JPS62169103A - Beam splitter - Google Patents

Beam splitter

Info

Publication number
JPS62169103A
JPS62169103A JP61010001A JP1000186A JPS62169103A JP S62169103 A JPS62169103 A JP S62169103A JP 61010001 A JP61010001 A JP 61010001A JP 1000186 A JP1000186 A JP 1000186A JP S62169103 A JPS62169103 A JP S62169103A
Authority
JP
Japan
Prior art keywords
layer
polarized light
beam splitter
refractive index
lambda0
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61010001A
Other languages
Japanese (ja)
Inventor
Hiroki Wakabayashi
若林 浩樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Device Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Device Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP61010001A priority Critical patent/JPS62169103A/en
Publication of JPS62169103A publication Critical patent/JPS62169103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To obtain a beam splitter which has substantially no absorption loss, is small in the difference of reflectivity or transmittance between S polarized light and P polarized light and has excellent durability by adequately determining the film thicknesses of respective layers of alternate layers consisting of TiO2 and SiO2. CONSTITUTION:The multi-layered dielectric films C formed on the surface of a substrate B are made into the 6-layered structure formed with the 1st layer 1-6th layer 6 successively from the substrate B side to the air A side. The 1st layer 1, the 3rd layer 3 and the 5th layer 5 are thin high-refractive index films consisting of TiO2. The 2nd layer 2, the 4th layer 4 and the 6th layer 6 are this low-refractive index films consisting of SiO2. The optical film thicknesses of the respective layers are lambda0/r, lambda0/2, lambda0/2, lambda0/4, lambda0/4, lambda0/2 successively from the 1st layer. lambda0 is a design wavelength and is adequately set according to the wavelength of a light source to be used. The absorption loss is thereby substantially eliminated and the difference of the reflectivity or transmittance between the S polarized light and the P polarized light is decreased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光学的情報装置の光ピツクアップヘッドに用
いられるビームスプリッタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a beam splitter used in an optical pickup head of an optical information device.

〔背景技術とその問題点〕[Background technology and its problems]

従来、光ピツクアップヘッドでは、半導体レーザなどの
光源からの出射光を効率よく利用し、がつバックトーク
と称される信号光の逆入射による半導体レーザの発振ス
ペクトルや出力光レベルの変動を防ぐため、入射光の偏
光状態により反射率あるいは透過率が異なる偏光ビーム
スプリッタと174波長板を併用した光アイソレータを
採用していた。しかし、最近は、上述したバックトーク
を問題としないものや、ある程度のバックトークがある
とスペクトルが安定する半導体レーザが得られてきてい
る。この様な状況では、従来の光ピツクアップヘッドで
用いられている1/4波長板と偏光ビームスプリッタを
ビームスプリッタに置きかえる事が可能であり、光ピツ
クアップヘッドの光学系が簡単になり、小型化・軽量化
が実現できる。
Conventionally, optical pickup heads efficiently utilize the light emitted from a light source such as a semiconductor laser to prevent fluctuations in the semiconductor laser's oscillation spectrum and output light level due to backtalk of signal light. Therefore, an optical isolator that uses a polarizing beam splitter and a 174-wave plate, which have different reflectance or transmittance depending on the polarization state of the incident light, has been used. However, recently, semiconductor lasers that do not have the above-mentioned backtalk as a problem or whose spectra are stabilized even with a certain amount of backtalk have been obtained. In such situations, it is possible to replace the 1/4 wavelength plate and polarizing beam splitter used in conventional optical pickup heads with a beam splitter, which simplifies the optical system of the optical pickup head and makes it more compact. It can be made lighter and lighter.

上述の光ピツクアップヘッドの光学系の例を第6図に示
す。半導体レーザ(30)からの出射光(32)は、ビ
ームスプリッタ(34)で反射され1反射光(36)は
コリメートレンズ(38)によって平行光(40)とな
り対物レンズ(42)に入射する。対物レンズ(42)
によって情報が記録されたディスク(44)に集光され
−(27号を含んだ反射光(46)は光路を逆行しビー
ムスプリッタ(34)を透過し、信号検出系(48)に
導かれ、光信号は電気信号に変換される。この光学系に
おいては、ビームスプリッタ(34)の透過率および反
射率がともに50%のとき、信号検出系(48)に達す
る光量は25%となり、この場合の効率が最も高い。
An example of the optical system of the above-mentioned optical pickup head is shown in FIG. Emitted light (32) from the semiconductor laser (30) is reflected by a beam splitter (34), and one reflected light (36) is turned into parallel light (40) by a collimating lens (38) and enters an objective lens (42). Objective lens (42)
The reflected light (46) containing information is focused on the disk (44) on which information is recorded by -(27), travels backward through the optical path, passes through the beam splitter (34), and is guided to the signal detection system (48). The optical signal is converted into an electrical signal.In this optical system, when the transmittance and reflectance of the beam splitter (34) are both 50%, the amount of light reaching the signal detection system (48) is 25%; has the highest efficiency.

しかし、現在、この様な光学系で使用されているビーム
スプリッタは、S偏光とP偏光に対する反射率あるいは
透過率をそれぞれ等しくするために、 Agなどの金属
膜やSLなどの半導体膜を用いている。そのため、5%
〜10%の吸収損失が生じて、効率が下がってしまう欠
点がある。たとえば、10%の吸収損失がある場合には
、ビームスプリッタによる反射あるいには透過1回につ
き10%の光量が吸収されるため、信号検出系に達する
光量は最大でも20%程度となってしまう。また、金属
膜や半導体膜は誘電体膜に比べ耐久性が悪い。
However, the beam splitters currently used in such optical systems use metal films such as Ag or semiconductor films such as SL in order to equalize the reflectance or transmittance for S-polarized light and P-polarized light. There is. Therefore, 5%
There is a drawback that an absorption loss of ~10% occurs, resulting in a decrease in efficiency. For example, if there is an absorption loss of 10%, 10% of the light will be absorbed each time it is reflected or transmitted by the beam splitter, so the maximum amount of light that will reach the signal detection system will be about 20%. Put it away. Furthermore, metal films and semiconductor films have poor durability compared to dielectric films.

一方、吸収がほとんどなく膜強度も大きい誘電体膜だけ
を用いてビームスプリッタを形成することが考えられる
。しかし、誘電体膜だけではS偏光とP偏光に対する反
射率あるいは透過率の差が大きくなってしまうため、光
ピツクアップヘッド用ビームスプリッタとしては、この
様なタイプのものはほとんど見られない。S偏光とP偏
光に対する反射率あるいは透過率の差が大きい場合には
On the other hand, it is conceivable to form a beam splitter using only a dielectric film that has little absorption and high film strength. However, since the dielectric film alone results in a large difference in reflectance or transmittance for S-polarized light and P-polarized light, this type of beam splitter is rarely seen as a beam splitter for optical pickup heads. When there is a large difference in reflectance or transmittance for S-polarized light and P-polarized light.

ビームスプリッタへ入射する光の偏光状態により、反射
率あるいは透過率が異なってしまう。たとえば、ディス
ク(44)の複屈折の大きさにより反射率あるいは透過
率が変わり1.そのため信号検出系(48)に達する光
量も変化する。したがって、光ピツクアップヘッド用の
ビームスプリッタ(34)はS偏光とP偏光とに対する
特性の差が小さくなくてはならない。
The reflectance or transmittance varies depending on the polarization state of the light incident on the beam splitter. For example, the reflectance or transmittance changes depending on the magnitude of birefringence of the disk (44).1. Therefore, the amount of light reaching the signal detection system (48) also changes. Therefore, the beam splitter (34) for the optical pickup head must have a small difference in characteristics for S-polarized light and P-polarized light.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、吸収損失がほとんどなく、かつS偏光
とP偏光に対する反射率あるいは透過率の差が小さいビ
ームスプリッタを提供することである。
An object of the present invention is to provide a beam splitter with almost no absorption loss and a small difference in reflectance or transmittance for S-polarized light and P-polarized light.

〔発明の概要〕[Summary of the invention]

本発明は、基体上にTie、からなる高屈折率薄膜とS
iO□からなる低屈折率薄膜を交互に、順に光学的膜厚
がλ。/4.λ、/2.λ、/2.λ。/4.λ。/4
゜λ。/2となる様に積層したビームスプリッタであり
、吸収損失がほとんどなく、かつS偏光とP偏光に対す
る反射率あるいは透過率の差が小さい。
The present invention provides a high refractive index thin film made of Tie and S on a substrate.
Low refractive index thin films made of iO□ are alternately arranged in order with an optical thickness of λ. /4. λ, /2. λ, /2. λ. /4. λ. /4
゜λ. It is a beam splitter stacked in such a manner that the beam splitter has a ratio of 1/2, almost no absorption loss, and a small difference in reflectance or transmittance for S-polarized light and P-polarized light.

〔発明の実施例〕[Embodiments of the invention]

以下、図示実施例を参照して1本発明について詳細に説
明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to illustrated embodiments.

第1図は本発明のビームスプリッタの構成を示す縦断面
図であり、Aは空気、Bは基板、Cは基板Bの表面に形
成された誘電体多層膜である。多WJ膜Cは、基板B側
から空気A側へ順に第1層(ト)、第2層■、第3層■
、第4層(イ)、第5層(ハ)及び第6層0が形成され
た6層構造である。第1層■、第3層■及び第5層■は
TiO□よりなる高屈折率薄膜、第2層■、第4層0)
及び第6層0は、SiO□よりなる低屈折率薄膜である
。各層の光学的膜厚は。
FIG. 1 is a longitudinal sectional view showing the configuration of the beam splitter of the present invention, where A is air, B is a substrate, and C is a dielectric multilayer film formed on the surface of substrate B. FIG. The multi-WJ film C has a first layer (G), a second layer (■), and a third layer (■) in order from the substrate B side to the air A side.
, a fourth layer (A), a fifth layer (C), and a sixth layer 0 are formed. The first layer ■, the third layer ■, and the fifth layer ■ are high refractive index thin films made of TiO□, the second layer ■, and the fourth layer 0)
The sixth layer 0 is a low refractive index thin film made of SiO□. What is the optical thickness of each layer?

第1層目より順に、λ。/4.λa/2.λ。/2.λ
。/4゜第2図は本発明の一例のビームスプリッタの分
光透過率特性を示したもので、基板への入射角は45度
の場合を示す。曲線(ハ)はS偏光に対する透過率、曲
線(lO)はP偏光に対する透過率を示す。この例にお
けるビームスプリッタは1通常よく使用される屈折率が
1.51の光学ガラス上に、TiO□とSiO2からな
る多層膜を形成したものである6設計波長λ。は548
nm、各層の実際の膜厚は第1層より順に60rv+、
 188nm、 120nm、 94nm、 60nm
、および188n+mとなる。設計波長λ。を550n
mとしたのは、ビームスプリッタに入射する半導体レー
ザの波長を780nmとしたためで、λ。が550nm
のとき、780nmにおけるS偏光とP偏光の反射率あ
るいは透過率の差が最も小さくなる。ここで、低屈折率
薄膜として使用しているSin、膜の屈折率は1.46
である。また、高屈折率膜として使用しているrio、
 [は、基板温度、蒸発材料の蒸発速度および雰囲気ガ
ス圧などの蒸着条件により、屈折率を2.25〜2.3
5程度の間で変化させることができるが、ここでは2.
30とした。なお、屈折率2.25あるいは2.30で
も特性はそれほど変化しない。
λ in order from the first layer. /4. λa/2. λ. /2. λ
. /4° FIG. 2 shows the spectral transmittance characteristics of a beam splitter according to an example of the present invention, and shows the case where the incident angle to the substrate is 45 degrees. The curve (c) shows the transmittance for S-polarized light, and the curve (lO) shows the transmittance for P-polarized light. The beam splitter in this example is one in which a multilayer film made of TiO□ and SiO2 is formed on a commonly used optical glass having a refractive index of 1.51.6The design wavelength λ. is 548
nm, the actual thickness of each layer is 60rv+ from the first layer,
188nm, 120nm, 94nm, 60nm
, and 188n+m. Design wavelength λ. 550n
The reason why it is set to m is that the wavelength of the semiconductor laser incident on the beam splitter is 780 nm, and λ. is 550nm
When , the difference in reflectance or transmittance between S-polarized light and P-polarized light at 780 nm becomes the smallest. Here, the refractive index of the Sin used as the low refractive index thin film is 1.46.
It is. In addition, rio, which is used as a high refractive index film,
[The refractive index is 2.25 to 2.3 depending on the deposition conditions such as the substrate temperature, the evaporation rate of the evaporation material, and the atmospheric gas pressure.
It can be changed between about 5, but here it is 2.
It was set at 30. Note that the characteristics do not change much even when the refractive index is 2.25 or 2.30.

第3図はTiO□の屈折率が2.25と2.30の場合
の分光透過率曲線である。曲線(10)はTie、の屈
折率力12.25の場合の89s光に対する透過率、曲
線(12)4ま同屈折率が2.25の場合のP偏光に対
する透過率を示す。また1曲線(14)はTie2の屈
折率が2.35の場合のS偏光に対する透過率、曲線(
16)は同屈折率が2.35の場合のP偏光に対する透
過率を示す。
FIG. 3 shows spectral transmittance curves when the refractive index of TiO□ is 2.25 and 2.30. Curve (10) shows the transmittance for 89s light when Tie's refractive index power is 12.25, and curve (12)4 shows the transmittance for P-polarized light when Tie's refractive index is 2.25. Curve 1 (14) is the transmittance for S-polarized light when the refractive index of Tie2 is 2.35, and the curve (
16) shows the transmittance for P-polarized light when the refractive index is 2.35.

使用する光源の波長が780 nn+からずれる場合は
If the wavelength of the light source used deviates from 780 nn+.

設計波長λ。を使用する光源の波長に合わせて変基板に
ついても、屈折率が1.5程度の光学ガラスの他に、屈
折率が)58と高いものや、1.4程度の低いものも使
用できる。第4図に基板の屈折率が1.8の場合と1.
4の場合の分光透過率特性を示す。
Design wavelength λ. Regarding the variable substrate depending on the wavelength of the light source used, in addition to optical glass with a refractive index of about 1.5, one with a refractive index as high as 58 or as low as 1.4 can also be used. Figure 4 shows a case where the refractive index of the substrate is 1.8 and a case where the refractive index of the substrate is 1.8.
4 shows the spectral transmittance characteristics for case 4.

曲線(18)は基板の屈折率が1.8の場合のS偏光に
対する透過率1曲線(20)は同屈折率が1.8の場合
のP偏光に対する透過率を示す。また1曲線(22)は
基板の屈折率が1.4の場合のS偏光に対する透過率、
曲線(24)は同屈折率が1.4の場合のP偏光に対す
る透過率を示す。
Curve (18) shows the transmittance for S-polarized light when the refractive index of the substrate is 1.8.Curve (20) shows the transmittance for P-polarized light when the refractive index of the substrate is 1.8. In addition, curve 1 (22) is the transmittance for S-polarized light when the refractive index of the substrate is 1.4.
Curve (24) shows the transmittance for P-polarized light when the refractive index is 1.4.

さらに、設計波長を適当にずらすことにより。Furthermore, by appropriately shifting the design wavelength.

45度以外の入射角でも使用でき、たとえば60度入射
に対してはλ。=588nmとすればよい。この場合の
分光特性を第5図に示す。曲線(26)はS偏光に対す
る透過率、曲線(28)はP偏光に対する透過率をそれ
ぞれ示す。
Angles of incidence other than 45 degrees can also be used, for example λ for 60 degrees of incidence. =588 nm. The spectral characteristics in this case are shown in FIG. Curve (26) shows the transmittance for S-polarized light, and curve (28) shows the transmittance for P-polarized light.

以上の様なビームスプリッタを第6図に示した光学系の
ビームスプリッタ(30)として使用した結果、吸収損
失がほとんどないため、信号検出系に達する光量が大き
くなり、25%近い効率が得られた。また、多層膜構成
が、密着性も良く、膜強度 4も大きいTiO□と5i
n2の交互層のため、金属膜や半導体膜を使用している
ビームスプリッタに比べ耐久性にすぐれ、Sin、とT
ie、の膜応力がちょうど良い具合に打ち削し合い基板
の歪も小さい。
As a result of using the beam splitter as described above as the beam splitter (30) in the optical system shown in Figure 6, there is almost no absorption loss, so the amount of light reaching the signal detection system increases, resulting in an efficiency of nearly 25%. Ta. In addition, the multilayer film structure has good adhesion and a high film strength of 4 and 5i.
Because of the alternating layers of n2, it has superior durability compared to beam splitters that use metal films or semiconductor films.
ie, the film stress is just right and the distortion of the substrate is small.

なお、多層膜の各層の膜厚は、λ。/4あるいはλ。/
2から多少ずれても特性の大きな変化は見られず、また
各層の膜替が最も制御しゃすいλ、/4あるいはλ。/
2であるため一般的な蒸着装置であれば、容易に蒸着で
きる。
Note that the thickness of each layer of the multilayer film is λ. /4 or λ. /
Even if there is a slight deviation from 2, no major change in characteristics is observed, and the film change of each layer is most easily controlled at λ, /4 or λ. /
2, it can be easily deposited using a general deposition apparatus.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、T10□と5in2の交互層におい
て、各層の膜厚を適当に定める事により、吸収損失がほ
とんどなく、S偏光とP偏光の反射率あるいは透過率の
差も小さく、かつ耐久性にもすぐれたビームスプリッタ
が得られる。また、このビームスプリッタを光ピツクア
ップヘッドのビームスプリッタとして使用する事で、光
源から出射された光を効率良く安定に信号検出系へ導び
くことができる。
According to this invention, by appropriately determining the film thickness of each layer in the alternating layers of T10□ and 5in2, there is almost no absorption loss, the difference in reflectance or transmittance between S-polarized light and P-polarized light is small, and it is durable. A beam splitter with excellent performance can be obtained. Further, by using this beam splitter as a beam splitter of an optical pickup head, the light emitted from the light source can be efficiently and stably guided to the signal detection system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるビームスプリッタの断面図、第
2図は本発明の実施例によるビームスプリッタの分光透
過率特性図、第3図は本発明の実施例においてTie、
の屈折率が2.25と2.35の場合のビームスプリッ
タの分光透過率特性図、第4図は7本発明の実施例にお
いて基板の屈折率が1.8と1.4の場合のビームスプ
リッタの分光透過率特性図、第5図は本発明の実施例に
おいて60度入射とした場合のビームスプリッタの分光
透過率特性図、第6図はビームスプリッタを用いた光ピ
ツクアップヘッドの光学系の一例を示す図である。 A・・・空気、      B・・・基板、C・・・多
層膜、     (1)・・・第1層。 ■・・・第2層、     (3)・・・第3層、0)
・・・第4層、     ■・・・第5層、0・・・第
6層、     (30)・・・半導体レーザ、(34
)・・・ビームスプリッタ、 (38)・・・コリメートレンズ、 (42)・・・対物レンズ、  (44)・・・ディス
ク、(48)・・・信号検出系。 代理人 弁理士 則 近 憲 佑 同  大胡典夫 第1図 ′iL長(功) 第2図 文長tnm) 第3図 遣−& (ym) 第4図 *−&(yzm) 第5図 第6図 手続有l正享ン(自発) 昭和、45.ハ 日
FIG. 1 is a sectional view of a beam splitter according to the present invention, FIG. 2 is a spectral transmittance characteristic diagram of a beam splitter according to an embodiment of the present invention, and FIG. 3 is a sectional view of a beam splitter according to an embodiment of the present invention.
Figure 4 shows the spectral transmittance characteristics of the beam splitter when the refractive index of the substrate is 2.25 and 2.35. A spectral transmittance characteristic diagram of the splitter. Figure 5 is a spectral transmittance characteristic diagram of the beam splitter when the incidence is 60 degrees in the embodiment of the present invention. Figure 6 is an optical system of an optical pickup head using the beam splitter. It is a figure showing an example. A...Air, B...Substrate, C...Multilayer film, (1)...First layer. ■...Second layer, (3)...Third layer, 0)
...Fourth layer, ■...Fifth layer, 0...Sixth layer, (30)...Semiconductor laser, (34
)...Beam splitter, (38)...Collimating lens, (42)...Objective lens, (44)...Disc, (48)...Signal detection system. Agent Patent Attorney Noriyuki Ken Yudo Norio Ogo Figure 1 'iL length (Kong) Figure 2 Text length tnm) Figure 3 - & (ym) Figure 4 *- & (yzm) Figure 5 6. Procedures included (self-motivated) Showa, 45. Ha day

Claims (1)

【特許請求の範囲】[Claims] 屈折率が1.40〜1.80の範囲にある基板上にTi
O_2からなる高屈折率薄膜と、SiO_2からなる低
屈折率薄膜とが順に交互に積層され、設計波長をλ_0
とした場合に、基板に近い側により第1層、第4層及び
第5層の光学的膜厚がλ_0/4であり、第2層、第3
層及び第6層の光学的膜厚がλ_0/2である6層の多
層膜を有することを特徴とするビームスプリッタ。
Ti is deposited on a substrate with a refractive index in the range of 1.40 to 1.80.
A high refractive index thin film made of O_2 and a low refractive index thin film made of SiO_2 are laminated alternately in order, and the design wavelength is set to λ_0.
In this case, the optical thickness of the first layer, fourth layer, and fifth layer is λ_0/4 on the side closer to the substrate, and the optical thickness of the second layer and the third layer is λ_0/4.
A beam splitter comprising a six-layer multilayer film in which the first layer and the sixth layer have an optical thickness of λ_0/2.
JP61010001A 1986-01-22 1986-01-22 Beam splitter Pending JPS62169103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010001A JPS62169103A (en) 1986-01-22 1986-01-22 Beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010001A JPS62169103A (en) 1986-01-22 1986-01-22 Beam splitter

Publications (1)

Publication Number Publication Date
JPS62169103A true JPS62169103A (en) 1987-07-25

Family

ID=11738180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010001A Pending JPS62169103A (en) 1986-01-22 1986-01-22 Beam splitter

Country Status (1)

Country Link
JP (1) JPS62169103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228232A (en) * 1990-01-31 1991-10-09 Sanyo Electric Co Ltd Optical pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228232A (en) * 1990-01-31 1991-10-09 Sanyo Electric Co Ltd Optical pickup device

Similar Documents

Publication Publication Date Title
US7859977B2 (en) Optical pick-up unit
US4367921A (en) Low polarization beam splitter
JPH08503315A (en) Polarization beam splitter and magneto-optical reproducing apparatus using this beam splitter
WO2011049144A1 (en) Reflection type wavelength plate and optical head device
JP4742630B2 (en) Reflective optical element and optical pickup device
JP5316409B2 (en) Phase difference element and optical head device
JP2009132989A (en) Method for forming optical thin film, and optical element provided with the optical thin film
US20060098553A1 (en) Beam splitter and optical pickup device
WO1994000782A1 (en) Photocoupler
JP3584257B2 (en) Polarizing beam splitter
JPS62169103A (en) Beam splitter
JPH08254611A (en) Beam splitter
US4595261A (en) Phase retardation element and prism for use in an optical data storage system
JP2009031406A (en) Nonpolarization beam splitter and optical measuring instrument using the same
JPS6346404A (en) Beam splitter
WO2011048875A1 (en) Plate-type broadband depolarizing beam splitter
JP2007212694A (en) Beam splitter
JPH09145924A (en) Optical element and optical head
JP2862423B2 (en) Polarizing beam splitter
JP2000193810A (en) Reflection mirror
JP2001350024A (en) Polarizing beam splitter
JPH08110406A (en) Optical multilayered film
JPS6315562B2 (en)
JPH08146218A (en) Polarizing beam splitter
JPH08286034A (en) Polarized light beam splitter