JPS62169084A - Flow controller for coolant of nuclear reactor - Google Patents

Flow controller for coolant of nuclear reactor

Info

Publication number
JPS62169084A
JPS62169084A JP61010166A JP1016686A JPS62169084A JP S62169084 A JPS62169084 A JP S62169084A JP 61010166 A JP61010166 A JP 61010166A JP 1016686 A JP1016686 A JP 1016686A JP S62169084 A JPS62169084 A JP S62169084A
Authority
JP
Japan
Prior art keywords
rotation speed
control device
coolant
pump
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61010166A
Other languages
Japanese (ja)
Inventor
渡辺 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61010166A priority Critical patent/JPS62169084A/en
Publication of JPS62169084A publication Critical patent/JPS62169084A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉冷却材流量制御装置に係り、特にタン
ク型高速増殖炉(以下、FBRと云う。)の1次冷却系
に好適な流量制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a nuclear reactor coolant flow rate control device, and is particularly suitable for a primary cooling system of a tank-type fast breeder reactor (hereinafter referred to as FBR). This invention relates to a flow rate control device.

〔従来の技術〕[Conventional technology]

従来のFBR,の1次冷却系流量制御方式は、「日立評
論j Vo467、或11(85年11月)の第853
頁〜第858頁に示すように、冷却系各ループ毎にポン
プ回転数制御装置をもち連続制御していた。
The conventional FBR primary cooling system flow rate control method is described in "Hitachi Hyoron J Vo467, No. 853 of 11 (November 1985).
As shown on pages 858 to 858, each loop of the cooling system had a pump rotation speed control device for continuous control.

このため、大形のポンプ駆動用モータの回転数制御装置
として、可変周波数を発生させるM−Gセットまたはサ
イリスタ電源装置が冷却系のループ数だけ設置されてい
た。
For this reason, as a rotation speed control device for a large pump drive motor, M-G sets or thyristor power supplies that generate variable frequencies are installed as many as the number of loops in the cooling system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、大規模なポンプ回転数制御装置が冷
却系ループ数だけ必要であり、原子炉出力規模の増大に
伴なってループ数も増加するため制御装置の台数も増加
する傾向にあった。
In the above conventional technology, a large-scale pump rotation speed control device is required for each cooling system loop, and as the reactor output scale increases, the number of loops also increases, so the number of control devices tends to increase. .

本発明の目的は、原子炉冷却材流量の連続制御特性を維
持しながら、循環ポンプ回転数制御装置を合理化し、大
幅な設備簡素化によ、り経済性2信頼性及び保守性の向
上を図ることにある。
The purpose of the present invention is to rationalize the circulation pump rotation speed control device while maintaining the continuous control characteristics of the reactor coolant flow rate, and to significantly simplify the equipment, thereby achieving greater economy, reliability, and maintainability. It's about trying.

〔問題点を解決するための手段〕[Means for solving problems]

タンク型FBRの1次冷却材の流れは、各循環゛ポンプ
出口から炉心入口までが配管で結ばれている以外は、す
べてタンク内で混合し各ループの中間熱交検器(以下、
IHXと云う。)に均等に流量分配される。
The flow of the primary coolant in a tank-type FBR is mixed within the tank, except for the piping that connects each circulation pump outlet to the core inlet.
It's called IHX. ), the flow rate is evenly distributed.

[−たがって、原子炉冷却材流量およびIHX冷却材流
量の制御のために、各ループの循環ポンプを均等に回転
数制御する必要はない。
[-Therefore, in order to control the reactor coolant flow rate and the IHX coolant flow rate, it is not necessary to control the rotation speed of the circulation pumps of each loop equally.

本発明は、上記特性に鑑み、1次冷却材循環ポンプのう
ち部分台数を定速回転ポンプとし、残シのポンプを連続
回転制御ポンプとすることにより、循環ポンプ回転数制
御装置の簡素化を達成したものである。
In view of the above-mentioned characteristics, the present invention simplifies the circulation pump rotation speed control device by using constant speed rotation pumps for a portion of the primary coolant circulation pumps and using continuous rotation control pumps for the remaining pumps. This has been achieved.

〔作用〕 タンク型FBROタンク内冷却材流動と、本発明による
ポンプ部分台数制御方式の動作を第2図(a)、 (b
)により説明する1、 タンク型FBRでは、容器(タンク)1内の中心部に原
子炉の炉心2が、その周辺部に11(x3A〜3Dおよ
び循環ポンプ4八〜41)が冷却系ループ教に応じて配
置される。
[Operation] Figures 2(a) and 2(b) show the flow of coolant in the tank-type FBRO tank and the operation of the pump partial number control system according to the present invention.
1. In a tank-type FBR, the reactor core 2 is located in the center of the vessel (tank) 1, and the cooling system loop system 11 (x3A to 3D and circulation pumps 48 to 41) is located around it. will be placed accordingly.

タンク内の冷却材の流れは、原子炉出目(炉心」一部)
→上部プレナム11→IHX1次入口→IHXI次出口
・−→下部ブVナノ・、12→循壊ポンプ4→逆止弁9
→原子炉入口(炉心下部)→原子炉の炉心2内の経路を
循環する。
The flow of coolant in the tank is based on the reactor output (part of the reactor core).
→ Upper plenum 11 → IHX primary inlet → IHXI secondary outlet - → Lower part V nano, 12 → Circulation pump 4 → Check valve 9
→ Reactor inlet (lower core) → Circulate through the path inside the reactor core 2.

ここで、タンク型ii’ B IIでは、循環ポンプ4
八〜41)の出口から原子炉入口までが配管で結合され
ている以外、1次冷却系はタンク内のプレナムで各ルー
プが混合して流れるため、各ループの循環ポンプ回転数
に差があって°も、各IHX3A〜3Dには均等の冷却
材流量が流れる。
Here, in tank type ii' B II, circulation pump 4
8 to 41) are connected by piping from the outlet to the reactor inlet.In the primary cooling system, each loop flows in a mixed manner in a plenum inside the tank, so there is a difference in the circulation pump rotation speed of each loop. Even at this time, an equal flow rate of coolant flows through each IHX 3A to 3D.

本発明は上記タンク型FBRの1次冷却系の特性に鑑み
、1次冷却系流量制御を、従来のポンプ全台数回転数制
御方式と異なり、一部ポンプを定速回転としポンプ部分
台数回転数制御方式とする点にアシ、1次冷却系循環ポ
ンプN台のうちn台を回転数制御し、残!り(N−n>
台の定速回転とする。原子炉冷却材流量は、ポンプn台
の連続回転数制御と(N−n)台のポンプの起動・停止
または極数変換等の組合せで段階的に定速度を変えて制
御する。これによシ、各IHX流量は均等に;炉め炉心
2で発生した熱出力が均等に輸送される−とともに、大
規模なポンプ制御装置が削減でき、信頼性も向上する。
In view of the characteristics of the primary cooling system of the tank-type FBR, the present invention controls the flow rate of the primary cooling system by rotating some pumps at a constant speed, unlike the conventional system of controlling the number of rotations of all pumps. The key to controlling the system is to control the rotation speed of n of the N primary cooling system circulation pumps, and the rest! ri(N-n>
The table rotates at a constant speed. The reactor coolant flow rate is controlled by changing the constant speed stepwise by a combination of continuous rotation speed control of n pumps, starting/stopping of (N-n) pumps, or changing the number of poles. As a result, the flow rates of each IHX are uniform; the heat output generated in the reactor core 2 is evenly transported; a large-scale pump control device can be reduced, and reliability can be improved.

〔実施例〕〔Example〕

以下1本発明の実施例をよシ詳細に説明する。 Hereinafter, one embodiment of the present invention will be explained in detail.

第1図に示す実施例は、冷却系4ループで54台の1次
冷却系循環ポンプ4八〜4Dのうち、4Bと4C4定速
回転のポンプとし、4人と4Dを連続回転数制御装置を
備えたポンプとした場合について示しである。
The embodiment shown in Fig. 1 has four loops in the cooling system, and among 54 primary cooling system circulation pumps 48 to 4D, 4B and 4C4 are fixed-speed rotation pumps, and four people and 4D are operated by a continuous rotation speed control device. This figure shows a case where the pump is equipped with the following.

定速回転ポンプ4B、4Cの駆動モータ41B。Drive motor 41B for constant speed rotation pumps 4B and 4C.

410は、それぞれしゃ断器6B、6I−介して電源5
B、5Cに接続される。
410 are connected to the power supply 5 through the circuit breakers 6B and 6I, respectively.
Connected to B and 5C.

一方、連続回転数制御するポンプモータ41A。On the other hand, the pump motor 41A continuously controls the rotation speed.

41Dには、それぞれ連続回転数制御装置8A。41D, each continuous rotation speed control device 8A.

8Dが接続され、回転数指令装置7よシ回転数指令信号
が与えられる。連続回転数制御装置8A。
8D is connected, and a rotation speed command signal is given to the rotation speed command device 7. Continuous rotation speed control device 8A.

8Dには、それぞれ電源5A、5Dがしゃ断器6A、6
Dを介して接続される。
8D has power supplies 5A and 5D connected to circuit breakers 6A and 6, respectively.
Connected via D.

以下1本実施例の動作について説明する。The operation of this embodiment will be explained below.

しゃ断器6A〜6Dを投入し、ポンプ4A〜4Dを起動
すると、定速回転ポンプ4B、、4Cは定格回転し、連
続回転数制御ポンプ4A、4Dは連続回転数制御装置8
A、8Dで定めている最小回転数で回転する。
When the circuit breakers 6A to 6D are turned on and the pumps 4A to 4D are started, the constant speed rotation pumps 4B, 4C rotate at the rated speed, and the continuous rotation speed control pumps 4A and 4D start the continuous rotation speed control device 8.
It rotates at the minimum rotation speed specified by A and 8D.

回転数指令装置7は、プラント出力指令信号の関数とし
てポンプ回転数指令信号7人を回転数制御装置8A、8
Dに与える。
The rotation speed command device 7 sends the pump rotation speed command signal 7 as a function of the plant output command signal to the rotation speed control devices 8A, 8.
Give to D.

連続回転数制御装置8A、8DをM−Gセットで実現し
た例を第3図に示す。
FIG. 3 shows an example in which the continuous rotation speed control devices 8A and 8D are implemented as an MG set.

第3図で回転数指令信号7Aは、回転数制限器81で上
下限が制限された後、回転計87の出力である回転数と
比較され回転数偏差として回転数制御器82に与えられ
る。制御器で比例積分等の演算が行なわれ、すくい管駆
動装置83に制御信号が送られる。
In FIG. 3, the rotation speed command signal 7A has its upper and lower limits limited by a rotation speed limiter 81, and then is compared with the rotation speed output from a tachometer 87 and provided to a rotation speed controller 82 as a rotation speed deviation. The controller performs calculations such as proportional integral and the like, and sends a control signal to the scoop tube drive device 83.

流体継手85は、定速回転の駆動電動機84と交流発電
@86の中間に設置され、すくい管位置□によ力伝達ト
ルクが変化し、交流発電機の回転数−を連続的に変更で
きる。
The fluid coupling 85 is installed between the drive motor 84 rotating at a constant speed and the alternating current generator @86, and the force transmission torque changes depending on the scoop pipe position □, so that the rotation speed of the alternator can be continuously changed.

したがって、制御信号で流体継手のすくい管を駆動する
ことにより、交流発電機の発生周波数、すなわちポンプ
モータ41の駆動周波数が変化し、ポンプ回転数が変化
する。
Therefore, by driving the scoop pipe of the fluid coupling with a control signal, the generation frequency of the alternator, that is, the drive frequency of the pump motor 41 changes, and the pump rotation speed changes.

自動電圧調整器88は、回転数に比例した信号を励磁器
89に送シ、ポンプモータには周波数に比例した電圧を
印加するようにしている。
The automatic voltage regulator 88 sends a signal proportional to the rotational speed to the exciter 89, and applies a voltage proportional to the frequency to the pump motor.

以上のように、連続回転数制御ポンプ4A。As described above, the continuous rotation speed control pump 4A.

4Dは、回転数指令装置からの指令信号に応じて回転数
制御される。
The rotation speed of 4D is controlled according to a command signal from a rotation speed command device.

1次冷却材流量は、原子炉出力の関数として、設定され
るが、その例を第4図〜第7図に示す。
The primary coolant flow rate is set as a function of reactor power, examples of which are shown in FIGS. 4-7.

第4図は、定格出力において4台のポンプ回転数が同一
となるように設定し、出力低下とともに連続回転数制御
ポンプ4A、4Dの回転数を低下させ、定速回転ポンプ
4B、4Cは定格回転数のままにした場合を示す。
In Figure 4, the rotational speed of the four pumps is set to be the same at the rated output, and as the output decreases, the rotational speed of the continuous rotational speed control pumps 4A and 4D is reduced, and the constant speed rotational pumps 4B and 4C are set to the rated output. This shows the case where the rotation speed remains unchanged.

定速回転ポンプ4B、4Cの流量は、連続回転数制御ポ
ンプ4A、4Dの回転数低下によう、圧力損失が減少す
るため、増加する傾向を示すが、1次冷却系流量全体と
しては設定プログラムに従って変化する。これによって
、1次冷却系流量は約60%から100%の間で定速回
転ポンプが存在しながらも連続制御が可能となる。
The flow rates of the constant speed rotary pumps 4B and 4C tend to increase as the pressure loss decreases as the rotation speed of the continuous rotation speed control pumps 4A and 4D decreases, but the flow rate of the primary cooling system as a whole tends to increase depending on the setting program. changes according to As a result, the primary cooling system flow rate can be continuously controlled between approximately 60% and 100% even though a constant speed rotation pump is present.

第5図は、出力約70%(■の点)で定速回転ポンプ4
B、4Cのどちらか一台を停止させた場合を示す。定速
回転ポンプの停止による流量減少分を補うよう連続回転
数ポンプの回転数増加が回転数指令装置から指令され、
流量は設定プログラムに従って変化する。これにより、
1次系流量は、約40%から100%の間で連続制御可
能となる。
Figure 5 shows the constant speed rotary pump 4 at approximately 70% output (point ■).
The case where either B or 4C is stopped is shown. The rotation speed command device commands an increase in the rotation speed of the continuous rotation speed pump to compensate for the decrease in flow rate due to the stoppage of the constant speed rotation pump.
The flow rate changes according to the set program. This results in
The primary system flow rate can be continuously controlled between about 40% and 100%.

第6図は、出力約70%(■の点)で定速回転ポンプの
一台を停止させ、さらに出力約45%(■の点)で残り
のもう一台の定速回転ポンプを停止させた場合を示す。
Figure 6 shows that one constant-speed rotary pump is stopped at approximately 70% output (point ■), and the other constant-speed rotary pump is stopped at approximately 45% output (point ■). This shows the case where

これによシ、1次冷却系流量は、約20%から100%
の間で連続制御可能となる。
As a result, the primary cooling system flow rate is approximately 20% to 100%.
Continuous control is possible between

流量制御範囲を、さらに拡大するためには、連続回転数
制御ポンプのうち、どちらか一台を停止し、一台の循環
ポンプのみを連続回転数制御することによシ達我される
In order to further expand the flow rate control range, one of the pumps with continuous rotation speed control is stopped and only one circulating pump is continuously controlled in rotation speed.

以上のような、出力−流量に対するポンプ回転数指令お
よびポンプ起動・停止プログラムは、回転数指令装置で
設定される。
The pump rotation speed command and pump start/stop program for the output-flow rate as described above are set by the rotation speed command device.

第7図は、定速回転ポンプの駆動モータに極数変換型を
用いた実施例を示す。
FIG. 7 shows an embodiment in which a pole change type is used as a drive motor for a constant speed rotation pump.

i返数変換型モータは、極数の異なる巻線をもち励磁す
る巻線を切替えることによって、極数に応じた段階的な
定速回転数が得られるもので極数変換切換装置を備えた
モータとして公知である。
An i-return conversion type motor has windings with different numbers of poles, and by switching the excited windings, a constant rotation speed can be obtained in stages according to the number of poles, and is equipped with a pole number conversion switching device. It is known as a motor.

本実施例は、4極と8極の極数変換型モータの場合を示
しており、4極励磁から8極励磁に切替えることによυ
、約1/2に回転速度が低下する。
This example shows the case of a pole number conversion type motor of 4 poles and 8 poles, and by switching from 4 pole excitation to 8 pole excitation, υ
, the rotational speed decreases to about 1/2.

第7図において、定格出力から出力を降下する場合を考
えると、■の点で定速回転ポンプの駆動モータの一台(
例えば41B)の極数を4極から8極に切替える。これ
による流量低下分は、連続回転数制御ポンプ回転数の増
加により補われる。
In Fig. 7, if we consider the case where the output is decreased from the rated output, one of the drive motors of the constant speed rotation pump (
For example, the number of poles of 41B) is changed from 4 to 8 poles. The decrease in flow rate due to this is compensated by an increase in the continuous rotation speed control pump rotation speed.

■の点では、もう一方の定速回転ポンプ駆動モータ41
Cの極数を4極から8柩に切替える。
Regarding point (2), the other constant speed rotation pump drive motor 41
Change the number of poles of C from 4 poles to 8 poles.

■の点では定速回転ポンプ駆動モータの一台(例えば4
1B)を停止する。
Regarding point (2), one constant-speed rotary pump drive motor (for example, 4
1B).

■の点でもう一方の定速回転ポンプ、駆動モータ411
0i停止し、連続回転数制御ポンプのみによって流量は
制御される。
At point ■, the other constant speed rotary pump, drive motor 411
0i is stopped, and the flow rate is controlled only by the continuous speed control pump.

■〜■の点の切替順序は、必ずしも上記にこだわる必要
はなく、■の点でモータ41Cの極数変換をする代りに
モータ41Bを停止し、■の点でモータ41Cの極数変
換しても良い。
The order of switching the points from ■ to ■ does not necessarily have to be the same as above; instead of changing the number of poles of the motor 41C at the point ■, stop the motor 41B, and change the number of poles of the motor 41C at the point ■. Also good.

以上、本発明の実施例について述べたが、次の場合も本
発明に含まれるのは勿論である。
Although the embodiments of the present invention have been described above, it goes without saying that the following cases are also included in the present invention.

(1)  原子炉出力と冷却材流量の関係は、比例する
場合について説明したが、任意の関数でも良い。
(1) Although the relationship between the reactor output and the coolant flow rate has been described as being proportional, it may be any function.

(2>  冷却系循環ポンプ、中間熱交換器はそれぞれ
4台の場合について説明したが、特に台数にこだわるも
のではない。
(2> Although the case where there are four cooling system circulation pumps and four intermediate heat exchangers each has been described, the number is not particularly important.

(3)複数の連続回転数制御ポンプは、常に同−回転故
に制御する必要はなく、個別に回転数制御することも可
能である。
(3) A plurality of continuous rotation speed control pumps do not need to be controlled because they always rotate at the same time, and it is also possible to control the rotation speed individually.

(4)冷却材流量制御は1回転数信号フィードバックの
例全説明したが、流量信号をフィードパツー゛1. 2′オシても良く、これら両者を併用することもで−一
きる。
(4) Coolant flow rate control is an example of 1 rotation speed signal feedback.Although all explanations have been given, the flow rate signal is fed to the part 1. 2' may be used, or both may be used together.

また、信号をフィードバックしない開ループ制御も可能
である。
Open loop control without feedback of signals is also possible.

〔発明の効果〕〔Effect of the invention〕

本発明の効果は下記の通シである。 The effects of the present invention are as follows.

(1)複数の冷却系循環ポンプの一部を定速回転とする
ことにより、大規模で複雑なポンプモータ連続回転数制
御装置が削減でき、設備費とともに建家スペースの縮小
など経済効果が大きい。
(1) By making some of the multiple cooling system circulation pumps rotate at a constant speed, it is possible to eliminate the need for large-scale and complicated pump motor continuous rotation speed control devices, which has significant economic effects such as reducing equipment costs and building space. .

(2)上記、ポンプモータ連続回転数制御装置の削減に
より、保守が容易になるとともに、信頼性が向上する。
(2) By reducing the number of pump motor continuous rotation speed control devices described above, maintenance becomes easier and reliability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す制御装置構成図、第
2図(a)はタンク型FBROタンク内冷却材流れを示
す平面図、同じく第2図(b)は立面図、第3図は回転
数制御装置の詳細構成例を示す図、第4図から第7図は
本発明の実施例の動作による各出力における流量を示す
グラフ図である。 1・・・容器、2・・・原子炉の炉心、 3A、  3
B、  3C。 3D・・・中間熱交換器、4A、4B、4C,4D・・
・冷却材循環ポンプ、5A、5B、5C,5D・・・電
源、6A、6B、6C,6D・・・しゃ断器、7・・・
回転数指令装置、8A、8D・・・回転数制御装置。 41A、41B、41C,41D・・・ポンプ駆動用語
 2 口(幻 Z3riJ 拓 4 f 第 2 図 ポカ(が) 粘 7 図 0              5Q        
      100出力  ζ2ノ
FIG. 1 is a configuration diagram of a control device showing an embodiment of the present invention, FIG. 2(a) is a plan view showing the flow of coolant in a tank-type FBRO tank, and FIG. 2(b) is an elevational view. FIG. 3 is a diagram showing a detailed configuration example of the rotation speed control device, and FIGS. 4 to 7 are graphs showing the flow rate at each output due to the operation of the embodiment of the present invention. 1... Container, 2... Reactor core, 3A, 3
B, 3C. 3D...Intermediate heat exchanger, 4A, 4B, 4C, 4D...
・Coolant circulation pump, 5A, 5B, 5C, 5D... Power supply, 6A, 6B, 6C, 6D... Breaker, 7...
Rotation speed command device, 8A, 8D...Rotation speed control device. 41A, 41B, 41C, 41D... Pump driving terms 2 mouth (phantom Z3riJ Taku 4 f Fig. 2 Poka (ga) viscous 7 Fig. 0 5Q
100 output ζ2ノ

Claims (1)

【特許請求の範囲】 1、炉心に冷却材を送給する複数台の冷却材循環ポンプ
と、前記冷却材が通される複数の熱交換器とを同一容器
内に備え、前記冷却材循環ポンプの駆動モータは連続回
転数制御装置を備えた原子炉において、前記複数台の冷
却材循環ポンプの部分台数を定速回転ポンプとしたこと
を特徴とした原子炉冷却材流量制御装置。 2、特許請求の範囲の第1項において、前記定速回転ポ
ンプの駆動モータは、定速段階を回転数の異なる段階的
複数の定速に切換自在な切換制御装置を備えることを特
徴とした原子炉冷却材流量制御装置。 3、特許請求の範囲の第2項において、前記切換制御装
置は駆動モータの極数変換切替制御装置であることを特
徴とした原子炉冷却材流量制御装置。
[Claims] 1. A plurality of coolant circulation pumps that feed coolant to the reactor core and a plurality of heat exchangers through which the coolant passes are provided in the same container, and the coolant circulation pump A nuclear reactor coolant flow rate control device, wherein the drive motor is a nuclear reactor equipped with a continuous rotation speed control device, wherein a portion of the plurality of coolant circulation pumps are constant speed rotation pumps. 2. In claim 1, the drive motor of the constant speed rotary pump is characterized by being equipped with a switching control device that can freely switch the constant speed stage to a plurality of constant speeds with different rotational speeds. Reactor coolant flow control device. 3. A nuclear reactor coolant flow rate control device according to claim 2, wherein the switching control device is a pole number conversion switching control device for a drive motor.
JP61010166A 1986-01-22 1986-01-22 Flow controller for coolant of nuclear reactor Pending JPS62169084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010166A JPS62169084A (en) 1986-01-22 1986-01-22 Flow controller for coolant of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010166A JPS62169084A (en) 1986-01-22 1986-01-22 Flow controller for coolant of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS62169084A true JPS62169084A (en) 1987-07-25

Family

ID=11742695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010166A Pending JPS62169084A (en) 1986-01-22 1986-01-22 Flow controller for coolant of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS62169084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025828A (en) * 2012-07-27 2014-02-06 Ebara Corp Emergency cooling pump system
JP2016164579A (en) * 2016-06-14 2016-09-08 株式会社荏原製作所 Emergency cooling pump system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025828A (en) * 2012-07-27 2014-02-06 Ebara Corp Emergency cooling pump system
JP2016164579A (en) * 2016-06-14 2016-09-08 株式会社荏原製作所 Emergency cooling pump system

Similar Documents

Publication Publication Date Title
CN101535652B (en) Reversible hydroelectric device
CN107100853A (en) A kind of auxiliary power system for two-shipper backheat
JPS62169084A (en) Flow controller for coolant of nuclear reactor
CN111550415B (en) Driving system and driving control method of steam turbine-motor driven water feeding pump
CN106655687A (en) Brushless double-fed motor super-synchronization speed control system and motor field orientation vector control method and motor direct torque control method for brushless double-fed motor super-synchronization speed control system
EP0298164A1 (en) Generating heat and electricity
US5179336A (en) Method for decreasing the speed of an alternating current motor
CN206472014U (en) The supersynchronous governing system of brushless dual-feed motor
JPS5886490A (en) Flow rate control device
US2179283A (en) Regulating system for generator driving engines
US4045716A (en) Magnetic field systems employing a superconducting d.c. field coil
JPH08240301A (en) Feedwater controller for drum type boiler
US7834577B2 (en) System and method for starting a wound rotor motor
Tanaka et al. Driving system incorporating vector control inverter for large-scale paper machine
JP2829049B2 (en) Operating method of internal pump device
JPS6287895A (en) Core flow controller
JPS60204273A (en) Drive device of nuclear reactor containing nuclear reactor cooling material recirculating pump
JPS60171488A (en) Power supply device for driving internal pump
JP2654208B2 (en) Electromagnetic pump
JPH01314998A (en) Apparatus and method for controlling output of nuclear reactor
JPS60204241A (en) Coolant supplying device of rotary electric machine
JPS6055879A (en) Secondary side winding slip controlling method of wound-rotor type generator motor
CN109747802A (en) A kind of optimal control method under propulsion control system zero speed
CN116104589A (en) Speed regulation method of gas-electric double-drive system
JPS595606A (en) Motor controller for cooler of stationary induction apparatus