JPS62169908A - Pulverized coal combustion boiler - Google Patents

Pulverized coal combustion boiler

Info

Publication number
JPS62169908A
JPS62169908A JP61010745A JP1074586A JPS62169908A JP S62169908 A JPS62169908 A JP S62169908A JP 61010745 A JP61010745 A JP 61010745A JP 1074586 A JP1074586 A JP 1074586A JP S62169908 A JPS62169908 A JP S62169908A
Authority
JP
Japan
Prior art keywords
pulverized coal
combustion
air
oxygen
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61010745A
Other languages
Japanese (ja)
Other versions
JPH0543925B2 (en
Inventor
Shunpei Nozoe
野添 浚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP61010745A priority Critical patent/JPS62169908A/en
Publication of JPS62169908A publication Critical patent/JPS62169908A/en
Publication of JPH0543925B2 publication Critical patent/JPH0543925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E20/344

Abstract

PURPOSE:To improve combustion efficiency, to prevent exhaust of NOx, and to ensure safety of the interior of silo, by a method wherein a separating device, separating air into nitrogen and oxygen, in provided, nitrogen is fed to a pulverized coal silo, and oxygen is fed to a mixture flow transport pipe, and a secondary and a tertiary air pipe. CONSTITUTION:In a separating device 20, air is separated into nitrogen and oxygen. Pulverized coal from a pulverized coal silo 3 is fed to a furnace 1 together with air for combustion, and oxygen is fed to a mixture transport pipe 13a, a secondary air pipe 10, and a tertiary air pipe 14. In the furnace 1, control is effected so that, subsequently to a rapid ignition and temperature increase process, the furnace is brought into reduction atmosphere in a first stage combustion area, and it is brought into oxidation atmosphere in a second stage combustion area through a tertiary air nozzle 16 and the following air nozzles. This constitution enables sharp promotion of combustion, reduction of an amount of a residual unburnt content in ash to provide high combustion efficiency, and prevention of exhaust of NOx. Through utilization of nitrogen, atmosphere in the pulverized coal silo 3 is inactivated, and spontaneous ignition of pulverized coal is prevented from occurring.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は微粉炭燃焼ボイラに係り、石炭炭種に応じて燃
焼効率を制御でき微粉炭サイロの安全をはかることがで
きる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pulverized coal combustion boiler, and relates to a device that can control combustion efficiency according to the type of coal and ensure the safety of a pulverized coal silo.

[従来の技術] ” @粉炭燃焼ボイラでは、微粉炭燃焼にあたり、ボイ
ラ構造、バーナ構造等を著しく変更することなく、多種
多様の石炭を燃焼させるとともに、高い燃焼効率のもと
てNOx排出を抑制できることが望まれているとともに
、貯蔵式燃焼方式による場合には微粉炭サイロにおける
微粉炭の自然発火などに対する対する安全対策が強く要
請されている。
[Conventional technology] In pulverized coal combustion boilers, a wide variety of coals can be burned without significantly changing the boiler structure, burner structure, etc., and NOx emissions can be suppressed with high combustion efficiency. At the same time, in the case of a storage combustion method, there is a strong demand for safety measures against spontaneous combustion of pulverized coal in pulverized coal silos.

微粉炭燃焼においては、その燃焼効率およびNOx排出
は、固有の石炭性状をしめず石炭炭種に大きく影響され
る。
In pulverized coal combustion, the combustion efficiency and NOx emissions are largely influenced by the type of coal, rather than by the unique properties of the coal.

燃焼効率をとりあげれば、石炭の燃焼性、微粉炭粒度、
燃焼反応時間などの影響をうけ、石炭の燃焼性は石炭炭
化度に対応した燃焼比をもってその指標としており、微
粉炭粒度としては、200メツシュ通過量60〜90%
程度の粒度をもって燃焼させ、ざらに燃焼反応時間につ
いては火炉温度、ふん囲気中の酸素濃度、微粉炭粒度、
固定炭素および揮発分の性状などの影響をうけている。
In terms of combustion efficiency, coal combustibility, pulverized coal particle size,
The combustibility of coal is influenced by combustion reaction time, etc., and the combustion ratio corresponding to the degree of coal carbonization is used as an indicator.As for the particle size of pulverized coal, the amount passing through 200 mesh is 60 to 90%.
The combustion reaction time is determined by the furnace temperature, oxygen concentration in the surrounding air, pulverized coal particle size,
It is affected by the properties of fixed carbon and volatile matter.

微粉炭燃焼においては、微粉炭が火炉内にて燃焼し、一
定の滞留時間をもって火炉から排出される。したがって
滞留時間以内に燃焼反応を完結する必要があり、石炭炭
種によって燃焼反応時間が滞留時間以上を呈する場合に
は、灰中には未燃分が残留し、燃焼効率(炭素反応率)
を低下させることになる。
In pulverized coal combustion, pulverized coal is burned in a furnace and discharged from the furnace after a certain residence time. Therefore, the combustion reaction must be completed within the residence time, and if the combustion reaction time is longer than the residence time depending on the type of coal, unburned matter remains in the ash, increasing the combustion efficiency (carbon reaction rate).
This will reduce the

大容量微粉炭燃焼ボイラにおいては火炉内における滞留
時間を比較的長く確保することができるが中小容量微粉
炭燃焼ボイラにおいては、構造上の制約もあって滞留時
間を長く確保することは困難であるため燃焼効率の向上
は困難であった。
In large-capacity pulverized coal-fired boilers, it is possible to secure a relatively long residence time in the furnace, but in medium- and small-capacity pulverized coal-fired boilers, it is difficult to secure a long residence time due to structural constraints. Therefore, it was difficult to improve combustion efficiency.

一方、NOx排出抑制をとりあげれば、微粉炭燃焼にお
いて発生するNOXは生成の経路からサーマルNOxと
フューエルNOxに分けられ、サーマルNOxは空気中
の窒素分子から生成し、フューエルNOxは石炭中のN
であるN化合物などから生成するものである。 NOx
抑制のための燃焼技術としては、低空気比燃焼、二段燃
焼などの段階的燃焼法が実用化されている。(例えば、
新版燃料便覧(増補)798ページ)さらにまた、貯蔵
式燃焼方式においては微粉炭サイロに貯蔵している微粉
炭を一次空気によって輸送し、火炉において燃焼させて
いるが、微粉炭の貯蔵時に、自然発火、爆発、火災など
を発生することがあり、その安全対策として、微粉炭サ
イロ内におけるふん囲気の不活性化、微粉炭の強制冷却
による昇温防止などの幾多の手段が11案されている。
On the other hand, in terms of suppressing NOx emissions, NOx generated during pulverized coal combustion can be divided into thermal NOx and fuel NOx depending on the generation route. Thermal NOx is generated from nitrogen molecules in the air, and fuel NOx is generated from nitrogen molecules in the coal.
It is generated from N compounds, etc. NOx
As combustion technologies for suppression, staged combustion methods such as low air ratio combustion and two-stage combustion have been put into practical use. (for example,
Furthermore, in the storage combustion method, the pulverized coal stored in the pulverized coal silo is transported by primary air and burned in the furnace. Ignition, explosion, fire, etc. may occur, and 11 measures have been proposed as safety measures, including inertization of the surrounding air in the pulverized coal silo and forced cooling of the pulverized coal to prevent temperature rise. .

[発明が解決しようとする問題点コ しかしながら、上記従来の微粉炭燃焼ボイラでは、多種
多様の石炭炭種に応じて火炉において適切な酸素ふん囲
気に調整制御することを簡易に行うことができず高い燃
焼効率を維持することができないとともに、燃焼にさい
しては空気を利用することもあってサーマルNOxの生
成があり、フューエルNOxとともにNOx抑制のため
に燃焼技術をもちいて抑制することは困難であるという
問題があり、さらに、微粉炭サイロ内のふん囲気を不活
性化するためにボイラとは別個のガス源を利用する必果
があり、不活性ガスを簡易に利用することは困難である
という問題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional pulverized coal combustion boiler, it is not possible to easily adjust and control the appropriate oxygen atmosphere in the furnace according to a wide variety of coal types. In addition to being unable to maintain high combustion efficiency, thermal NOx is generated due to the use of air during combustion, which is difficult to suppress using combustion technology to suppress NOx along with fuel NOx. In addition, it is necessary to use a separate gas source from the boiler to inert the atmosphere in the pulverized coal silo, and it is difficult to easily use inert gas. There was a problem.

本発明はこのような従来の問題を解決するものであり、
微粉炭燃焼にあたり、多fffi多様の石炭炭種に応じ
て高い燃焼効率を得るごとく制御し、NOx排出を抑制
すると同時に@粉炭サイロ内のふん囲気を不活性化して
安全をはかることができる優れた微粉炭燃焼ボイラを提
供することを目的とするものである。
The present invention solves these conventional problems,
When burning pulverized coal, it is controlled to achieve high combustion efficiency according to a wide variety of coal types, suppresses NOx emissions, and at the same time inerts the surrounding air inside the pulverized coal silo, ensuring safety. The purpose is to provide a pulverized coal combustion boiler.

[問題点を解決するための手段] 本発明は上記目的を達成するために、空気を窒素と酸素
とに分離する分離装置と微粉炭サイロから供給する微粉
炭と一次空気との混合流輸送管が微粉炭バーナに連結さ
れ、該@粉炭バーナには二次空気管を接続し、火炉の三
次空気口には三次空気管を接続するとともに、微粉炭サ
イロには前記窒素の供給管を接続し、混合流輸送管と二
次空気管と三次空気管には前記酸素の供給管を連設し、
石炭炭種に応じて酸素供給量を制御する制御装置を設け
るようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a separation device that separates air into nitrogen and oxygen, and a mixed flow transport pipe for pulverized coal and primary air supplied from a pulverized coal silo. is connected to a pulverized coal burner, a secondary air pipe is connected to the pulverized coal burner, a tertiary air pipe is connected to the tertiary air port of the furnace, and the nitrogen supply pipe is connected to the pulverized coal silo. , the oxygen supply pipe is connected to the mixed flow transport pipe, the secondary air pipe, and the tertiary air pipe,
A control device is provided to control the amount of oxygen supplied depending on the type of coal.

[作 用コ 本発明は上記のような構成により次のような作用を有す
る。すなわち、分離装置において空気を窒素と酸素とに
分離し、微粉炭サイロからの微粉炭が燃焼用空気ととも
に火炉に供給されて微粉炭燃焼が行われ、そのさい、混
合流輸送管と二次空気管と三次空気管には、前記の酸素
を供給し、石炭炭種に応じて酸素流量を制御する。した
がって、燃焼用空気としては実質上酸素比が高く窒素比
が低い酸化剤が利用される。
[Function] The present invention has the following effects due to the above configuration. That is, air is separated into nitrogen and oxygen in a separator, and the pulverized coal from the pulverized coal silo is supplied to the furnace together with combustion air to perform pulverized coal combustion. The above-mentioned oxygen is supplied to the pipe and the tertiary air pipe, and the oxygen flow rate is controlled according to the type of coal. Therefore, as the combustion air, an oxidizing agent having a substantially high oxygen ratio and low nitrogen ratio is utilized.

本発明において、酸化剤とは上記酸素と空気とが混合し
た酸素比21%(容積比)以上の気体であることを意味
している。
In the present invention, the oxidizing agent means a gas that is a mixture of the above-mentioned oxygen and air and has an oxygen ratio of 21% or more (volume ratio).

火炉においては微粉炭と酸化剤とによる段階燃焼が行わ
れ、急速な着火、昇温過程に引続き、一段目燃焼域では
還元ふん囲気となり、三次空気口以降からの二段目燃焼
域では酸化ふん囲気となるように制御している。酸化剤
による酸化ふん囲気のもとての微粉炭の着火と昇温にさ
いして着火の促進と安定をもたらして引続く一段目燃焼
域において高温度における還元燃焼を可能とするととも
に二段目燃焼においては未燃ガスおよび未燃粒子の燃焼
反応が進行する。
In the furnace, staged combustion is carried out using pulverized coal and an oxidizing agent. Following rapid ignition and temperature rise, the first stage combustion zone becomes surrounded by reducing feces, and the second stage combustion zone from the tertiary air port onwards is filled with oxidized feces. It is controlled to create a surrounding atmosphere. When the pulverized coal is ignited and heated under the oxidizing atmosphere by the oxidizing agent, it promotes and stabilizes ignition, and enables reductive combustion at high temperatures in the subsequent first stage combustion zone, as well as second stage combustion. A combustion reaction of unburned gas and unburned particles progresses in the combustion chamber.

かくして、微粉炭の燃焼反応が著しく促進されてその完
結が行われるため、灰中の未燃分の残留が少く高い燃焼
効率が得られて、NOx排出を抑制することができる。
In this way, the combustion reaction of the pulverized coal is significantly promoted and completed, so that less unburned matter remains in the ash, resulting in high combustion efficiency and suppressing NOx emissions.

さらに、石炭炭種に応じて酸素富化ガス供給量を制御す
ることにより、燃焼域におけるふん囲気中の酸素量を調
節制御できるために、石炭炭種の燃焼性、N分に応じた
最適な燃焼制御とNOx抑制を行うことが可能になる。
Furthermore, by controlling the amount of oxygen-enriched gas supplied according to the type of coal, the amount of oxygen in the surrounding air in the combustion zone can be adjusted and controlled. It becomes possible to perform combustion control and NOx suppression.

微粉炭サイロには前記の窒素の供給管を接続しており、
ボイラ設備に備えた分離装置において分離した窒素を直
接的に利用して微粉炭サイロ内のふん囲気を不活性化さ
せるため微粉炭の自然発火などの発生を防止することが
可能になる。
The pulverized coal silo is connected to the nitrogen supply pipe mentioned above.
Since the nitrogen separated in the separator installed in the boiler equipment is directly used to inactivate the atmosphere inside the pulverized coal silo, it is possible to prevent spontaneous combustion of the pulverized coal.

[実施例] 第1図は本発明の一実施例の構成をしめすものである。[Example] FIG. 1 shows the configuration of an embodiment of the present invention.

第1図において、1はボイラの火炉、2は微粉炭バーナ
、3は微粉炭サイロ、5は空気予熱器をしめず、4は微
粉炭サイロ3の下部に設けた供給器であり、空気8は押
込送mm9を経て空気予熱器により加熱されて空気管1
1を経て一次送風機12によフて昇圧され一次空気管1
3を経て供給器4から微粉炭と混合して混合流となり、
混合流輸送管13a内を通り微粉炭バーナ2から混合流
が火炉1に噴出される。
In Fig. 1, 1 is the furnace of the boiler, 2 is the pulverized coal burner, 3 is the pulverized coal silo, 5 is the air preheater not closed, 4 is the feeder installed at the bottom of the pulverized coal silo 3, and the air 8 is heated by the air preheater through the forced feed mm9, and the air pipe 1
1, the pressure is increased by the primary blower 12, and the primary air pipe 1
3 and mixed with pulverized coal from the feeder 4 to form a mixed flow.
A mixed flow is ejected from the pulverized coal burner 2 to the furnace 1 through the mixed flow transport pipe 13a.

空気予熱器5の空気出口側からは二次空気管10を設け
、微粉炭バーナ2に接続しており、微粉炭燃焼に必要な
二次空気を供給する。火炉1においては、微粉炭バーナ
2によりて一段目燃焼域を形成する。また三次空気口1
6は火炉1に設け、空気予熱器5の空気出口側からの三
次空気管14を連結しており、送風機15をもって二段
目燃焼域を形成するために必要な三次空気を供給する。
A secondary air pipe 10 is provided from the air outlet side of the air preheater 5, connected to the pulverized coal burner 2, and supplies secondary air necessary for pulverized coal combustion. In the furnace 1, a pulverized coal burner 2 forms a first stage combustion zone. Also, tertiary air port 1
Reference numeral 6 is provided in the furnace 1 and connects a tertiary air pipe 14 from the air outlet side of the air preheater 5, and supplies the tertiary air necessary for forming the second stage combustion zone with a blower 15.

火炉1および図示を省略した蒸気発生部からの排ガスは
空気予熱器5を経て話引送風機6により管7を介して系
外に排出される。
Exhaust gas from the furnace 1 and a steam generator (not shown) passes through an air preheater 5 and is discharged to the outside of the system via a pipe 7 by a blower 6.

20は空気を窒素と酸素とに分離する分離装置、21は
空気にして、23は窒素供給管、24は酸素供給管をそ
れぞれしめす。分離装置20としては液化分離法などと
異り、構造が簡易でエネルギー消費の少ない化学吸着法
をもちいて空気を窒素ガスと酸素ガスとに分離している
。窒素供給管23は微粉炭サイロ3に接続させており、
微粉炭サイロ3には所定の圧力を保持しつつ窒素ガスを
封入し不活性ふん囲気となしており、大気圧に比して加
圧状態としているため外気が微粉炭サイロ3に侵入して
不活性ふん囲気を阻害することを防止している。かくし
て充分な不活性ふん囲気が形成されて微粉炭サイロ3内
における微粉炭の自然発火などの発生を防止している。
20 is a separation device for separating air into nitrogen and oxygen, 21 is air, 23 is a nitrogen supply pipe, and 24 is an oxygen supply pipe. The separation device 20 separates air into nitrogen gas and oxygen gas using a chemical adsorption method that has a simple structure and consumes less energy, unlike a liquefaction separation method. The nitrogen supply pipe 23 is connected to the pulverized coal silo 3,
The pulverized coal silo 3 is filled with nitrogen gas while maintaining a predetermined pressure to create an inert atmosphere, and because it is pressurized compared to atmospheric pressure, outside air enters the pulverized coal silo 3 and prevents it from becoming inert. This prevents interference with active feces. In this way, a sufficient inert atmosphere is formed to prevent spontaneous combustion of the pulverized coal within the pulverized coal silo 3.

25は酸素タンク、25a、25b、および25cはそ
れぞれ酸素供給管である。酸素供給管24は分離装置2
0と酸素タンク25とを接続している。また酸素供給管
25a、25bおよび25cは調整弁26a、26bお
よび26cならびに混合器27a、27bおよび27c
をそれぞれ付属して設けており、混合流輸送管13aと
二次空気管10と三次空気管14とにそれぞれ連接して
いる。さらに、制御装置30の出力信号は調整弁26a
、26bおよび26cを操作して、石炭炭種に応じて酸
素ガス供給量を制御する。前記の制御は手!lII調整
弁をもちいて行うことも可能である。かくして前記の混
合流輸送管13aと二次空気管10と三次空気管14を
流れる燃焼用空気としては、それぞれの酸素濃度が異な
り、実質上酸素比が高く窒素比が低い酸化剤となる。火
炉1においては前記のごとき段階燃焼が行われて一段目
および二段目燃焼域におけるふん囲気中の酸素量の調節
制御が行われる。
25 is an oxygen tank, and 25a, 25b, and 25c are oxygen supply pipes, respectively. The oxygen supply pipe 24 is connected to the separation device 2
0 and the oxygen tank 25 are connected. Further, the oxygen supply pipes 25a, 25b and 25c are connected to the regulating valves 26a, 26b and 26c and the mixers 27a, 27b and 27c.
are attached to each other, and are connected to the mixed flow transport pipe 13a, the secondary air pipe 10, and the tertiary air pipe 14, respectively. Furthermore, the output signal of the control device 30 is the control valve 26a.
, 26b and 26c to control the amount of oxygen gas supplied according to the type of coal. The said control is by hand! It is also possible to use an III regulating valve. Thus, the combustion air flowing through the mixed flow transport pipe 13a, the secondary air pipe 10, and the tertiary air pipe 14 has different oxygen concentrations, and the oxidizing agent substantially has a high oxygen ratio and a low nitrogen ratio. In the furnace 1, the above-described staged combustion is performed, and the amount of oxygen in the surrounding air is controlled in the first and second combustion zones.

微粉炭の着火、昇温過程では酸化剤を利用することによ
り急速に進行して着火の促進と安定がもたらされ、引続
く一段目燃焼域においては高温度における還元燃焼が進
行してNOx生成が抑制されるとともにに二段目燃焼域
においては未燃ガスおよび未燃粒子の燃焼反応が進行す
る。かくして、微粉炭の燃焼反応が著しく促進されて、
その完結が行われるため、灰中の未燃分の残留が少い。
The ignition and temperature raising process of pulverized coal progresses rapidly by using an oxidizer to promote and stabilize ignition, and in the subsequent first stage combustion zone, reductive combustion at high temperatures progresses and NOx is generated. is suppressed, and the combustion reaction of unburned gas and unburned particles progresses in the second stage combustion region. In this way, the combustion reaction of pulverized coal is significantly promoted,
Because the process is completed, there is little unburned matter remaining in the ash.

したがって高燃料比からなる燃焼性の低い石炭の微粉炭
燃焼にさいしても高い燃焼効率が得られ、前記のNOx
 #cp利に加えて段階燃焼にあたり窒素比が少ない酸
化剤をもちいて燃焼が行えるのでNOx抑制の効果が得
られる。かくして、上記の実施例にて明らかなるごとく
、微粉炭燃焼にあたり、多種多様の石炭炭種の石炭を燃
焼させて高い燃焼効率に制御できてNOx排出を抑制す
ることができる。かくして、上記の実施例にても明らか
なるごとく、分離装置により分離された窒素ガスと酸素
ガスとを同時に利用して、窒素ガスは微粉炭サイロ内の
ふん囲気を不活性化させ微粉炭燃焼にあたり、微粉炭の
安全な貯蔵と供給のもとで、酸素ガスをもちいて多種多
様の石炭を燃焼させて、高い燃焼効率に制御できてNO
x排出を抑制することができる。
Therefore, high combustion efficiency can be obtained even in pulverized coal combustion of coal with a high fuel ratio and low combustibility, and the NOx
In addition to #cp efficiency, combustion can be performed using an oxidizing agent with a low nitrogen ratio during staged combustion, resulting in the effect of suppressing NOx. Thus, as is clear from the above embodiments, in pulverized coal combustion, a wide variety of coal types can be combusted to achieve high combustion efficiency and NOx emissions can be suppressed. Thus, as is clear from the above example, by simultaneously using nitrogen gas and oxygen gas separated by the separator, the nitrogen gas inerts the surrounding air in the pulverized coal silo and is used to burn the pulverized coal. , under the safe storage and supply of pulverized coal, a wide variety of coals can be combusted using oxygen gas to achieve high combustion efficiency and NO
x emissions can be suppressed.

したがって、微粉炭の安全な貯蔵と供給のもとての微粉
炭燃焼にさいして、未燃損失を低減できるためボイラ熱
効率の向上が可能となり、微粉炭の燃焼時間を短縮でき
て燃焼火炎の長さを短縮できさらに燃焼ガス量も少くな
るため火炉を小型とすることが可能となり、微粉炭燃焼
ボイラの小型化をはかることができる。
Therefore, in pulverized coal combustion, which is the basis for safe storage and supply of pulverized coal, unburned losses can be reduced, which makes it possible to improve boiler thermal efficiency, shorten the combustion time of pulverized coal, and increase the length of the combustion flame. Since the length can be shortened and the amount of combustion gas can be reduced, the furnace can be made smaller, and the pulverized coal combustion boiler can be made smaller.

さらに燃焼ガス量も低減しつるため、ボイラのガス処理
関連機器である送風機、空気予熱器、集じん装置などの
処理容器の低減ならびに寸法の小型化をはかることがで
診る。
Furthermore, since the amount of combustion gas is reduced, it is possible to reduce the size and size of processing containers such as blowers, air preheaters, dust collectors, etc., which are boiler gas processing equipment.

なお、本発明の実施態様は上述実施例のみに限定されな
いことは勿論であり、分離装置、低NOxバーナおよび
類似燃焼装置などにおける多くの態様が採用可能である
It should be noted that the embodiments of the present invention are of course not limited to the above-described embodiments, and many embodiments of separators, low NOx burners, similar combustion devices, etc. can be adopted.

[発明の効果] 本発明は上記実施例より明らかなように、分離装置によ
り分離された窒素ガスと酸素ガスとを同時に利用して、
微粉炭燃焼にあたり、窒素ガスによる微粉炭サイロ内の
微粉炭の安全な貯蔵と供給のもで、酸素ガス供給量を制
御することにより、燃焼反応においてその開始から完結
にいたるまでの燃焼ふん囲気中の酸素量を調節制御でき
るために、ボイラ構造、バーナ構造等を箸しく変更する
ことなく、石炭炭種の燃焼性、N分に応じた最適な燃焼
制御とNOx抑制を行うことができるとともにボイラ熱
効率の向上、ボイラの小型化、ボイラのガス処理関連機
器の処理容量の低減ならびに寸法の小型化ができるなど
その効果は多大である。
[Effects of the Invention] As is clear from the above embodiments, the present invention simultaneously utilizes nitrogen gas and oxygen gas separated by a separation device,
During pulverized coal combustion, nitrogen gas is used to safely store and supply pulverized coal in a pulverized coal silo, and by controlling the amount of oxygen gas supplied, it is possible to safely store and supply pulverized coal in a pulverized coal silo using nitrogen gas. Since the amount of oxygen in the boiler can be adjusted and controlled, it is possible to perform optimal combustion control and NOx suppression according to the combustibility of the coal type and N content without making drastic changes to the boiler structure, burner structure, etc. The benefits include improved thermal efficiency, smaller boilers, reduced processing capacity and smaller dimensions of boiler gas processing equipment, and more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる微粉炭燃焼ボイラの
概略ブロック図である。 1・・・火 炉    2・・・微粉炭バーナ10・・
・二次空気管  13・・・−次空気管13a・・・混
合流輸送管 14・・・三次空気管16・・・三次空気
口  20・・・分離装置21・・・空 気    2
3・・・窒素供給管24・・・a素供給管 25 a 、 25 b 、 25 c ・=酸素供給
管30・・・制御装置
FIG. 1 is a schematic block diagram of a pulverized coal combustion boiler according to an embodiment of the present invention. 1... Fire furnace 2... Pulverized coal burner 10...
-Secondary air pipe 13...Secondary air pipe 13a...Mixed flow transport pipe 14...Tertiary air pipe 16...Tertiary air port 20...Separator 21...Air 2
3... Nitrogen supply pipe 24... a element supply pipe 25 a, 25 b, 25 c = oxygen supply pipe 30... control device

Claims (1)

【特許請求の範囲】[Claims] 空気を窒素と酸素とに分離する分離装置と、微粉炭サイ
ロから供給する微粉炭と一次空気との混合流輸送管が微
粉炭バーナに連結され、該微粉炭バーナには二次空気管
を接続し、火炉の三次空気口には三次空気管を接続する
とともに、微粉炭サイロには前記窒素の供給管を接続し
、混合流輸送管と二次空気管と三次空気管には前記酸素
の供給管を連設し、石炭炭種に応じて酸素供給量を制御
する制御装置を設けたことを特徴とする微粉炭燃焼ボイ
ラ。
A separation device that separates air into nitrogen and oxygen, and a mixed flow transport pipe for pulverized coal and primary air supplied from a pulverized coal silo are connected to a pulverized coal burner, and a secondary air pipe is connected to the pulverized coal burner. The tertiary air pipe is connected to the tertiary air port of the furnace, the nitrogen supply pipe is connected to the pulverized coal silo, and the oxygen supply pipe is connected to the mixed flow transport pipe, secondary air pipe, and tertiary air pipe. A pulverized coal combustion boiler characterized by having continuous pipes and a control device for controlling the amount of oxygen supplied according to the type of coal.
JP61010745A 1986-01-21 1986-01-21 Pulverized coal combustion boiler Granted JPS62169908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010745A JPS62169908A (en) 1986-01-21 1986-01-21 Pulverized coal combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010745A JPS62169908A (en) 1986-01-21 1986-01-21 Pulverized coal combustion boiler

Publications (2)

Publication Number Publication Date
JPS62169908A true JPS62169908A (en) 1987-07-27
JPH0543925B2 JPH0543925B2 (en) 1993-07-05

Family

ID=11758844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010745A Granted JPS62169908A (en) 1986-01-21 1986-01-21 Pulverized coal combustion boiler

Country Status (1)

Country Link
JP (1) JPS62169908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419210A (en) * 1987-06-26 1989-01-23 Air Prod & Chem Fine powder fuel combustor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924115A (en) * 1982-08-02 1984-02-07 Nippon Furnace Kogyo Kaisha Ltd Combustion of powdered coal
JPS5960105A (en) * 1982-09-30 1984-04-06 Babcock Hitachi Kk Low nox burning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924115A (en) * 1982-08-02 1984-02-07 Nippon Furnace Kogyo Kaisha Ltd Combustion of powdered coal
JPS5960105A (en) * 1982-09-30 1984-04-06 Babcock Hitachi Kk Low nox burning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419210A (en) * 1987-06-26 1989-01-23 Air Prod & Chem Fine powder fuel combustor

Also Published As

Publication number Publication date
JPH0543925B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
MX2007010342A (en) Combustion method and system.
US5103773A (en) Fluid bed furnace
JP2540636B2 (en) boiler
JPH05505021A (en) Method for reducing nitrous oxide emissions when burning nitrogen-containing fuels in fluidized bed reactors
EP0432293B1 (en) Method for recovering waste gases from coal combustor
JPS6323442B2 (en)
JPH0518511A (en) Pulverized solid fuel combustion apparatus
JP4282069B2 (en) Biomass fuel combustion apparatus and method
FI87949B (en) REFERENCE TO A REDUCERING AV QUANTITY EXTERNAL VIDEO BRAENSLEN AV OLIKA BRAENSLEN
JPH026961B2 (en)
US4117075A (en) Method of combustion for depressing nitrogen oxide discharge
JP3560646B2 (en) Low boiler NOx combustion method and apparatus
JPH036403B2 (en)
JPH0627561B2 (en) Pulverized coal combustion equipment
JPS62169908A (en) Pulverized coal combustion boiler
JPS62169907A (en) Pulverized coal combustion boiler
CN108534175B (en) Plasma gasification ignition stable combustion device and method for coal-fired boiler
CN106090893A (en) A kind of high performance clean burning method of coal-burning boiler
JPH0262768B2 (en)
JPS63267814A (en) Combustion method for pulverized coal
JPH0449449Y2 (en)
JP2012021652A (en) Combustion furnace for coal firing boiler and method of operating the same
JPS6183805A (en) Method of burning pulverized solid fuel and the like
JPH05264040A (en) Discharging gas recombustion type complex power generating plant
JPS60122809A (en) Low nox combustion device burning fine coal powder