generated when adding auxiliary materials or changing the amount of oxygen fed. In other words, when the amount of gas generated in the furnace suddenly changes when adding auxiliary materials or changing the amount of oxygen supplied, and the furnace entrance is sucked into the atmosphere or the exhaust gas is blown out of the furnace, the furnace pressure setting value is changed at the operator's discretion. At that time, there is already a delay in changing the set value, and there is also a delay in measuring the furnace internal pressure that has been changed by operating the control end after changing the set value.In addition to this, there is a delay in the transmission of the control loop, etc. , control loop operation delays are inevitable. Another problem is that the work environment is prevented from being contaminated and the exhaust gas recovery work is kept safe by preventing sudden air entrainment and exhaust gas ejection. This often results in the loss of CO-enriched gas. Furthermore, another problem is that there are large individual differences among operators. That is, since the adjustment is performed manually by the operator, the amount of adjustment varies depending on the work skill level of each operator, and this has a problem in that it directly affects the controllability of the exhaust gas flow rate.

しかして、従来、上記のような問題点を改善す
るために、以下に述べるような3つの改良技術が
考えられている。
Therefore, in order to improve the above-mentioned problems, three improved techniques as described below have been considered.

(1) 炉内残留O2量予測値の利用による排ガス回
収制御方法。
(1) Exhaust gas recovery control method using the predicted value of residual O 2 in the furnace.

この制御方法は、炉内に吹込むO2量と炉内か
ら出力されるO2量との差により、炉内に残留す
るO2量を時々刻々算出し、この算出結果による
瞬時値を炉内残留酸素量変化としてとらえて積算
し、この積算値から鋼浴〔Si〕の酸化に費されて
〔SiO2〕としてスラブ中に残留するO2量を差し引
くことにより、炉内残留O2量を得ている。この
場合、具体的には排ガス流量、排ガス組成、酸素
送給量および副原料銘柄別投入量などを考慮して
求められる。そして、以上のようにして求められ
た炉内残留O2量を時系列的に延長し、将来値を
予測推定する。さらに、この推定値とランスから
の予定値および副原料分解O2モデルによるO2
生量とから将来的な炉内発生ガス量を予測し、こ
の予測ガス量に基づいて二次集塵器ダンパの
DDC(Direct Digital Control)を実施する排ガ
ス回収制御方法であり、例えば特公昭56−22926
号公報および特公昭56−22927号公報が上げられ
る。
This control method calculates the amount of O 2 remaining in the furnace from time to time based on the difference between the amount of O 2 injected into the furnace and the amount of O 2 output from the furnace, and uses the instantaneous value based on this calculation result to The amount of O 2 remaining in the furnace can be calculated by calculating the change in the amount of residual oxygen in the furnace and subtracting the amount of O 2 spent in oxidizing the steel bath [Si] and remaining in the slab as [SiO 2 ] from this integrated value. I am getting . In this case, it is specifically determined by taking into consideration the exhaust gas flow rate, exhaust gas composition, oxygen supply amount, input amount for each brand of auxiliary raw material, etc. Then, the amount of residual O 2 in the reactor determined as described above is extended over time to predict and estimate the future value. Furthermore, the future amount of gas generated in the furnace is predicted from this estimated value, the scheduled value from the lance, and the amount of O 2 generated by the auxiliary material decomposition O 2 model, and the secondary precipitator damper is adjusted based on this predicted gas amount. of
This is an exhaust gas recovery control method that implements DDC (Direct Digital Control).
Publication No. 1 and Japanese Patent Publication No. 56-22927.

しかし、この方法は、炉内残留O2量の予測が
実績時系列の延長によるため、遅れ時間を解消し
得ず、また将来的に発生するガス発生状況急変に
対し、十分対応できないものである。
However, since this method predicts the amount of O 2 remaining in the furnace by extending the actual time series, it cannot eliminate the lag time and cannot adequately respond to sudden changes in gas generation conditions that may occur in the future. .

(2) 等価スカート抵抗による巻込空気率一定制御
による制御方法。
(2) Control method using constant entrainment air rate control using equivalent skirt resistance.

この方法は、排ガス流量と排ガス組成とから算
出される炉口巻込空気量実績値と炉内圧(大気圧
と炉内の実際の圧力との差で表わす)とにより、
炉口とスカートとの隙間における空間の流路抵抗
である等価スカート抵抗を算出し、炉口巻込空気
量を目標値に近づくように制御するもので、例え
ば特開昭57−85920号公報、特公昭58−3004号公
報、特公昭57−58409号公報および特公昭57−
45447号公報などの技術がかかる制御法の一部ま
たは全部に該当するものである。
This method uses the actual value of air intake at the furnace mouth, which is calculated from the exhaust gas flow rate and exhaust gas composition, and the furnace internal pressure (expressed as the difference between atmospheric pressure and actual pressure inside the furnace).
This method calculates the equivalent skirt resistance, which is the flow path resistance of the space in the gap between the furnace mouth and the skirt, and controls the amount of air entrained at the furnace mouth so that it approaches a target value. Special Publication No. 58-3004, Special Publication No. 57-58409 and Special Publication No. 57-
Technologies such as those disclosed in Publication No. 45447 fall under some or all of such control methods.

しかし、この制御方法において等価スカート抵
抗は過去の実績に基づく量であつて、算出方法自
体に遅れが存在し、また将来の状況変化に対して
も十分な適応性を発揮し得ない問題がある。
However, in this control method, the equivalent skirt resistance is a quantity based on past performance, and there is a lag in the calculation method itself, and there is also a problem that it cannot demonstrate sufficient adaptability to future changes in circumstances. .

(3) プロセス特性の補償装置による炉内圧制御方
法。
(3) Furnace pressure control method using process characteristic compensation device.

この制御方法は、副原料投入および酸素送給量
変更時の炉内圧設定値変更量を、予め決定された
時間補償式および投入量・変更量に対応した発生
量補償式によつて決定するもので、例えば特開昭
58−1011号公報に係わる技術が該当する。
This control method determines the amount of change in the furnace pressure setting value when adding auxiliary materials and changing the amount of oxygen fed using a predetermined time compensation formula and a generation amount compensation formula that corresponds to the amount of input and the amount of change. For example, Tokukaisho
The technology related to Publication No. 58-1011 falls under this category.

この制御法にあつては、同一の副原料投入量・
酸素送給量変更に対しても、炉内反応状況により
炉内圧設定値変更量の再現性が制約され、このた
めフイードフオワード要素のみの炉内圧設定値変
更量は十分に最適な値に決定できない問題があ
る。
In this control method, the same auxiliary raw material input amount and
Even when the oxygen feed rate is changed, the reproducibility of the change in the furnace pressure set value is restricted depending on the reaction situation in the furnace, so the amount of change in the furnace pressure set value only for the feed forward element cannot be set to a sufficiently optimal value. There are issues that cannot be decided.

従つて、以上の各制御方法をまとめると、前記
改良技術(1),(2)はともに過去の遅れを有する時系
列の延長によつて予測するため、過去の傾向から
予測し得ない急変に対する予測精度が十分改善さ
れていない。次に、改良技術(3)はフイードフオワ
ード制御による予測のみであるので、炉内反応状
況が反映されていない。ゆえに、各制御方法とも
に致命的な欠点を有しており、何れも完全な制御
方法とは言い難い。また、改良技術(1),(2)を実現
するためには、二次集塵器ダンパーのDDC化と
いう設備改造も必要であり、コスト的にも高くな
つてしまう。
Therefore, to summarize the above control methods, improved techniques (1) and (2) both make predictions by extending a time series with a past delay, so they are effective against sudden changes that cannot be predicted from past trends. Prediction accuracy has not been improved sufficiently. Next, improved technology (3) only makes predictions based on feed forward control, so the reaction situation inside the reactor is not reflected. Therefore, each control method has fatal drawbacks, and it is difficult to say that any of them is a perfect control method. Furthermore, in order to realize improved technologies (1) and (2), it is necessary to modify the equipment by converting the secondary precipitator damper to DDC, which also increases the cost.

本発明は以上のような従来技術の問題点を解決
するためになされたもので、炉内冶金反応から推
定して得られる炉内発生ガス量推定値を炉内発生
ガス量実績値でフイードバツク修正して炉内発生
ガス量予測値を算出し、この予測値に基づいて炉
口フード部圧力バランスより炉内圧最適設定値を
求め、この設定値に基づいて排ガス流量の先行制
御を可能とし、よつて従来と同一の精錬操業下に
ある転炉に関し、よりCO濃度の高い転炉排ガス
をより多量に回収し得る転炉の排ガス回収制御装
置を提供することを目的とする。
The present invention was made in order to solve the problems of the conventional technology as described above, and the present invention corrects the estimated amount of gas generated in the furnace obtained by estimating it from the metallurgical reaction in the furnace using the actual value of the amount of gas generated in the furnace. The predicted value of the amount of gas generated in the furnace is calculated, and based on this predicted value, the optimal set value of the furnace pressure is determined from the pressure balance of the furnace mouth hood. Based on this set value, advance control of the exhaust gas flow rate is possible. Therefore, an object of the present invention is to provide a converter exhaust gas recovery control device that can recover a larger amount of converter exhaust gas with a higher CO concentration in a converter under the same refining operation as the conventional one.

以下、本発明の一実施例について説明する。第
1図は装置の全体構成を示す図である。同図にお
いて1は転炉、2は鋼浴を示し、この転炉1の上
部には所定方向に延在する排気ガスダクト3の先
端部が位置するように配置されている。この排気
ガスダクト3の先端部にはフード4およびスカー
ト5が取付けられ、炉内発生ガスを吸込むように
なつている。フード4には炉内圧検出発信器、ス
カート5にはスカート高さ発信器7が取付けられ
ている。また、酸素を吹込む送酸ランス8が転炉
上部より転炉内部に挿入されており、一方、フー
ド4の後端部には副原料を投入する副原料投入口
9が設けられている。10は副原料投入量発信
器、11は投入シユート、12は副原料投入装置
である。13は送給ランス8を通して炉内に送り
込まれる酸素の流量を検出する酸素流量計であ
る。前記排気ガスダクト3は、転炉上部より逆U
字状に配置されてその他端下部側が平行に延在せ
られている。そして、排気ガスダクト3の逆U字
状をなす頂部には排ガス分析計14が取付けら
れ、頂部から下方に向かうダクト3の途中外側に
二次集塵器ダンパ駆動装置15が配置され、さら
にダクト3の平行部分には排ガス誘引装置16が
設けられている。この排ガス誘引装置16より後
方に伸びるダクト3内には3方弁17が内挿さ
れ、この弁17により煙突18およびダクト後端
部に排ガスを送り出すようになつている。19は
回収弁、20はガスホルダである。21は排ガス
誘引装置16の入力側に位置するダクト3内を流
れる排ガスの流量を検出する排ガス流量発信器、
22は主原料情報収集装置である。
An embodiment of the present invention will be described below. FIG. 1 is a diagram showing the overall configuration of the device. In the figure, reference numeral 1 indicates a converter, and reference numeral 2 indicates a steel bath.The converter 1 is disposed so that the tip of an exhaust gas duct 3 extending in a predetermined direction is located above the converter 1. A hood 4 and a skirt 5 are attached to the tip of the exhaust gas duct 3 to suck in the gas generated in the furnace. A furnace internal pressure detection transmitter is attached to the hood 4, and a skirt height transmitter 7 is attached to the skirt 5. Further, an oxygen supply lance 8 for blowing oxygen is inserted into the converter from the upper part of the converter, while an auxiliary raw material inlet 9 for inputting auxiliary raw materials is provided at the rear end of the hood 4. 10 is an auxiliary raw material input amount transmitter, 11 is an input chute, and 12 is an auxiliary raw material input device. 13 is an oxygen flow meter that detects the flow rate of oxygen sent into the furnace through the feed lance 8. The exhaust gas duct 3 has an inverted U shape from the top of the converter.
They are arranged in a letter shape, with the lower end of the other end extending in parallel. An exhaust gas analyzer 14 is attached to the top of the inverted U-shape of the exhaust gas duct 3, and a secondary precipitator damper drive device 15 is disposed on the outside of the duct 3 going downward from the top. An exhaust gas induction device 16 is provided in the parallel portion of the exhaust gas induction device 16 . A three-way valve 17 is inserted into the duct 3 extending rearward from the exhaust gas induction device 16, and the valve 17 sends exhaust gas to the chimney 18 and the rear end of the duct. 19 is a recovery valve, and 20 is a gas holder. 21 is an exhaust gas flow rate transmitter that detects the flow rate of exhaust gas flowing in the duct 3 located on the input side of the exhaust gas induction device 16;
22 is a main raw material information collection device.

23は炉内発生ガス量推定演算部であつて、こ
こでは副原料投入量発信器10、酸素流量計13
および主原料情報収集装置22などからの情報に
基づき、(1)式の演算式によつて炉内発生ガス量推
定値XMを求めるものである。
23 is a calculation unit for estimating the amount of gas generated in the furnace;
Based on the information from the main raw material information collection device 22 and the like, an estimated value X M of the amount of gas generated in the furnace is determined by the calculation formula (1).

M=(MA X M = (M A

Claims (1)

【特許請求の範囲】[Claims] 1 排気ガスダクトの先端部にフードおよびスカ
ートを取付けて酸素転炉炉口上に配置し、吹錬中
に酸素転炉から発生する排ガスを前記ダクトを介
して吸引する際の該排ガスの回収制御を行なう転
炉の排ガス回収制御装置において、主原料情報を
初期値とし、時々刻々の副原料情報およびランス
情報から炉内発生ガス量推定値を求める炉内発生
ガス量推定演算部と、前記ダクト内を流れる排ガ
スの排ガス流量および組成から炉内発生ガス量実
績値を求める炉内発生ガス量実績演算部と、これ
らの両演算部によつて得た炉内発生ガス量の推定
値と実績値との偏差時系列の統計的性質を最新の
該実績値の時点までの時系から算出し、この算出
によつて得た偏差時系列の統計的性質から予測時
点での偏差を予測し、この偏差予測値で該予測時
点の炉内発生ガス量推定値を修正して炉内発生ガ
ス量予測値を求める炉内発生ガス量予測演算手段
と、転炉炉口部圧力バランスより導かれる炉内圧
計算式中のパラメータを目標巻込空気量と実績巻
込空気量の比から時々刻々修正するとともに、予
め求めた前記炉内発生ガス量予測値、目標である
最適巻込空気量およびスカート高さから前記修正
パラメータを用いて炉内圧を求め、これを排ガス
制御用ダンパの制御を行なう制御系へ炉内圧設定
値として供給する手段とを備えたことを特徴とす
る転炉の排ガス回収制御装置。
1. Attach a hood and a skirt to the tip of the exhaust gas duct and place them above the oxygen converter furnace mouth to control the collection of exhaust gas generated from the oxygen converter during blowing when the exhaust gas is sucked through the duct. In a converter exhaust gas recovery control device, an in-furnace generated gas amount estimation calculation unit that takes main raw material information as an initial value and calculates an estimated value of in-furnace generated gas amount from momentary auxiliary raw material information and lance information; An in-furnace gas amount actual calculation unit that calculates the actual value of the in-furnace gas amount from the exhaust gas flow rate and composition of flowing exhaust gas, and an estimated value and actual value of the in-furnace gas amount obtained by both of these calculation units. The statistical properties of the deviation time series are calculated from the time series up to the point of the latest actual value, and the deviation at the prediction time is predicted from the statistical properties of the deviation time series obtained by this calculation. a calculation means for predicting the amount of gas generated in the furnace for calculating the predicted value of the amount of gas generated in the furnace by correcting the estimated value of the gas amount generated in the furnace at the time of the prediction, and a furnace pressure calculation formula derived from the pressure balance at the mouth of the converter. In addition to modifying the parameters from time to time based on the ratio of the target entrained air amount to the actual entrained air amount, the above parameters are adjusted based on the predicted value of the amount of gas generated in the furnace obtained in advance, the target optimum amount of entrained air, and the skirt height. 1. An exhaust gas recovery control device for a converter, comprising means for determining the furnace internal pressure using a correction parameter and supplying this as a furnace internal pressure set value to a control system that controls an exhaust gas control damper.
JP20654983A 1983-11-02 1983-11-02 Control device for recovery of waste gas from converter Granted JPS60100611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20654983A JPS60100611A (en) 1983-11-02 1983-11-02 Control device for recovery of waste gas from converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20654983A JPS60100611A (en) 1983-11-02 1983-11-02 Control device for recovery of waste gas from converter

Publications (2)

Publication Number Publication Date
JPS60100611A JPS60100611A (en) 1985-06-04
JPS6217003B2 true JPS6217003B2 (en) 1987-04-15

Family

ID=16525221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20654983A Granted JPS60100611A (en) 1983-11-02 1983-11-02 Control device for recovery of waste gas from converter

Country Status (1)

Country Link
JP (1) JPS60100611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125443U (en) * 1988-12-28 1990-10-16
JPH02131379U (en) * 1989-04-07 1990-10-31

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682576B2 (en) * 2012-01-13 2015-03-11 新日鐵住金株式会社 Exhaust gas recovery method for converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125443U (en) * 1988-12-28 1990-10-16
JPH02131379U (en) * 1989-04-07 1990-10-31

Also Published As

Publication number Publication date
JPS60100611A (en) 1985-06-04

Similar Documents

Publication Publication Date Title
KR102153053B1 (en) System for reducing dust and method thereof
JPS6217003B2 (en)
EP0190644B1 (en) Convertor pressure control device in convertor waste gas disposing device
JP4232424B2 (en) Disturbance correction method for converter furnace pressure control system
US4314694A (en) Method for controlling exhaust gases in oxygen blown converter
US4192486A (en) Method for controlling exhaust gases in oxygen blown converter
JPS5839204B2 (en) Furnace pressure control device in converter waste gas treatment equipment
CN109609720A (en) Converter dry dedusting differential pressure control method, device and converter dry dust pelletizing system
JP3775238B2 (en) Converter exhaust gas recovery equipment and recovery method
JP3015809B2 (en) Disturbance correction method for converter pressure control system
CA1092361A (en) Method for controlling exhaust gases in oxygen blown converter
JPH0434610B2 (en)
JPS6043886B2 (en) Waste gas recovery method in converter waste gas treatment equipment
JP3627957B2 (en) Control device for CO concentration in furnace exhaust gas
JP2814826B2 (en) Smelting furnace ore supply equipment
JP4238603B2 (en) Converter furnace port pressure control method and control apparatus
KR100832418B1 (en) Method and apparatus for optimum control of operation of induced draft fan in molten metal purifying process utilizing furnace with oxygen lance
JPH02305914A (en) In-furnace control method in treatment of converter waste gas
JP3874696B2 (en) Converter pressure control method and apparatus for converter
JP4064008B2 (en) In-furnace pressure control method and in-furnace pressure control apparatus for waste melting furnace
JPS62177113A (en) System for controlling furnace pressure for converter waste gas treatment device
KR20230079926A (en) Apparatus for manufacturing sintered ore and method for manufacturing sintered ore
JP3052496B2 (en) Pressure control method in ash melting furnace
KR970010803B1 (en) Control method of sintering finish point
JPS61174310A (en) Furnace pressure control device in converter waste gas treatment device