JPH0543925B2 - - Google Patents

Info

Publication number
JPH0543925B2
JPH0543925B2 JP61010745A JP1074586A JPH0543925B2 JP H0543925 B2 JPH0543925 B2 JP H0543925B2 JP 61010745 A JP61010745 A JP 61010745A JP 1074586 A JP1074586 A JP 1074586A JP H0543925 B2 JPH0543925 B2 JP H0543925B2
Authority
JP
Japan
Prior art keywords
pulverized coal
combustion
oxygen
air
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61010745A
Other languages
Japanese (ja)
Other versions
JPS62169908A (en
Inventor
Shunpei Nozoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP61010745A priority Critical patent/JPS62169908A/en
Publication of JPS62169908A publication Critical patent/JPS62169908A/en
Publication of JPH0543925B2 publication Critical patent/JPH0543925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E20/344

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微粉炭燃焼ボイラに係り、石炭炭種に
応じて燃焼効率を制御でき微粉炭サイクロの安全
をはかることができる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pulverized coal combustion boiler, and relates to a device that can control combustion efficiency according to the type of coal and ensure the safety of a pulverized coal cyclo.

〔従来の技術〕[Conventional technology]

微粉炭燃焼ボイラでは、微粉炭燃焼にあたり、
ボイラ構造、バーナ構造等を著しく変更すること
なく、多種多様の石炭を燃焼させるとともに、高
い燃焼効率のもとでNOx排出を抑制できること
が望まれているとともに、貯蔵式燃焼方式による
場合には微粉炭サイロにおける微粉炭の自然発火
などに対する安全対策が強く要請されている。
In pulverized coal combustion boilers, when burning pulverized coal,
It is desired to be able to burn a wide variety of coals without significantly changing the boiler structure, burner structure, etc., and to suppress NO x emissions with high combustion efficiency. There is a strong demand for safety measures against spontaneous combustion of pulverized coal in pulverized coal silos.

微粉炭燃焼においては、その燃焼効率および
NOx排出は、固有の石炭性状をしめす石炭炭種
に大きく影響される。
In pulverized coal combustion, its combustion efficiency and
NO x emissions are greatly influenced by the coal type, which has unique coal properties.

燃焼効率をとりあげれば、石炭の燃焼制、微粉
炭粒度、燃焼反応時間などの影響をうけ、石炭の
燃焼制は石炭炭化度に対応した燃焼比をもつてそ
の指標としており、微粉炭粒度としては、200メ
ツシユ通過量60〜90%程度の粒度をもつて燃焼さ
せ、さらに燃焼反応時間については火炉温度、雰
囲気中の酸素濃度、微粉炭粒度、固定炭素および
揮発分の性状などの影響をうけている。
Combustion efficiency is influenced by coal combustion mode, pulverized coal particle size, combustion reaction time, etc., and coal combustion mode is indexed by combustion ratio corresponding to coal carbonization degree, and pulverized coal particle size The combustion reaction time is influenced by the furnace temperature, oxygen concentration in the atmosphere, pulverized coal particle size, fixed carbon and volatile content properties, etc. ing.

微粉炭燃焼においては、微粉炭が火炉内にて燃
焼し、一定の滞留時間をもつて火炉から排出され
る。したがつて滞留時間以内に燃焼反応を完結す
る必要があり、石炭炭種によつて燃焼反応時間が
滞留時間以上を呈する場合には、灰中には未燃分
が残留し、燃焼効率(炭素反応率)を低下させる
ことになる。
In pulverized coal combustion, pulverized coal is burned in a furnace and discharged from the furnace after a certain residence time. Therefore, it is necessary to complete the combustion reaction within the residence time, and if the combustion reaction time is longer than the residence time depending on the type of coal, unburned matter remains in the ash and the combustion efficiency (carbon reaction rate).

大容量微粉炭燃焼ボイラにおいては火炉内にお
ける滞留時間を比較的長く確保することができる
が中小容量微粉炭燃焼ボイラにおいては、構造上
の制約もあつて滞留時間を長く確保することは困
難であるため燃焼効率の向上は困難であつた。
In large-capacity pulverized coal-fired boilers, it is possible to secure a relatively long residence time in the furnace, but in medium- and small-capacity pulverized coal-fired boilers, it is difficult to secure a long residence time due to structural constraints. Therefore, it was difficult to improve combustion efficiency.

一方、NOx排出抑制をとりあげれば、微粉炭
燃焼において発生するNOxは生成の経路からサ
ーマルNOxとフユーエルNOxに分けられ、サー
マルNOxは空気中の窒素分子から生成し、フユ
ーエルNOxは石炭中のNであるN化合物などか
ら生成するものである。NOx抑制のための燃焼
技術としては、低空気比燃焼、二段燃焼などの段
階的燃焼法が実用化されている。(例えば、新版
燃料便覧(増補)798ページ)さらにまた、貯蔵
式燃焼方式においては微粉炭サイロに貯蔵してい
る微粉炭を一次空気によつて輸送し、火炉におい
て燃焼させているが、微粉炭の貯蔵時に、自然発
火、爆発、火炎などを発生することがあり、その
安全対策として、微粉炭サイロ内における雰囲気
の不活性化、微粉炭の強制冷却による昇温防止な
どの幾多の手段が提案されている。
On the other hand, in terms of suppressing NO x emissions, NO x generated during pulverized coal combustion can be divided into thermal NO x and fuel NO x is generated from N compounds such as N in coal. Staged combustion methods such as low air ratio combustion and two-stage combustion have been put into practical use as combustion technologies to suppress NO x . (For example, the new edition of the Fuel Handbook (expanded), page 798) Furthermore, in the storage combustion method, pulverized coal stored in a pulverized coal silo is transported by primary air and burned in a furnace. During storage, spontaneous combustion, explosion, flame, etc. may occur, and a number of safety measures have been proposed as safety measures, such as inertizing the atmosphere inside the pulverized coal silo and preventing temperature rise through forced cooling of the pulverized coal. has been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の微粉炭燃焼ボイラで
は、多種多様の石炭炭種に応じて火炉において適
切な酸素雰囲気に調整制御することを簡易に行う
ことができず高い燃焼効率を維持することができ
ないとともに、燃焼にさいしては空気を利用する
こともあつてサーマルNOxの生成があり、フユ
ーエルNOxとともにNOx抑制のために燃焼技術
をもちいて抑制することは困難であるという問題
があり、さらに、微粉炭サイロ内の雰囲気を不活
性化するためにボイラとは別個のガス源を利用す
る必要があり、不活性ガスを簡易に利用すること
は困難であるという問題があつた。
However, in the above conventional pulverized coal combustion boiler, it is not possible to easily adjust and control an appropriate oxygen atmosphere in the furnace according to a wide variety of coal types, and it is not possible to maintain high combustion efficiency. Since air is sometimes used for combustion, thermal NO x is generated, and along with fuel NO x , there is a problem in that it is difficult to suppress NO x using combustion technology. In order to inert the atmosphere inside the pulverized coal silo, it is necessary to use a gas source separate from the boiler, and there is a problem in that it is difficult to easily use inert gas.

本発明はこのような従来の問題を解決するもの
であり、微粉炭燃焼にあたり、酸素富化空気を用
いて高温の火炎温度のもとで微粉炭過濃状態にあ
る強還元雰囲気を形成させて、多種多様の石炭炭
種に応じて高い燃焼効率を得るごとく制御し、
NOx排出を抑制すると同時に微粉炭サイロ内の
雰囲気を不活性化して安全をはかることができる
優れた微粉炭燃焼ボイラを提供することを目的と
するものである。
The present invention solves these conventional problems by forming a strongly reducing atmosphere in which the pulverized coal is highly concentrated at a high flame temperature using oxygen-enriched air during pulverized coal combustion. , control to achieve high combustion efficiency according to a wide variety of coal types,
The purpose of the present invention is to provide an excellent pulverized coal combustion boiler that can suppress NO x emissions and at the same time inert the atmosphere inside the pulverized coal silo to ensure safety.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、空気を窒
素と酸素とに分離する分離装置と、微粉炭サイロ
から供給する微粉炭と一時空気との混合流輸送管
が微粉炭バーナに連結され、火炉の三次空気口に
は三次空気管を接続するとともに、微粉炭サイロ
には前記窒素の供給管を接続し、混合流輸送管と
二次空気管と三次空気管には前記酸素の供給管を
連設して酸素富化空気を形成させ、石炭炭種に応
じて酸素供給量を制御する制御装置を設け、微粉
炭バーナ出口における燃料雰囲気を前記酸素富化
空気を用いて高温度強還元雰囲気にして微粉炭を
燃焼させるとともに、三次空気口以降における燃
焼雰囲気を前記酸素富化空気を用いて酸化雰囲気
にしたものである。
In order to achieve the above object, the present invention includes a separation device that separates air into nitrogen and oxygen, and a mixed flow transport pipe of pulverized coal and temporary air supplied from a pulverized coal silo, which is connected to a pulverized coal burner, and a furnace. The tertiary air pipe is connected to the tertiary air port, the nitrogen supply pipe is connected to the pulverized coal silo, and the oxygen supply pipe is connected to the mixed flow transport pipe, secondary air pipe, and tertiary air pipe. A control device is installed to form oxygen-enriched air, and a control device is provided to control the amount of oxygen supplied according to the type of coal, and the fuel atmosphere at the outlet of the pulverized coal burner is made into a high-temperature, strongly reducing atmosphere using the oxygen-enriched air. In this method, pulverized coal is combusted, and the combustion atmosphere after the tertiary air port is made into an oxidizing atmosphere using the oxygen-enriched air.

〔作用〕[Effect]

本発明は上記のような構成により次のような作
用を有する。すなわち、分離装置において空気を
窒素と酸素とに分離し、微粉炭サイロからの微粉
炭が燃焼用空気とともに火炉に供給されて微粉炭
燃焼が行われ、そのさい、混合流輸送管と二次空
気管と三次空気管には、前記の酸素を供給し、石
炭炭種に応じて酸素流量を制御する。
The present invention has the following effects due to the above configuration. That is, air is separated into nitrogen and oxygen in a separator, and the pulverized coal from the pulverized coal silo is supplied to the furnace together with combustion air to perform pulverized coal combustion. The above-mentioned oxygen is supplied to the pipe and the tertiary air pipe, and the oxygen flow rate is controlled according to the type of coal.

したがつて、燃焼用空気としては実質上酸素比
が高く窒素比が低い酸化剤が、すなわち、酸素富
化空気が形成されて利用される。
Therefore, an oxidizing agent having a substantially high oxygen ratio and low nitrogen ratio is used as the combustion air, that is, oxygen-enriched air is formed.

この酸素富化空気とは上記酸素と空気とが混合
した酸素比21%(容積比)以上の気体であること
を意味している 火炉においては微粉炭と酸化剤、すなわち酸素
富化空気との供給による段階燃焼が行われ、上記
供給量の調整のもとで急速な着火、昇温過程に引
続き、一段目燃焼では強還元雰囲気を形成し、三
次空気口以降から二段目燃焼域では酸化雰囲気と
なるように制御している。微粉炭バーナ出口にお
いては酸化剤による燃焼雰囲気のもとで微粉炭の
着火と昇温にさいして着火の促進と安定をもたら
して一段目燃焼域における燃焼雰囲気を高温の火
炎温度のもとで酸化雰囲気と異なる微粉炭過濃状
態にある強還元雰囲気とするとともに二段目燃焼
においては未燃ガスおよび未燃粒子の燃焼反応が
進行する。
This oxygen-enriched air means a mixture of the above oxygen and air with an oxygen ratio of 21% or more (volume ratio).In a furnace, pulverized coal and an oxidizer, that is, oxygen-enriched air, Staged combustion is carried out by supply, and following the rapid ignition and temperature rising process under the above-mentioned adjustment of the supply amount, a strong reducing atmosphere is formed in the first stage combustion, and oxidation occurs in the second stage combustion area from the tertiary air inlet onward. The atmosphere is controlled. At the outlet of the pulverized coal burner, the pulverized coal is ignited and heated under a combustion atmosphere by an oxidizing agent, which promotes and stabilizes ignition, and oxidizes the combustion atmosphere in the first stage combustion zone under a high flame temperature. A strongly reducing atmosphere is created in which the pulverized coal is enriched, which is different from the atmosphere, and a combustion reaction of unburned gas and unburned particles progresses in the second stage combustion.

かくして、微粉炭の燃焼反応が著しく促進され
てその完結が行われるため、灰中の未燃分の残留
が少く高い燃焼効率が得られて、発生NOxの分
解反応を高温状態のもとで、著しく活発に促進さ
せてNOxの発生を大幅に抑制することができる。
さらに、石炭炭種に応じて酸素富化ガス供給量を
制御することにより、雰囲気中の酸素量を調節制
御できるために、燃焼域における雰囲気中の酸素
量を調節制御できるために、石炭炭種の燃焼性、
N分に応じた最適な燃焼制御と上述した発生
NOxの分解反応の促進によるNOx発生を抑制を
行うことが可能になる。
In this way, the combustion reaction of the pulverized coal is significantly promoted and completed, resulting in less unburned matter remaining in the ash and high combustion efficiency. , can be significantly actively promoted and the generation of NO x can be significantly suppressed.
Furthermore, by controlling the amount of oxygen-enriched gas supplied according to the type of coal, the amount of oxygen in the atmosphere can be adjusted and controlled. flammability,
Optimal combustion control according to the N content and the above-mentioned occurrence
It becomes possible to suppress the generation of NO x by promoting the decomposition reaction of NO x .

微粉炭サイロには前記の窒素の供給管を接続し
ており、ボイラ設備に備えた分離装置において分
離した窒素を直接的に利用して微粉炭サイロ内の
雰囲気を不活性化させるため微粉炭の自然発火な
どの発生を防止することが可能になる。
The above-mentioned nitrogen supply pipe is connected to the pulverized coal silo, and the nitrogen separated in the separation device installed in the boiler equipment is directly used to inert the atmosphere inside the pulverized coal silo. It becomes possible to prevent occurrences such as spontaneous combustion.

〔実施例〕〔Example〕

第1図は本発明の一実施例の構成をしめすもの
である。
FIG. 1 shows the configuration of an embodiment of the present invention.

第1図において、1はボイラの火炉、2は微粉
炭バーナ、3は微粉炭サイロ、5は空気予熱器を
しめす。4は微粉炭サイロ3の下部に設けた供給
器であり、空気8は押込送風機9を経て空気予熱
器により加熱されて空気管11を経て一次送風機
12によつて昇圧され一次空気管13を経て供給
器4から微粉炭と混合して混合流となり、混合流
輸送管13a内を通り微粉炭バーナ2から混合流
が火炉1に噴出される。
In FIG. 1, 1 is a boiler furnace, 2 is a pulverized coal burner, 3 is a pulverized coal silo, and 5 is an air preheater. 4 is a feeder installed at the bottom of the pulverized coal silo 3, and air 8 passes through a forced air blower 9, is heated by an air preheater, passes through an air pipe 11, is pressurized by a primary blower 12, and passes through a primary air pipe 13. The mixed flow is mixed with pulverized coal from the feeder 4, passes through the mixed flow transport pipe 13a, and is ejected from the pulverized coal burner 2 to the furnace 1.

空気予熱器5の空気出口側からは二次空気管1
0を設け、微粉炭バーナ2に接続しており、微粉
炭燃焼に必要な二次空気を供給する。火炉1にお
いては、微粉炭バーナ2によつて一段目燃焼域を
形成する。また三次空気口16は火炉1に設け、
空気予熱器5の空気出口側からの三次空気管14
を連結しており、送風機15をもつて二段目燃焼
域を形成するために必要な三次空気を供給する。
火炉1および図示を省略した蒸気発生部からの排
ガスは空気予熱器5を経て誘引送風機6により管
7を介して系外に排出される。
A secondary air pipe 1 is connected from the air outlet side of the air preheater 5.
0 is provided and connected to the pulverized coal burner 2 to supply secondary air necessary for pulverized coal combustion. In the furnace 1, a pulverized coal burner 2 forms a first stage combustion zone. Further, a tertiary air port 16 is provided in the furnace 1,
Tertiary air pipe 14 from the air outlet side of the air preheater 5
A blower 15 is used to supply the tertiary air necessary to form the second stage combustion zone.
Exhaust gas from the furnace 1 and a steam generator (not shown) passes through an air preheater 5 and is discharged to the outside of the system via a pipe 7 by an induced fan 6.

20は空気を窒素と酸素とに分離する分離装
置、21は空気にして、23は窒素供給管、24
は酸素供給管をそれぞれしめす。分離装置20と
しては液化分離法などと異り、構造が簡易でエネ
ルギー消費の少ない化学吸着法をもちいて空気を
窒素ガスと酸素ガスとに分離している。窒素供給
管23は微粉炭サイロ3に接続されており、微粉
炭サイロ3には所定の圧力を保持しつつ窒素ガス
を封入し不活性雰囲気となしており、大気圧に比
して加圧状態としているため外気が微粉炭サイロ
3に侵入して不活性雰囲気を阻害することを防止
している。かくして充分な不活性雰囲気が形成さ
れて微粉炭サイロ3内における微粉炭の自然発火
などの発生を防止している。
20 is a separation device for separating air into nitrogen and oxygen, 21 is air, 23 is a nitrogen supply pipe, 24
indicate the oxygen supply pipes, respectively. The separation device 20 separates air into nitrogen gas and oxygen gas using a chemical adsorption method that has a simple structure and consumes less energy, unlike a liquefaction separation method. The nitrogen supply pipe 23 is connected to the pulverized coal silo 3, and the pulverized coal silo 3 is filled with nitrogen gas while maintaining a predetermined pressure to create an inert atmosphere, and the pulverized coal silo 3 is in a pressurized state compared to atmospheric pressure. This prevents outside air from entering the pulverized coal silo 3 and disturbing the inert atmosphere. In this way, a sufficient inert atmosphere is formed to prevent spontaneous combustion of the pulverized coal within the pulverized coal silo 3.

25は酸素タンク、25a,25b、および2
5cはそれぞれ酸素供給管である。酸素供給管2
4は分離装置20と酸素タンク25とを接続して
いる。また酸素供給管25a,25bおよび25
cは調整弁26a,26bおよび26cならびに
混合器27a,27bおよび27cをそれぞれ付
属して設けており、混合流輸送管13aと二次空
気管10と三次空気管14とにそれぞれ連設して
いる。さらに、制御装置30の出力信号は調整弁
26a,26bおよび26cを操作して、石炭炭
種に応じて酸素ガス供給量を制御する。前記の制
御は手動調整弁をもちいて行うことも可能であ
る。かくして前記の混合流輸送管13aと二次空
気管10と三次空気管14を流れる燃料用空気と
しては、それぞれの酸素濃度が異なり、実質上酸
素比が高く窒素比が低い酸化剤、すなわち、酸素
富化空気となる。火炉1においては前記のごとき
段階燃焼が行われて一段目および二段目燃焼域に
おける雰囲気中の酸素量の調節制御が行われる。
25 is an oxygen tank, 25a, 25b, and 2
5c are oxygen supply pipes. Oxygen supply pipe 2
4 connects the separation device 20 and the oxygen tank 25. In addition, oxygen supply pipes 25a, 25b and 25
c is provided with regulating valves 26a, 26b, and 26c and mixers 27a, 27b, and 27c, respectively, and is connected to the mixed flow transport pipe 13a, the secondary air pipe 10, and the tertiary air pipe 14, respectively. . Furthermore, the output signal of the control device 30 operates the regulating valves 26a, 26b, and 26c to control the amount of oxygen gas supplied according to the type of coal. The above control can also be performed using a manual regulating valve. Thus, the fuel air flowing through the mixed flow transport pipe 13a, the secondary air pipe 10, and the tertiary air pipe 14 has different oxygen concentrations, and the oxidizing agent having a high oxygen ratio and a low nitrogen ratio, that is, oxygen It becomes enriched air. In the furnace 1, the above-described staged combustion is performed, and the amount of oxygen in the atmosphere in the first and second combustion zones is controlled.

微粉炭バーナ2出口において微粉炭の着火、昇
温過程では酸化剤による燃焼雰囲気のもとで上記
過程は急速に進行して着火の促進と安定がもたら
され、一段目燃焼域における燃焼雰囲気を高温の
火炎温度のもとで酸化雰囲気と異なる微粉炭過濃
状態にある強還元雰囲気とするとともに二段目燃
焼域においては未然ガスおよび未燃粒子の燃焼反
応が進行する。かくして、微粉炭の燃焼反応が著
しく促進されて、その完結が行われるため、灰中
の未燃分の残留が少い。したがつて高燃料比から
なる燃焼性の低い石炭の微粉炭燃焼にさいしても
高い燃焼効率が得られ、発生NOxの分解反応を
高温状態のもとで著し活発に促進させて前記の
NOxの発生の大幅な抑制が可能とできるに加え
て、段階燃焼にあたり窒素比が少ない酸化剤をも
ちいて燃焼が行えるので、さらにNOx抑制の効
果が前記NOx抑制効果と協調して得られる。」 かくして、上記の実施例にて明らかなるごと
く、微粉炭燃焼にあたり、多種多様の石炭炭種の
石炭を燃焼させて高い燃焼効率に制御できて
NOx排出を抑制することができる。かくして、
上記の実施例にても明らかなるごとく、分離装置
により分離された窒素ガスと酸素ガスとを同時に
利用して、窒素ガスは微粉炭サイロ内の雰囲気を
不活性化させ微粉炭燃焼にあたり、微粉炭の安全
な貯蔵と供給のもとで、酸素ガスをもちいて多種
多用の石炭を燃焼させて、高い燃焼効率に制御で
きてNOx排出を抑制することができる。
During the pulverized coal ignition and temperature raising process at the pulverized coal burner 2 outlet, the above process proceeds rapidly under the combustion atmosphere caused by the oxidizer, promoting and stabilizing ignition, and improving the combustion atmosphere in the first stage combustion zone. At a high flame temperature, a strongly reducing atmosphere is created in which the pulverized coal is enriched, which is different from an oxidizing atmosphere, and a combustion reaction of unburned gas and unburned particles proceeds in the second stage combustion zone. In this way, the combustion reaction of the pulverized coal is significantly promoted and completed, so that less unburned matter remains in the ash. Therefore, high combustion efficiency can be obtained even in pulverized coal combustion of coal with a high fuel ratio and low combustibility, and the decomposition reaction of generated NO x is significantly promoted under high temperature conditions, resulting in the above-mentioned
In addition to being able to significantly suppress the generation of NO x , combustion can be performed using an oxidizing agent with a low nitrogen ratio during staged combustion, so the NO x suppressing effect can be further achieved in coordination with the NO x suppressing effect described above. It will be done. ” Thus, as is clear from the above examples, in pulverized coal combustion, it is possible to burn a wide variety of coal types and control the combustion efficiency to high.
NOx emissions can be suppressed. Thus,
As is clear from the above example, the nitrogen gas and oxygen gas separated by the separator are used at the same time, and the nitrogen gas inerts the atmosphere inside the pulverized coal silo and burns the pulverized coal. Under the safe storage and supply of oxygen gas, various types of coal can be combusted using oxygen gas, and combustion efficiency can be controlled to high and NO x emissions can be suppressed.

したがつて、微粉炭の安全な貯蔵と供給のもと
での微粉炭燃焼にさいして、未燃損失を低減でき
るためボイラ熱効率の向上が可能となり、微粉炭
の燃焼時間を短縮できて燃焼火炎の長さを短縮で
きさらに燃焼ガス量も少くなるため比炉を小型と
することが可能となり、微粉炭燃焼ボイラの小型
化をはかることができる。
Therefore, when burning pulverized coal under safe storage and supply of pulverized coal, it is possible to reduce unburned losses, improve boiler thermal efficiency, shorten the combustion time of pulverized coal, and reduce the combustion flame. Since the length can be shortened and the amount of combustion gas can be reduced, the furnace can be made smaller, and the pulverized coal combustion boiler can be made smaller.

さらに燃焼ガス量も低減しうるため、ボイラの
ガス処理関連機器である送風機、空気予熱器、集
じん装置などの処理容器の低減ならびに寸法の小
型化をはかることができる。
Furthermore, since the amount of combustion gas can be reduced, it is possible to reduce the size and size of processing containers such as blowers, air preheaters, dust collectors, etc., which are boiler gas processing equipment.

なお、本発明の実施態様は上述実施例のみに限
定されないことは勿論であり、分離装置、低
NOxバーナおよび類似燃焼装置などにおける多
くの態様が採用可能である。
It should be noted that the embodiments of the present invention are of course not limited to the above-mentioned embodiments;
Many embodiments of NOx burners and similar combustion devices can be employed.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例より明らかなように、分離
装置により分離された窒素ガスと酸素ガスを同時
に利用して、微粉炭燃焼にあたり、窒素ガスによ
る微粉炭サイロ内の微粉炭の安全な貯蔵と供給の
もとで、酸素ガス供給量を制御することにより、
燃焼反応においてその開始から完結にいたるまで
の燃焼雰囲気中の酸素量を調節制御できるため
に、ボイラ構造、バーナ構造等を著しく変更する
ことなく、微粉炭バーナ出口における燃焼雰囲気
を酸素富化空気を用いて高温の火炎温度のもとで
微粉炭過濃状態にある強還元雰囲気を形成するこ
とができるとともに、石炭炭種の燃焼性、N分に
応じた最適な燃焼制御ができるとともに、発生
NOxの分解反応を高温状態のもとで著しく活発
に促進させて、NOx発生を大幅に抑制できる。
さらにボイラ熱効率の向上、ボイラの小型化、ボ
イラのガス処理関連機器の処理容量の低減ならび
に寸法の小型化ができるという効果は多大であ
る。
As is clear from the above embodiments, the present invention simultaneously utilizes nitrogen gas and oxygen gas separated by a separator to safely store and supply pulverized coal in a pulverized coal silo using nitrogen gas for pulverized coal combustion. By controlling the amount of oxygen gas supplied under
Since the amount of oxygen in the combustion atmosphere from the start to the completion of the combustion reaction can be adjusted and controlled, the combustion atmosphere at the outlet of the pulverized coal burner can be changed to oxygen-enriched air without significantly changing the boiler structure, burner structure, etc. It is possible to create a strongly reducing atmosphere with a high concentration of pulverized coal under high flame temperatures, and it is also possible to perform optimal combustion control according to the combustibility of the coal type and N content.
The decomposition reaction of NO x is significantly promoted under high temperature conditions, and NO x generation can be significantly suppressed.
Furthermore, the effects of improving boiler thermal efficiency, reducing the size of the boiler, and reducing the processing capacity and size of equipment related to gas processing of the boiler are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる微粉炭燃焼
ボイラの概略ブロツク図である。 1……火炉、2……微粉炭バーナ、10……二
次空気管、13……一次空気管、13a……混合
流輸送管、14……三次空気管、16……三次空
気口、20……分離装置、21……空気、23…
…窒素供給管、24……酸素供給管、25a,2
5b,25c……酸素供給管、30……制御装
置。
FIG. 1 is a schematic block diagram of a pulverized coal combustion boiler according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Furnace, 2...Pulverized coal burner, 10...Secondary air pipe, 13...Primary air pipe, 13a...Mixed flow transport pipe, 14...Tertiary air pipe, 16...Tertiary air port, 20 ... Separation device, 21 ... Air, 23 ...
...Nitrogen supply pipe, 24...Oxygen supply pipe, 25a, 2
5b, 25c...Oxygen supply pipe, 30...Control device.

Claims (1)

【特許請求の範囲】[Claims] 1 空気を窒素と酸素とに分離する分離装置と、
微粉炭サイロから供給する微粉炭と一時空気との
混合流輸送管が微粉炭バーナに連結され、火炉の
三次空気口には三次空気管を接続するとともに、
微粉炭サイロには前記窒素の供給管を接続し、混
合流輸送管と二次空気管と三次空気管には前記酸
素の供給管を連設して酸素富化空気を形成させ、
石炭炭種に応じて酸素供給量を制御する制御装置
を設け、微粉炭バーナ出口における燃焼雰囲気を
前記酸素富化空気を用いて高温度強還元雰囲気に
して微粉炭を燃焼させるとともに、三次空気口以
降における燃焼雰囲気を前記酸素富化空気を用い
て酸化雰囲気にしていることを特徴とする微粉炭
燃焼ボイラ。
1. A separation device that separates air into nitrogen and oxygen;
A mixed flow transport pipe of pulverized coal and temporary air supplied from a pulverized coal silo is connected to a pulverized coal burner, and a tertiary air pipe is connected to a tertiary air port of the furnace.
The nitrogen supply pipe is connected to the pulverized coal silo, and the oxygen supply pipe is connected to the mixed flow transport pipe, the secondary air pipe, and the tertiary air pipe to form oxygen-enriched air;
A control device is provided to control the amount of oxygen supplied according to the type of coal, and the combustion atmosphere at the outlet of the pulverized coal burner is made into a high-temperature strongly reducing atmosphere using the oxygen-enriched air, and the pulverized coal is burned. A pulverized coal combustion boiler characterized in that the combustion atmosphere thereafter is an oxidizing atmosphere using the oxygen-enriched air.
JP61010745A 1986-01-21 1986-01-21 Pulverized coal combustion boiler Granted JPS62169908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010745A JPS62169908A (en) 1986-01-21 1986-01-21 Pulverized coal combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010745A JPS62169908A (en) 1986-01-21 1986-01-21 Pulverized coal combustion boiler

Publications (2)

Publication Number Publication Date
JPS62169908A JPS62169908A (en) 1987-07-27
JPH0543925B2 true JPH0543925B2 (en) 1993-07-05

Family

ID=11758844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010745A Granted JPS62169908A (en) 1986-01-21 1986-01-21 Pulverized coal combustion boiler

Country Status (1)

Country Link
JP (1) JPS62169908A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2206196A (en) * 1987-06-26 1988-12-29 Air Prod & Chem System for burning pulverised fuel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924115A (en) * 1982-08-02 1984-02-07 Nippon Furnace Kogyo Kaisha Ltd Combustion of powdered coal
JPS5960105A (en) * 1982-09-30 1984-04-06 Babcock Hitachi Kk Low nox burning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924115A (en) * 1982-08-02 1984-02-07 Nippon Furnace Kogyo Kaisha Ltd Combustion of powdered coal
JPS5960105A (en) * 1982-09-30 1984-04-06 Babcock Hitachi Kk Low nox burning device

Also Published As

Publication number Publication date
JPS62169908A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
US4021186A (en) Method and apparatus for reducing NOx from furnaces
JP5138028B2 (en) Oxygen supply control method and apparatus for oxyfuel boiler
JP4017521B2 (en) Oxygen-enhanced NOx reduction combustion
JP2011513694A (en) Method for reducing nitrogen oxides in pulverized coal boilers using an internal combustion burner
WO2009110034A1 (en) Method of controlling flow rate of primary recirculating exhaust gas in oxygen combustion boiler and apparatus therefor
JPS59219606A (en) Method of burning high ash content coal
JP2791029B2 (en) Pulverized coal burner
JPH026961B2 (en)
JPH036403B2 (en)
JP3560646B2 (en) Low boiler NOx combustion method and apparatus
JPH0543925B2 (en)
JPS62169907A (en) Pulverized coal combustion boiler
JP2889049B2 (en) Method for reducing N2O and NOx in fluidized bed combustion
JP2011075177A (en) Oxygen combustion boiler system and its starting method
JPS60126508A (en) Finely powdered coal burning device
JP3059995B2 (en) Fluidized bed combustion method for simultaneous reduction of nitrous oxide and nitrogen oxides
US3382822A (en) Method of burning coal
JPH0449449Y2 (en)
JPH0262768B2 (en)
CN106090893A (en) A kind of high performance clean burning method of coal-burning boiler
JPS6183805A (en) Method of burning pulverized solid fuel and the like
JPH04155105A (en) Fluidized bed boiler to suppress generation of nitrous oxide
US20210356118A1 (en) Pure oxygen combustion method with low nitrogen source
RU2057990C1 (en) Method for combined fuel combustion
JPH0318832Y2 (en)