JPS602094A - Field controller of shaft generating motor - Google Patents

Field controller of shaft generating motor

Info

Publication number
JPS602094A
JPS602094A JP58107536A JP10753683A JPS602094A JP S602094 A JPS602094 A JP S602094A JP 58107536 A JP58107536 A JP 58107536A JP 10753683 A JP10753683 A JP 10753683A JP S602094 A JPS602094 A JP S602094A
Authority
JP
Japan
Prior art keywords
magnetic flux
synchronous machine
induced voltage
rotational speed
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58107536A
Other languages
Japanese (ja)
Inventor
Takeichirou Momii
籾井 丈一郎
Yoichiro Nishiyama
西山 洋一郎
Norihiro Arai
荒井 範弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58107536A priority Critical patent/JPS602094A/en
Publication of JPS602094A publication Critical patent/JPS602094A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To enable to operate the prescribed torque operation in a low speed range and at the constant output in a high speed range by controlling as an object to be selected higher one of the internal induced voltage and an air gap magnetic flux. CONSTITUTION:A terminal voltage V and an armature current Ia are detected, the inner induced voltage E is calculated by an inner induced voltage calculator 21, an air gap magnetic flux phi is calculated by an air gap magnetic flux calculator 22, and since the air gap magnetic flux phi is larger than the inner induced voltage E when the rotating speed of a synchronizer 3 in a high vlaue selector 23, the phi is detected, while the voltage E is reversely higher in the range that the rotating speed is high, and the E is detected. A field control thyristor 32 is controlled so that the deviation between the detected value and the set value from the magnetic flux setter 25 is set to zero.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、軸に結合された同期機でなる軸発電電動機
が広い回転速度範囲で運転するときの界磁電流を制御す
る界磁制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a field control device that controls field current when a shaft generator motor, which is a synchronous machine connected to a shaft, operates in a wide rotational speed range.

〔従来技術とその問題点〕[Prior art and its problems]

軸に同期機を結合し、この同期機が発電機あるいは電動
機として広い回転速度範囲を運転するとき、従来はこの
同期機の内部誘起電圧が一定になるように界磁電流を制
御している。すなわち自動電圧調整器としての機能を有
するのみであった。
Conventionally, when a synchronous machine is connected to a shaft and operated as a generator or an electric motor over a wide rotational speed range, the field current is controlled so that the internal induced voltage of the synchronous machine is constant. In other words, it only had the function of an automatic voltage regulator.

内部誘起電圧をE1回転速度なN、電機子と界磁の間の
相互インダクタンスをM、界磁′6流をIf。
The internal induced voltage is E1, the rotational speed is N, the mutual inductance between the armature and the field is M, and the field '6 current is If.

比例定数をKとすると(1)式で示す関係が侮られる。If the proportionality constant is K, the relationship shown in equation (1) will be underestimated.

B=KMN If・・・・・・・・・・・・・・・・・
・・・・・・・・・・(1)発電機として運転して℃・
るときに、上述のように内部誘起電圧Eが一定になるよ
うにすると、回転速度が低いときすなわちNが小さいと
きは(1)式からあきらかなように昇it流1fを太き
くしなければならない、。一般シて界磁電流はサイリス
タで制御されることが多いのであるが、上述のように低
い回転速度になるにつれて界磁電流Ifは増大し、サイ
リスタで制御できる範囲を逸脱するような不都合を生じ
るし、サイリスタの容量を大ぎくすればコストが上昇す
るだけでなく、装置の稼動率が悪くなるという欠点があ
る。
B=KMN If・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(1) Operating as a generator to reduce temperature to ℃・
When the internal induced voltage E is kept constant as described above, when the rotational speed is low, that is, when N is small, the rising IT current 1f must be increased as is clear from equation (1). ,. Generally, the field current is often controlled by a thyristor, but as mentioned above, the field current If increases as the rotation speed decreases, causing problems such as going outside the range that can be controlled by the thyristor. However, increasing the capacity of the thyristor not only increases cost but also reduces the operating rate of the device.

また電動機として運転するときは、発電機の場合と同じ
ようKEを一定とするため、定出力制御は可能であるが
定トルク制御はできないから、所定のトルクで運転でき
ないという欠点がある。
Further, when operating as an electric motor, KE is kept constant as in the case of a generator, so constant output control is possible, but constant torque control is not possible, so there is a drawback that operation cannot be performed at a predetermined torque.

〔発明の目的〕[Purpose of the invention]

この発明は同期機でなる軸発電電動機が発電機として運
転の場合に回転速度が低くなっても昇磁電流が増大せず
、電動機として運転の場合は低い回転速度領域では所定
トルクで運転できるし、高い回転速度領域では定出力運
転となる軸発電電動機の界磁制御装置を提供することを
目的とする。
In this invention, when the shaft generator-motor consisting of a synchronous machine is operated as a generator, the magnetizing current does not increase even if the rotation speed becomes low, and when it is operated as an electric motor, it can be operated with a predetermined torque in the low rotation speed region. An object of the present invention is to provide a field control device for a shaft generator motor that operates at a constant output in a high rotational speed region.

〔発明の要点〕[Key points of the invention]

この発明は、同期機の内部誘起電圧と空げき磁束を演算
によりめ、回転速度が低い領域では空げき磁束が一定に
なるように界磁電流を制御して発電機としては界磁電流
が過大になるのを防ぎ、’市3fJ1機としては所定ト
ルクでの運転を可能にしようとする。また回転速度が高
い領域では内部誘起電圧が一定になるように界磁電流を
制御して定出力運転をしようとするものである。
This invention calculates the internal induced voltage and air gap magnetic flux of a synchronous machine, and controls the field current so that the air gap magnetic flux is constant in a region where the rotation speed is low. The aim is to prevent this from happening and to enable operation at a specified torque for the Ichi 3FJ aircraft. Furthermore, in a region where the rotational speed is high, the field current is controlled so that the internal induced voltage is constant to achieve constant output operation.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示す回路図であって、船のプ
ロペラ軸に同期機が結合されている場合である。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which a synchronous machine is connected to a propeller shaft of a ship.

第1図において、1はプロペラであって、このプロペラ
1と、これを駆動するための船の主機関2とを結合して
いるプロペラ軸に同期機3も結合されている。この同期
機3、同期機側変換器4、系統側変換器5、両変換器の
間にある直流中間回路に挿入されている直流リアクトル
6と系統側変換器5の交流側に設けられている交流リア
クトル7とで軸発′f!L電動装置を形成しており、こ
の軸発電電動装置は遮断器8を介して船内電力系統9に
接続できる。
In FIG. 1, 1 is a propeller, and a synchronous machine 3 is also connected to a propeller shaft that connects the propeller 1 and a main engine 2 of a ship for driving the propeller. This synchronous machine 3, the synchronous machine side converter 4, the system side converter 5, the DC reactor 6 inserted in the DC intermediate circuit between both converters, and the AC side of the system side converter 5 are provided. Axial power is generated with AC reactor 7 'f! This shaft generator-motor device can be connected to an inboard power system 9 via a circuit breaker 8 .

主機関2に余剰トルクがあるとき、同期機3は発電機と
なり、その発生電力は整流器として動作する同期機側変
換器4と、インバータとして動作する系統側変換器6に
より定電圧定周波数の交流電力に変換され、船内電力系
統9から負荷へ給電される。
When there is surplus torque in the main engine 2, the synchronous machine 3 becomes a generator, and the generated power is generated by a constant voltage, constant frequency alternating current through the synchronous machine side converter 4, which operates as a rectifier, and the grid side converter 6, which operates as an inverter. It is converted into electric power and supplied to the load from the onboard power system 9.

同期機3が電動機としての運転をするときは、船内電力
系統9に接続されていて、図示していない船内発電機が
電力供給源となり、この電力を整流器として動作する系
統側変換器5と、インノクータとして動作する同期機側
変換器4により交流電力に変換して同期機3に供給され
るようになっている。
When the synchronous machine 3 operates as an electric motor, an onboard generator (not shown) that is connected to the onboard power system 9 serves as a power supply source, and a system side converter 5 that operates as a rectifier using this power, The synchronous machine side converter 4, which operates as an innocoutor, converts the AC power into alternating current power, which is then supplied to the synchronous machine 3.

同期機3が上述のように発電機あるいは電動機として運
転量るときK、同期機界磁巻線35に流れる界磁電流工
fの制御が適切でないと、前述したように所定のトルク
で運転できないとか、界磁電流が異常に増大するなどの
不都合を生じる。
When the synchronous machine 3 operates as a generator or an electric motor as described above, unless the control of the field current F flowing through the synchronous machine field winding 35 is appropriate, it will not be possible to operate with the predetermined torque as described above. This may cause problems such as an abnormal increase in field current.

本発明に基づき、これらの不都合を解消する手段を以下
に詳述する。
Means for solving these disadvantages based on the present invention will be described in detail below.

第1図に2いて計器用変圧器11が同期機3の端子電圧
を検出し、この端子電圧は整流回路12により直流の信
号に変換される。また同期機3の電機子電流は分流器1
3により検出され、絶縁回路14により絶縁される。前
記整流回路12から出力する端子電圧を■、絶縁回路1
4から出力する電機子電流をIaとし、同期機3の内部
インピーダンスをZとすれば、この同期機3が電動機と
して運転しているときの内部誘起電圧EはP)式で示さ
れる。
In FIG. 1, an instrument transformer 11 detects the terminal voltage of the synchronous machine 3, and this terminal voltage is converted into a DC signal by a rectifier circuit 12. Also, the armature current of synchronous machine 3 is transferred to shunt 1
3 and isolated by the isolation circuit 14. The terminal voltage output from the rectifier circuit 12 is
If the armature current output from the synchronous machine 3 is Ia, and the internal impedance of the synchronous machine 3 is Z, then the internal induced voltage E when the synchronous machine 3 is operating as a motor is expressed by equation P).

h = V −iaZ・・・・・・・・・・・・・・・
・・・・・・(2J内部誘起電圧演算回路21は端子電
圧Vと電機子電流Iaを人力して(2)式に示す演算を
する減算器を含んでいる。なお同期機3が発電機として
運転するときは電機子電流の方向は進向きになるから、
Iaの極性も反転することは当然である。
h = V −iaZ・・・・・・・・・・・・・・・
(The 2J internal induced voltage calculation circuit 21 includes a subtracter that manually calculates the terminal voltage V and armature current Ia as shown in equation (2). Note that the synchronous machine 3 is a generator. When operating as
Naturally, the polarity of Ia is also reversed.

空げき磁束Φは゛上述の内部誘起電圧Eを積分して得ら
れるから、積分器でなる空げき磁束演算回路22に内部
誘起電圧Eを人力して空げき磁束Φを得る。
Since the air gap Φ is obtained by integrating the above-mentioned internal induced voltage E, the air gap magnetic flux Φ is obtained by manually inputting the internal induced voltage E to the air gap magnetic flux calculation circuit 22 which is an integrator.

上述のようにして得られる内部誘起電圧Eと空げき磁束
Φとは高値選択回路23に人力されるのであるが、この
高値選択回路23はダイオードで構成されている選択回
路であって、人力される内部誘起電圧Eと空げき磁束Φ
のうち高い信号電圧の方が検出値として選択され、次段
へ向って出力される。同期機30回転速度が低いときは
空げき磁束Φの方が内部誘起電圧Eよりも大であるから
、Φが検出されるが、回転速度が高い領域では、逆に内
部誘起電圧Eの方が大となるので、このEが検出値とな
る。
The internal induced voltage E and the free magnetic flux Φ obtained as described above are manually input to the high value selection circuit 23, but this high value selection circuit 23 is a selection circuit composed of diodes, and is not input manually. The internal induced voltage E and the free magnetic flux Φ
The higher signal voltage is selected as the detected value and output to the next stage. When the rotational speed of the synchronous machine 30 is low, the air gap magnetic flux Φ is larger than the internal induced voltage E, so Φ is detected, but in the region where the rotational speed is high, on the contrary, the internal induced voltage E is larger. Therefore, this E becomes the detected value.

磁束電流調節回路24は比例積分Am器でなっており、
上記篇値選択回路23からの検出値と、磁束設定器25
からの設定値との偏差を零にするような値を出力し、そ
の値が点弧角調整器26にし 入力季て、この入力に相当する点弧信号を界磁制御サイ
リスタ32に与える。この界磁制御サイリスタ32によ
って界磁電源31からの電流は制御され、回転トランス
形励磁機33を経て整流器34により整流された界磁電
流Ifが同期機界磁巻線35に流れるのである。
The magnetic flux current adjustment circuit 24 is a proportional-integral Am unit,
The detected value from the above value selection circuit 23 and the magnetic flux setting device 25
A value that makes the deviation from the set value zero is output, that value is input to the firing angle regulator 26, and a firing signal corresponding to this input is given to the field control thyristor 32. The current from the field power source 31 is controlled by the field control thyristor 32, and the field current If, which is rectified by the rectifier 34 via the rotating transformer type exciter 33, flows into the synchronous machine field winding 35.

上述の制御をする場会に、内部誘起電圧Eと空げき磁束
Φの変化をあられしたものが、第2図に示す電圧磁束特
性図である。
The voltage-magnetic flux characteristic diagram shown in FIG. 2 shows changes in the internal induced voltage E and the free magnetic flux Φ in the case of the above-mentioned control.

第2図の横軸は同期機30回転速度Nであり、縦軸は内
部誘起電圧Eと空げき磁束Φを示して〜・る。図中に実
線で示す折線OABか内部d起電圧Eの変化をあられし
、1点鎖線で示す折線CADが空げき磁束Φの変化をあ
られしている。
The horizontal axis in FIG. 2 is the rotational speed N of the synchronous machine 30, and the vertical axis shows the internal induced voltage E and the free magnetic flux Φ. The broken line OAB shown as a solid line in the figure shows the change in the internal d electromotive force E, and the broken line CAD shown as a one-dot chain line shows the change in the air gap Φ.

同期機3の電機子と界磁の間の相互インダクタンスがM
、界磁電流がIfであるから、比例定数なkとすると空
げき磁束Φは(3)式で示される。
The mutual inductance between the armature of synchronous machine 3 and the field is M
, the field current is If, and if k is a proportional constant, the gap magnetic flux Φ is expressed by equation (3).

Φ= k M I(・・・・・・・・・・・・・・・・
・・・・・・・・・・・(3)一方内部銹起電圧Eは(
1)式に示されるように、回転速度NK比例して増加す
るので、回転速度Nが小なるときは内部誘起電圧Eも小
であり、(3)式で示される空げき磁束Φの方が太きい
から、とのΦが選択され、このΦの値が磁束設定器25
で設定する値になるよう制御される。すな−わち界(i
11電流If一定の制御となる。
Φ= k M I (・・・・・・・・・・・・・・・
・・・・・・・・・・・・(3) On the other hand, the internal rust electromotive voltage E is (
As shown in equation (1), it increases in proportion to the rotational speed NK, so when the rotational speed N is small, the internal induced voltage E is also small, and the gap magnetic flux Φ shown in equation (3) is Since it is thick, Φ is selected, and the value of this Φ is set by the magnetic flux setting device 25.
It is controlled to the value set in . Suna-wachi world (i
11 The current If is controlled to be constant.

内部誘起電圧Eは@転速度かN1以上になると空げき磁
束のよりも太となるから、N1以上の回転速度ではこの
Eが選択され、このEを一定にするように制御をする。
Since the internal induced voltage E becomes thicker than the gap magnetic flux when the rotation speed is higher than N1, this E is selected at rotation speeds higher than N1, and control is performed to keep this E constant.

(1)式かられかるように、Eが一定で回転速度Nが上
昇すれば界磁電流I(は減少する。よって(3)式で示
される空げき磁束Φも減少することになる。すなわち回
転速度がN1よりも低い領域では定トルク特性が得られ
、N1以上の回転速度では定出力特性が得られる。
As can be seen from equation (1), if E is constant and rotational speed N increases, field current I( decreases. Therefore, the free magnetic flux Φ shown by equation (3) also decreases. That is, A constant torque characteristic is obtained in a region where the rotational speed is lower than N1, and a constant output characteristic is obtained in a rotational speed of N1 or higher.

磁束設定器25の設定値を変えれば、空げき磁束Φと内
部誘起電圧Eの大小関係か入れかわる回転速度を変化さ
せることができる。
By changing the set value of the magnetic flux setting device 25, the rotational speed at which the magnitude relationship between the free magnetic flux Φ and the internal induced voltage E can be changed can be changed.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、軸発電t#l様の内部誘起電圧と空
げき磁束のうち、高い値の方を制御対象にして、この制
御対象が一定になるよう咋界磁−流をi′1ilJ御す
るので、回転速度が低い領域にお〜・て発電機としては
界磁電流のつき上げがなく、電動機としては所定トルク
での運転ができるし、回転速度が高い領域において定出
力運転となる力・ら、電涼容iの増大を防ぐことができ
る。
According to this invention, the higher value of the internal induced voltage and the air gap magnetic flux of the shaft power generation t#l is set as the control target, and the magnetic field current is adjusted so that the control target becomes constant. Therefore, in the low rotational speed range, there is no build-up of field current as a generator, and the motor can operate at a specified torque, and in the high rotational speed range, it operates at a constant output. It is possible to prevent an increase in the electric current capacity i.

さらに上述の制御対象の応択は、筒(・値のものを自動
的に選択するようなされて(・るので回転速度に関係な
く連続的に制御することができるし、大小関係が入れか
わる回転速度を自由に設定できる。
Furthermore, the selection of the control object mentioned above is such that the cylinder (・ value) is automatically selected (・), so it can be controlled continuously regardless of the rotation speed, and rotations where the size relationship changes You can freely set the speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す回路図であり、第2図は
本発明における内部誘起電圧と空げき磁束の変化を示す
特性図である。 1・・・・・・プロペラ、2・・・・・・主機関、3・
・・・・・同期機、4・・・・・・同期機側変換器、5
・・・・・・系統側変換器、9・・・・・・船内電力系
統、11・・・・・・計器用変圧器、12・・・・・・
整流回路、13・・・・・・分流器、14・・・・・・
絶縁回路、21・・・・・・内部誘起電圧演算回路、2
2・・・・・・空げき磁束演算回路、23・・・・・・
高値選択回路、24・・・・・・磁束電流調節回路、2
5・パ・・・・磁束設定器、26・・・・・・点弧角調
整器、31・・・・・・界磁電源、32・・・・・・界
磁制御サイリスタ、33・・・・・・回転トランス形励
磁機、34・・・・・・整流器、35・・・・・・同期
機昇磁巻線。 Ia・・・・・・電機子電流、If・・・・・・界磁電
流、E・・・・・・内部誘起電圧、■・・・・・・端子
電圧、Φ・・・・・・空げき磁束。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing changes in internal induced voltage and air gap magnetic flux in the present invention. 1...Propeller, 2...Main engine, 3.
...Synchronous machine, 4...Synchronous machine side converter, 5
...... Grid side converter, 9... Onboard power system, 11... Instrument transformer, 12...
Rectifier circuit, 13... shunt, 14...
Insulation circuit, 21... Internal induced voltage calculation circuit, 2
2... Air gap magnetic flux calculation circuit, 23...
High value selection circuit, 24...Magnetic flux current adjustment circuit, 2
5.Pa... Magnetic flux setting device, 26... Firing angle adjuster, 31... Field power supply, 32... Field control thyristor, 33... ...Rotating transformer type exciter, 34... Rectifier, 35... Synchronous machine excitation winding. Ia... Armature current, If... Field current, E... Internal induced voltage, ■... Terminal voltage, Φ...... Vacant magnetic flux.

Claims (1)

【特許請求の範囲】[Claims] 回転数が変化する軸に同期機を結合し、該軸により同期
機を駆動して可変電圧可変周波数の交流電力を発生させ
、または該同期機に可変電圧可変周波数の交流電力を供
給して前記軸を所望の回転速度で駆動できるようなされ
た軸発電電動機において、前記同期機の内部誘起電圧を
める手段と、同じく同期機の空げき磁束をめる手段と、
尚該同期機の回転速度が低い領域では前記の空げき磁束
を選択し、回転速度が高い領域では前記の内部誘起電圧
を選択する信号選択手段と、該信号選択手段で選択され
る信号が一定になるように前記同期機の界磁電流を制御
する手段とを備えてなることを特徴とする軸発電電動機
の昇磁制御装置。
A synchronous machine is connected to a shaft whose rotational speed changes, and the synchronous machine is driven by the shaft to generate variable voltage variable frequency AC power, or the variable voltage variable frequency AC power is supplied to the synchronous machine. In a shaft generator-motor capable of driving a shaft at a desired rotational speed, means for reducing the internal induced voltage of the synchronous machine, and means for reducing the free magnetic flux of the synchronous machine;
It should be noted that there is a signal selection means for selecting the above-mentioned free magnetic flux in a region where the rotational speed of the synchronous machine is low, and selecting the above-mentioned internal induced voltage in a region where the rotational speed is high, and a signal selected by the signal selection means is constant. 1. A magnetization control device for a shaft generator motor, comprising means for controlling a field current of the synchronous machine so that
JP58107536A 1983-06-15 1983-06-15 Field controller of shaft generating motor Pending JPS602094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107536A JPS602094A (en) 1983-06-15 1983-06-15 Field controller of shaft generating motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107536A JPS602094A (en) 1983-06-15 1983-06-15 Field controller of shaft generating motor

Publications (1)

Publication Number Publication Date
JPS602094A true JPS602094A (en) 1985-01-08

Family

ID=14461674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107536A Pending JPS602094A (en) 1983-06-15 1983-06-15 Field controller of shaft generating motor

Country Status (1)

Country Link
JP (1) JPS602094A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318991A (en) * 1986-07-10 1988-01-26 Nishishiba Electric Co Ltd Operation of shaft drive generator
JPH03212193A (en) * 1990-01-16 1991-09-17 Fuji Electric Co Ltd Control method of ac motor
JPH04169015A (en) * 1990-12-20 1992-06-17 Teikoku Tsushin Kogyo Co Ltd Key top for push button switch
JPH04332413A (en) * 1990-07-26 1992-11-19 Mitsubishi Electric Corp Self-illuminated type keyboard switch
JPH0515254U (en) * 1991-08-01 1993-02-26 日本航空電子工業株式会社 Panel switch with key sheet with key top
JPH06267369A (en) * 1993-03-16 1994-09-22 Teikoku Tsushin Kogyo Co Ltd Key top panel of pushbutton switch

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318991A (en) * 1986-07-10 1988-01-26 Nishishiba Electric Co Ltd Operation of shaft drive generator
JPH03212193A (en) * 1990-01-16 1991-09-17 Fuji Electric Co Ltd Control method of ac motor
JPH04332413A (en) * 1990-07-26 1992-11-19 Mitsubishi Electric Corp Self-illuminated type keyboard switch
JPH04169015A (en) * 1990-12-20 1992-06-17 Teikoku Tsushin Kogyo Co Ltd Key top for push button switch
JPH0515254U (en) * 1991-08-01 1993-02-26 日本航空電子工業株式会社 Panel switch with key sheet with key top
JPH06267369A (en) * 1993-03-16 1994-09-22 Teikoku Tsushin Kogyo Co Ltd Key top panel of pushbutton switch

Similar Documents

Publication Publication Date Title
KR101474016B1 (en) Power converters
US6188591B1 (en) System for supplying electromotive consumers with electric energy
US7554302B2 (en) Slip-controlled, wound-rotor induction machine for wind turbine and other applications
US5029263A (en) Electric start control of a VSCF system
US4841216A (en) Engine start type VSCF generating system
US10608565B2 (en) Systems and methods for rotating a crankshaft to start an engine
JPH03502398A (en) Variable speed constant frequency starter with selectable input power limit
JP2003143899A (en) Method and apparatus for accelerating turbine generator
US3745366A (en) Dual source auxiliary power supply
JP2017539198A (en) Power generation system
JP2009044836A (en) Power supply system for shipping
US5111376A (en) Voltage balancing circuit
GB2206751A (en) Starting a variable speed constant frequency generating system
JPS602094A (en) Field controller of shaft generating motor
EP1638199A1 (en) Motor drive system
WO2005031939A1 (en) Motor drive system
US2357086A (en) Electric ship propulsion system
JP2019165619A (en) Independent speed variable frequency based electrified propulsion system architecture
US2298134A (en) Ship propulsion system
JP2000059915A (en) Control system for electric torque converter powered by internal combustion engine
JPS62207105A (en) Controller for diesel electric rolling stock
JPS6055879A (en) Secondary side winding slip controlling method of wound-rotor type generator motor
SU614511A1 (en) Electric drive having induction motor with phase-wound rotor
JPH0715961A (en) Frequency converter
US1461553A (en) Electric ship propulsion