JPS6216856B2 - - Google Patents

Info

Publication number
JPS6216856B2
JPS6216856B2 JP54016128A JP1612879A JPS6216856B2 JP S6216856 B2 JPS6216856 B2 JP S6216856B2 JP 54016128 A JP54016128 A JP 54016128A JP 1612879 A JP1612879 A JP 1612879A JP S6216856 B2 JPS6216856 B2 JP S6216856B2
Authority
JP
Japan
Prior art keywords
skid
skid control
control
slip rate
wheel speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54016128A
Other languages
Japanese (ja)
Other versions
JPS55110648A (en
Inventor
Junichi Takahashi
Takanori Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1612879A priority Critical patent/JPS55110648A/en
Priority to US06/118,909 priority patent/US4321677A/en
Priority to GB8004596A priority patent/GB2042661B/en
Priority to DE19803005572 priority patent/DE3005572A1/en
Publication of JPS55110648A publication Critical patent/JPS55110648A/en
Publication of JPS6216856B2 publication Critical patent/JPS6216856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1763Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to the coefficient of friction between the wheels and the ground surface
    • B60T8/17636Microprocessor-based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S188/00Brakes
    • Y10S188/01Panic braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Description

【発明の詳細な説明】 本発明は、スキツド制御装置に係り、特にマイ
クロコンピユータを用いてスキツド制御を行なう
に好適なマイクロコンピユータ・スキツド制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a skid control device, and more particularly to a microcomputer skid control device suitable for performing skid control using a microcomputer.

一般に、自動車は、路面とタイヤの摩擦によつ
て自由に方向を変えることができるものである。
この摩擦係数がつり合つている場合には自動車は
正常に走行する。しかし、タイヤの持つている粘
着力を越えた力が自動車に働くと、タイヤはすべ
つて自動車は正常な走行が不能になり、特異な運
動をする状態となる。この状態がスキツドであ
る。このスキツドには種々の諸要素が影響をおよ
ぼしている。まず車速であるが、車速が高いと、
実舵角の小さいところでスピンが発生し、スピン
するところではヨー角速度と、後輪横すべり角が
急増している。また、路面の摩擦係数も影響を与
える。例えば、コンクリート路面(摩擦係数
0.8)と濡れた路面(摩擦係数0.4)とを比較する
と、摩擦係数の低い路面すなわち濡れた路面ほど
小実舵面でスピンしている。
Generally, an automobile can freely change direction due to friction between the road surface and the tires.
If these friction coefficients are balanced, the car will run normally. However, if a force that exceeds the adhesive strength of the tires is applied to the car, the tires will slip and the car will no longer be able to drive normally, resulting in abnormal motion. This state is called skid. Various factors influence this scale. First of all, regarding vehicle speed, if the vehicle speed is high,
Spin occurs when the actual steering angle is small, and the yaw angular velocity and rear wheel sideslip angle rapidly increase at the point where the actual steering angle is small. The friction coefficient of the road surface also has an effect. For example, concrete road surface (friction coefficient
0.8) and a wet road surface (friction coefficient 0.4), the lower the friction coefficient (i.e. the wetter the road surface), the more the vehicle spins on the small solid control surface.

そこで、従来のスキツド制御の方法として、車
輪速の変化からスリツプ率を計算し、該計算値を
特定値と比較して条件が成立するとブレーキ油圧
制御信号を出すという方法が試みられている。し
かしながら、この方法によつたのでは、1つのス
キツド制御に対しては、1つのスリツプ率で行な
つており、幅広く変化するスリツプ率に対応した
制御をすることができず、しかも、スキツド制御
は、本来信号処理の高速性が要求されるにも拘ら
ず、マイクロコンピユータを数値計算のために使
用しなければならず、ましてや、マイクロコンピ
ユータによつたのでは概算値しか得られない反面
プログラムが長くなり、計算による時間遅れが生
ずるといつた欠点を有していた。スキツド制御を
示す公知例としては例えば特開昭52−44389号公
報がある。
Therefore, as a conventional skid control method, a method has been attempted in which a slip rate is calculated from changes in wheel speed, the calculated value is compared with a specific value, and when a condition is satisfied, a brake hydraulic pressure control signal is issued. However, with this method, one slip rate is used for one skid control, and it is not possible to perform control corresponding to widely varying slip ratios. Although high-speed signal processing is originally required, a microcomputer must be used for numerical calculations, and while using a microcomputer can only obtain approximate values, the program becomes long. This method had the disadvantage of causing a time delay due to calculation. A known example of skid control is, for example, Japanese Patent Laid-Open No. 52-44389.

本発明の目的は、急制動によるスキツド検出時
に、最適な制動が行なわれるようにスキツドを制
御することのできるマイクロコンピユータ・スキ
ツド制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a microcomputer skid control device that can control skids so that optimal braking is performed when skids are detected due to sudden braking.

本発明は、車輪の速度を検出する車輪速センサ
と、車輪速センサの検出出力からスキツド状態か
否かを判定するスキツド状態判定手段と、スキツ
ド状態判定時に車輪速センサの検出出力を基にス
リツプ率を算出するスリツプ率算出手段と、路面
と車輪の摩擦係数が最大となるスキツド制御パタ
ーン群をスリツプ率に対応づけて格納するスキツ
ド制御パターン記憶手段と、スリツプ率算出手段
により算出されたスリツプ率に対応したスキツド
制御パターンを前記スキツド制御パターン群の中
から選択し、該選択されたスキツド制御パターン
に従つたスキツド制御信号を出力するスキツド制
御信号発生手段と、スキツド制御信号によりブレ
ーキ油圧を制御するブレーキ油圧制御手段と、を
含むマイクロコンピユータ・スキツド制御装置を
構成したものである。
The present invention provides a wheel speed sensor that detects the speed of a wheel, a skid condition determining means that determines whether or not a skid condition is present based on the detection output of the wheel speed sensor, and a skid condition determination means that determines whether or not a skid condition is present based on the detection output of the wheel speed sensor when determining the skid condition. a slip rate calculation means for calculating the slip rate; a skid control pattern storage means for storing a group of skid control patterns that maximize the coefficient of friction between the road surface and the wheels in association with the slip rate; and a slip rate calculated by the slip rate calculation means. skid control signal generating means for selecting a skid control pattern corresponding to the skid control pattern from the skid control pattern group and outputting a skid control signal according to the selected skid control pattern; and controlling brake hydraulic pressure using the skid control signal. The brake hydraulic pressure control means constitutes a microcomputer skid control device.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図には、本発明に係るマイクロコンピユー
タ・スキツド制御装置の一実施例が示されてい
る。
FIG. 1 shows an embodiment of a microcomputer skid control device according to the present invention.

図において、1はマイクロ・プロセスイング・
ユニツトMPUであり、2はリード・オンリー・
メモリROMであり、3はランダム・アクセス・
メモリRAMであり、4は入出力ポートI/Oで
あり、5はバス・ラインであり、6はアクチユエ
ータであり、7はブレーキ油圧制御装置であり、
8は警報回路であり、9は車輪速センサである。
ROM2は路面と車輪の摩擦係数が最大となるス
キツド制御パターン群をスリツプ率に対応づけて
格納するスキツド制御パターン記憶手段を構成
し、MPU1、RAM3、1/04は車輪速センサ
9の検出出力からスキツド状態か否かを判定する
スキツド状態判定手段と、スキツド状態判定時に
車輪速センサ9の検出出力を基にスリツプ率を算
出するスリツプ率算出手段と、スリツプ率算出手
段により算出されたスリツプ率に対応したスキツ
ド制御パターンを前記スキツド制御パターン群の
中から選択し、該選択されたスキツド制御パター
ンに従つたスキツド制御信号を出力するスキツド
制御信号発生手段を構成し、またアクチユエータ
6とブレーキ油圧制御装置7は、スキツド制御信
号によりブレーキ油圧を制御するブレーキ油圧制
御手段を構成するようになつている。第1図の構
成において、ROM2に書き込まれたプログラム
に従つてMPU1は命令を実行処理し、必要な信
号の入出力およびデータの一時記憶のため、前記
データをRAM3にストアするなどを行なう。
I/O部4には車輪速センサ9からの出力信号が
入力され、スキツド制御信号およびフエイル・セ
ーフなどの信号が出力される。
In the figure, 1 is micro processing
It is a unit MPU, and 2 is a read-only
Memory ROM, 3 is random access
4 is an input/output port I/O, 5 is a bus line, 6 is an actuator, 7 is a brake hydraulic control device,
8 is an alarm circuit, and 9 is a wheel speed sensor.
The ROM2 constitutes a skid control pattern storage means that stores skid control pattern groups that maximize the coefficient of friction between the road surface and the wheels in association with the slip ratio, and the MPU1, RAM3, and 1/04 store information from the detection output of the wheel speed sensor 9. A skid state determining means for determining whether or not a skid state exists; a slip rate calculating means for calculating a slip rate based on the detection output of the wheel speed sensor 9 when determining a skid state; The skid control signal generation means selects a corresponding skid control pattern from the skid control pattern group and outputs a skid control signal in accordance with the selected skid control pattern, and also comprises an actuator 6 and a brake hydraulic control device. Reference numeral 7 constitutes a brake hydraulic pressure control means for controlling the brake hydraulic pressure based on the skid control signal. In the configuration shown in FIG. 1, the MPU 1 executes instructions according to the program written in the ROM 2, and stores the data in the RAM 3 for input/output of necessary signals and temporary storage of data.
An output signal from a wheel speed sensor 9 is input to the I/O section 4, and signals such as skid control signals and fail-safe signals are output.

第2図には、スリツプ率Sの異なる路面におい
て急制動をかけた場合、車輪がロツク状態のまま
走行したときの車体速の減衰直線が示されてい
る。図において、スリツプ率S1は例えば路面が氷
またはそれに近い摩擦係数を持つ路面状態の上を
急制動をかけ車輪がロツクされたまま走行した際
の車体の減速状態を示したものである。また、ス
リツプ率S2,S3は例えばそれぞれ、ぬれたアスフ
アルト路面またはそれに近い摩擦係数を持つ路面
状態、かわいたコンクリート路面またはそれに近
い摩擦係数を持つ路面状態の上を急制動をかけ車
輪がロツクされたまま走行した際の車体の減速状
態を示したものである。図から解るように、かわ
いたコンクリート路面では比較的短かい距離で停
止するが、氷結路面ではかなりの距離を走行しな
ければ停止しない。これらの減衰直線は、ほぼ−
1.4Gm/sec2〜−1.7Gm/sec2(G:重力の加速
度)であることが実験的に求められている。
FIG. 2 shows the attenuation straight line of the vehicle speed when the vehicle runs with the wheels locked when sudden braking is applied on road surfaces with different slip ratios S. In the figure, the slip rate S1 indicates the deceleration state of the vehicle body when the vehicle is driven with the wheels locked after applying sudden braking on, for example, a road surface that is icy or has a coefficient of friction similar to ice. In addition, the slip ratios S 2 and S 3 are, for example, when sudden braking is applied on a wet asphalt road surface or a road surface with a coefficient of friction close to it, or on a dry concrete road surface or a road surface with a coefficient of friction close to that. This shows the state of deceleration of the vehicle when the vehicle is driven with the As you can see from the diagram, on a dry concrete road, the vehicle will stop after a relatively short distance, but on an icy road, the vehicle will have to travel a considerable distance before coming to a stop. These attenuation lines are approximately −
It has been experimentally determined that the acceleration is 1.4Gm/ sec2 to -1.7Gm/ sec2 (G: acceleration of gravity).

次に本実施例の作用について説明する。 Next, the operation of this embodiment will be explained.

まず、車輪速センサ9からは、一定の時間間隔
で車輪速が検出され、出力信号がI/Oポート4
を介してRAM3にストアされる。次の車輪速セ
ンサ9からの出力信号と比較しスキツドが生じて
いるか否かをROM2の記憶された値との比較に
よつてMPU1において判断する。車体の走行
中、急制動をかけた場合、その急制動前の車輪速
と急制動後ある一定の時間(データを取り込む際
のデータ間の時間)経過後に検出された車輪速と
比較し、あらかじめ実験的に求められている第2
図に示す如き車体の減衰直線のある一定の範囲内
に入る減衰直線を描く場合にスキツドとして検出
する。MPU1においてスキツドであることを検
出するとマイクロコンピユータのプログラムによ
つて異なるが、例えば、スキツド制御に対しスキ
ツド発生時の路面との関係を無視し常に一定の路
面上を走行しているものと仮定し、その仮想路面
に対する制御特性を最適な制御特性とし、最適な
代表制御特性によつて全て制御しようとする場
合、MPU1は最適代表特性に第3図に示す如く
車輪速を減衰制御するようブレーキ油圧制御装置
7を作動させる。また、スキツド発生後のスリツ
プ率の変化に無関係にスキツド発生の際のスリツ
プ率に対する制御特性に基づきスキツド制御しよ
うとする場合、常時取り込まれる車輪速の前後の
値によつてスリツプ率を計算し、ROM2にあら
かじめ記憶されているどの摩擦係数に対する車体
速の減衰特性直線にあたるものかを判定し第4図
に示す如くその減衰特性直線に基づいた制御を行
なうようにブレーキ油圧制御装置を作動させる。
さらに、常時取り込まれる車輪速によつて常時ス
キツドの検出及びスリツプ率の計算をし、この常
時計算されるスリツプ率ごとに対応したスキツド
制御を行なう場合、MPU1は、常時取り込まれ
る車輪速の前後の値によつてスリツプ率を常時計
算し、その計算されたスリツプ率が、ROM2に
記憶されている路面上のどの減衰直線にあたるも
のかを判定し、スキツド状態で車体のスリツプ率
Sを第2図に示される減衰直線と実際の検出車輪
速との関係から求め、求められたスリツプ率に基
づきI/Oポート4を介しアクチユエータ6を作
動させブレーキ油圧制御装置7を作動させて摩擦
係数が最大となるようにブレーキを制御する。例
えば第5図に示すように、3種の異なる路面上を
急制動をかけて車体が走行する場合には、急制動
をかけた時点でのスリツプ率がS2であれば、S2
対応した制御パターンでスキツドを制御する(破
線2のパターン)が、車体が停止する以前に摩擦
係数の異なる路面に出た場合は、制御信号を出す
時点時点で計算していたスリツプ率の変化から、
スリツプ率の変化したことを検出し、変化後のス
リツプ率、例えば本実施例ではS1,S3に対応した
制御パターンでスキツドを制御すれば最も効率の
よいスキツド制御が可能となる(破線1および3
のパターン)。このように、ぬれたアスフアルト
路面、氷結路面、かわいたコンクリート路面を通
過した場合のスキツド・コントロールをかけない
ままでブレーキをかけた場合(第5図実線)と、
スキツド・コントロールをかけた場合(第5図点
線)との差が明確にあらわれている。
First, the wheel speed sensor 9 detects the wheel speed at fixed time intervals, and outputs an output signal to the I/O port 4.
It is stored in RAM3 via . It is compared with the output signal from the next wheel speed sensor 9, and the MPU 1 determines whether or not a skid has occurred by comparing it with the value stored in the ROM 2. When sudden braking is applied while the vehicle is running, the wheel speed before the sudden braking is compared with the wheel speed detected after a certain period of time (the time between data acquisition) after the sudden braking. The second experimentally required
A skid is detected when a damping line of the vehicle body falls within a certain range as shown in the figure. When the MPU 1 detects a skid, it depends on the microcomputer program, but for example, for skid control, it is assumed that the vehicle is always traveling on a constant road surface, ignoring the relationship with the road surface when the skid occurs. , the control characteristics for the virtual road surface are set as the optimal control characteristics, and when all control is to be performed using the optimal representative control characteristics, the MPU 1 sets the brake hydraulic pressure so as to attenuate the wheel speed as shown in FIG. 3 based on the optimal representative characteristics. Activate the control device 7. Furthermore, when trying to perform skid control based on the control characteristics for the slip rate when a skid occurs, regardless of changes in the slip rate after the skid occurs, the slip rate is calculated based on the values before and after the wheel speed that are constantly taken in. It is determined which friction coefficient corresponds to the damping characteristic straight line of the vehicle speed stored in advance in the ROM 2, and the brake hydraulic control device is operated to perform control based on the damping characteristic straight line as shown in FIG.
Furthermore, when constantly detecting skids and calculating slip rates based on the constantly acquired wheel speeds, and performing skid control corresponding to each constantly calculated slip rate, the MPU 1 detects skids before and after the constantly acquired wheel speeds. The slip rate is constantly calculated based on the slip rate, and it is determined which damping straight line on the road surface stored in ROM2 corresponds to the calculated slip rate, and the slip rate S of the vehicle body in the skid condition is calculated as shown in Fig. Based on the relationship between the damping straight line shown in and the actual detected wheel speed, the actuator 6 is actuated via the I/O port 4 and the brake hydraulic control device 7 is actuated based on the obtained slip rate, so that the coefficient of friction is maximized. Control the brakes so that For example, as shown in Figure 5, when the vehicle runs on three different road surfaces with sudden braking, if the slip rate at the time of sudden braking is S 2 , it corresponds to S 2 . The skid is controlled using the control pattern (dashed line 2), but if the vehicle comes to a road surface with a different coefficient of friction before it comes to a stop, the skid will be controlled based on the change in the slip rate calculated at the time the control signal is issued.
The most efficient skid control is possible by detecting a change in the slip rate and controlling the skid using a control pattern corresponding to the changed slip rate, for example S 1 and S 3 in this embodiment (as shown by the broken line 1). and 3
pattern). In this way, when the brakes are applied without applying skid control when passing through a wet asphalt road surface, an icy road surface, or a dry concrete road surface (solid line in Figure 5),
The difference from when skid control is applied (dotted line in Figure 5) is clearly visible.

第6図には、本実施例のスキツド制御のフロー
図が示されている。すなわち、第6図は、メイ
ン・ルーチンの処理中にスキツド状態を検出した
場合、その時点でのスリツプ率を計算し、計算さ
れたスリツプ率に対応した処理ルーチンに移り、
制御が終了したときにメイン・ルーチンへ戻る状
態を示している。
FIG. 6 shows a flowchart of skid control in this embodiment. That is, in FIG. 6, when a skid state is detected during the processing of the main routine, the slip rate at that point is calculated, and the process moves to the processing routine corresponding to the calculated slip rate.
This shows the state in which the control returns to the main routine when control is completed.

図において、制御1は例えば車輪速パルスを取
り込む命令であり、制御2は例えば取り込んだ車
輪速パルス信号を指定したメモリにストアする命
令であり、制御k、……制御nは、それぞれ本制
御に必要な命令、例えばカウンタをインクリメン
トする命令であり、カウンタをデイクリメントす
る命令などである。メイン・ルーチン10、スリ
ツプ率判定ルーチン11、スリツプ率SがS1
S2,S3時の制御パターン・ルーチン12,13,
14の命令は、前記ROM2の中に記憶させてお
く。I/Oポート4から入力された車輪速センサ
9からの信号は、ROM2に記憶されていたメイ
ン・ルーチン10の命令に従つて処理され、処理
中に例えば一時ストアさせたいデータ・インクリ
メントさせたいデータ、あるいは、デイクリメン
トさせたいデータがあれば、RAM3のエリアを
使用する。メイン・ルーチン10の処理中にスキ
ツド状態を検出した場合は、スリツプ率判定ルー
チン11に移つてスリツプ率Sを判定する。スリ
ツプ率Sの値は、例えば本一実施例のようにS1
S2,S3に分け、S値が決定されれば、そのときの
S値に対応した制御パターン・ルーチン、例え
ば、S=S1のときは、S=S1時の制御パターン・
ルーチン12に制御が移され、ブレーキ油圧ゆる
め信号、ブレーキ油圧加圧信号の命令がMPU1
によつてI/Oポート4に出力され、前記命令に
よつてアクチユエータ6が駆動され、前記駆動信
号がブレーキ油圧制御装置7に送られ、ブレーキ
がゆるめられたり、再度かけられたりする。ま
た、スキツド・コントロール中、ある一定時間を
経過してもブレーキ油圧が加圧されないときは、
I/Oポート4から警報信号が出され、その結
果、警報回路8が動作し、スキツド・コントロー
ルを解除させ、普通のブレーキ動作状態に戻すよ
うにする。
In the figure, control 1 is, for example, an instruction to capture a wheel speed pulse signal, control 2 is, for example, an instruction to store the captured wheel speed pulse signal in a specified memory, and controls k, . Necessary instructions include, for example, an instruction to increment a counter and an instruction to decrement a counter. Main routine 10, slip rate determination routine 11, slip rate S is S 1 ,
Control pattern routine 12, 13 at S 2 , S 3 ,
14 instructions are stored in the ROM2. The signal from the wheel speed sensor 9 input from the I/O port 4 is processed according to the instructions of the main routine 10 stored in the ROM 2, and during processing, for example, data to be temporarily stored or data to be incremented is processed. , or if there is data to be decremented, use the RAM3 area. If a skid condition is detected during the processing of the main routine 10, the routine moves to a slip rate determination routine 11 to determine the slip rate S. The value of the slip rate S is, for example, S 1 , as in this embodiment,
S 2 and S 3 , and once the S value is determined, the control pattern routine corresponding to the S value at that time, for example, when S=S 1 , the control pattern and routine when S=S 1 .
Control is transferred to routine 12, and commands for the brake oil pressure release signal and brake oil pressure pressurization signal are sent to MPU1.
The command is output to the I/O port 4, the actuator 6 is driven by the command, and the drive signal is sent to the brake hydraulic control device 7 to loosen or reapply the brake. Also, during skid control, if the brake oil pressure is not pressurized even after a certain period of time,
An alarm signal is issued from I/O port 4, which activates alarm circuit 8, causing skid control to be released and normal braking operation to be resumed.

したがつて、本実施例によれば、急制動時には
車輪速信号の変化からスキツド状態を検出し、そ
の時点でのスリツプ率がS2と計算されれば、S2
対応した摩擦係数が最大となるような制御パター
ン(点線2)で制御し、制御の途中で今度はスリ
ツプ率がS1からS3と計算されれば、S1およびS3
対応した摩擦係数が最大となるような制御パター
ン(点線1,2)で制御することにより、スキツ
ド制御を最適制御パターンで制御することが可能
となる。
Therefore, according to this embodiment, if a skid condition is detected from a change in the wheel speed signal during sudden braking, and the slip rate at that point is calculated as S 2 , the friction coefficient corresponding to S 2 will be the maximum. If the control pattern (dotted line 2) is such that the slip rate is calculated from S 1 to S 3 during the control, then the friction coefficient corresponding to S 1 and S 3 will be maximized. By controlling with the control patterns (dotted lines 1 and 2), skid control can be controlled with the optimum control pattern.

以上説明したように、本発明によれば、急制動
によつて生じるスキツドを最適な制動となるよう
に制御することができる。
As explained above, according to the present invention, it is possible to control skids caused by sudden braking so as to achieve optimal braking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示すブロツク線
図、第2図は、スリツプ率の異なる路面において
急制動をかけた場合に車輪がロツクされた状態で
の車体速減衰を示す図、第3図は、スキツド時に
おける車体速と車輪速との関係を示す図、第4図
は、スリツプ率S2のときの制動特性を示す図、第
5図は、急制動をかけてから停止するまでにスリ
ツプ率の異なる路面上を走行した場合のスキツド
制御を示す図、第6図は、本実施例のスキツド制
御のフロー図である。 1…MPU、2…ROM、3…RAM、4…I/O
ポート、5…バスライン、6…アクチユエータ、
7…ブレーキ油圧制御装置、8…警報回路、9…
車輪速センサ。
FIG. 1 is a block diagram showing an embodiment of the present invention; FIG. 2 is a diagram showing vehicle speed attenuation when the wheels are locked when sudden braking is applied on road surfaces with different slip ratios; Figure 3 shows the relationship between vehicle speed and wheel speed during skidding, Figure 4 shows the braking characteristics when the slip rate is S 2 , and Figure 5 shows how the vehicle stops after applying sudden braking. FIG. 6 is a flowchart of the skid control according to the present embodiment. 1...MPU, 2...ROM, 3...RAM, 4...I/O
Port, 5...bus line, 6...actuator,
7...Brake hydraulic control device, 8...Alarm circuit, 9...
Wheel speed sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 車輪の速度を検出する車輪速センサと、車輪
速センサの検出出力からスキツド状態か否かを判
定するスキツド状態判定手段と、スキツド状態判
定時に車輪速センサの検出出力を基にスリツプ率
を算出するスリツプ率算出手段と、路面と車輪の
摩擦係数が最大となるスキツド制御パターン群を
スリツプ率に対応づけて格納するスキツド制御パ
ターン記憶手段と、スリツプ率算出手段により算
出されたスリツプ率に対応したスキツド制御パタ
ーンを前記スキツド制御パターン群の中から選択
し、該選択されたスキツド制御パターンに従つた
スキツド制御信号を出力するスキツド制御信号発
生手段と、スキツド制御信号によりブレーキ油圧
を制御するブレーキ油圧制御手段と、を含むこと
を特徴とするマイクロコンピユータ・スキツド制
御装置。
1. A wheel speed sensor that detects the speed of a wheel, a skid state determination means that determines whether or not a skid state is present based on the detection output of the wheel speed sensor, and a slip rate that is calculated based on the detection output of the wheel speed sensor when determining a skid state. a skid control pattern storage means for storing a skid control pattern group in which the coefficient of friction between the road surface and the wheels is maximized in association with the slip ratio; skid control signal generating means for selecting a skid control pattern from the skid control pattern group and outputting a skid control signal according to the selected skid control pattern; and a brake hydraulic pressure control for controlling brake hydraulic pressure based on the skid control signal. A microcomputer skid control device comprising means.
JP1612879A 1979-02-16 1979-02-16 Skid control device by use of microcomputer Granted JPS55110648A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1612879A JPS55110648A (en) 1979-02-16 1979-02-16 Skid control device by use of microcomputer
US06/118,909 US4321677A (en) 1979-02-16 1980-02-06 Anti-skid control device
GB8004596A GB2042661B (en) 1979-02-16 1980-02-12 Anti-skid control device
DE19803005572 DE3005572A1 (en) 1979-02-16 1980-02-14 NON-SLIP CONTROL DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1612879A JPS55110648A (en) 1979-02-16 1979-02-16 Skid control device by use of microcomputer

Publications (2)

Publication Number Publication Date
JPS55110648A JPS55110648A (en) 1980-08-26
JPS6216856B2 true JPS6216856B2 (en) 1987-04-15

Family

ID=11907852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1612879A Granted JPS55110648A (en) 1979-02-16 1979-02-16 Skid control device by use of microcomputer

Country Status (4)

Country Link
US (1) US4321677A (en)
JP (1) JPS55110648A (en)
DE (1) DE3005572A1 (en)
GB (1) GB2042661B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107862A (en) * 1988-10-17 1990-04-19 Iseki & Co Ltd Transmission for running vehicle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398260A (en) * 1979-05-18 1983-08-09 Hitachi, Ltd. Skid control method
JPH0213270Y2 (en) * 1981-03-12 1990-04-12
DE3119153A1 (en) * 1981-05-14 1982-12-02 Robert Bosch Gmbh, 7000 Stuttgart ARRANGEMENT FOR DETERMINING THE ADHESIVE VALUE OF A TRAMWAY
DE3205846A1 (en) * 1982-02-18 1983-08-25 Knorr-Bremse GmbH, 8000 München VEHICLE BRAKE SYSTEM, ESPECIALLY HYDRAULIC VEHICLE BRAKE SYSTEM FOR RAIL VEHICLES
JPS5957053A (en) * 1982-09-25 1984-04-02 Mitsubishi Electric Corp Control device for deceleration of train
JPS59209942A (en) * 1983-05-16 1984-11-28 Nissan Motor Co Ltd Anti-skid control device
JPS59213552A (en) * 1983-05-17 1984-12-03 Nissan Motor Co Ltd Anti-skid controller
IE832034L (en) * 1983-12-31 1985-02-28 Pcb Controls Ltd Anti-skid valve control system
JPS6271405A (en) * 1985-09-20 1987-04-02 Mitsubishi Electric Corp Control method of drive of electric rolling stock
DE3741248C1 (en) * 1987-12-05 1989-06-01 Daimler Benz Ag Method for determining slip thresholds for traction control of a motor vehicle
JP2835760B2 (en) * 1990-02-16 1998-12-14 株式会社曙ブレーキ中央技術研究所 Vehicle anti-lock control method
US20030200020A1 (en) * 1999-09-20 2003-10-23 Michael E. Ring Method of and an apparatus for enhancing the braking efficiency of a railway freight train consist
SE516469C2 (en) * 2000-02-14 2002-01-15 Scania Cv Ab Device for ensuring the operation of a braking device for a vehicle
EP1167143B1 (en) * 2000-06-30 2010-12-01 Robert Bosch Gmbh Method and device for emergency braking detection
JPWO2003084799A1 (en) * 2002-04-11 2005-08-11 日本精工株式会社 Vehicles whose vehicle characteristics can be changed
US20090187324A1 (en) 2008-01-23 2009-07-23 Jianbo Lu Vehicle Stability Control System and Method
CN105346708B (en) * 2015-11-10 2017-05-10 西安航空制动科技有限公司 Determination method for tyre and ground optimum brake slipping point

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094556A (en) * 1968-04-24 1978-06-13 Nippondenso Kabushiki Kaisha Anti-skid system for a vehicle
SE332570B (en) * 1968-10-22 1971-02-08 O Kullberg
JPS5032393B1 (en) * 1970-09-11 1975-10-20
JPS5528895B1 (en) * 1971-07-06 1980-07-31
US3985396A (en) * 1972-07-20 1976-10-12 Aisin Seiki Kabushiki Kaisha Method, circuit, and apparatus for anti-skid brake control in motor vehicles
US4006942A (en) * 1973-09-14 1977-02-08 Masashi Saito Antilock system for wheeled vehicles
FR2366152A1 (en) * 1976-10-04 1978-04-28 Dba ELECTRONIC SKID CONTROL DEVICE FOR MOTOR VEHICLE BRAKING SYSTEM
US4184203A (en) * 1978-10-20 1980-01-15 Crane Co. Wheel speed sensing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107862A (en) * 1988-10-17 1990-04-19 Iseki & Co Ltd Transmission for running vehicle

Also Published As

Publication number Publication date
JPS55110648A (en) 1980-08-26
GB2042661B (en) 1983-02-16
GB2042661A (en) 1980-09-24
US4321677A (en) 1982-03-23
DE3005572A1 (en) 1980-08-21

Similar Documents

Publication Publication Date Title
JPS6216856B2 (en)
JP2851180B2 (en) Method and apparatus for controlling braking pressure
JP2723640B2 (en) Method for improving handling characteristics of braked vehicle
US4809183A (en) Speed control system for motor vehicles operating in a curved path
US8862327B2 (en) Process and device for stabilizing a vehicle
US6957873B2 (en) Method for regulating the driving stability of a vehicle
JP2618382B2 (en) Vehicle brake pressure control method when driving on a curve
JPH05500934A (en) How to increase vehicle controllability
JPS6364861A (en) Antiskid control device
SE515380C2 (en) Method and apparatus for determining the mass of a vehicle
JP2002087310A (en) Action to vehicle track based on measurement of lateral force
JP2000505760A (en) Method and apparatus for controlling braking force distribution in a vehicle
JPH03500868A (en) Anti-lock control device
US5315518A (en) Method and apparatus for initializing antilock brake control on split coefficient surface
JP2002053058A (en) Device and method for determining operation of vehicle and dynamic parameter
US5551769A (en) Method and system for split mu control for anti-lock brake systems
JPH0316863A (en) Antilock control method for vehicle
KR101997432B1 (en) Electronic stability control apparatus for vehicle and control method therfor
JP3705077B2 (en) Vehicle motion control device
JP2500857B2 (en) Anti-skidding control device
JPH11180274A (en) Attitude control device of vehicle
US6964460B2 (en) Brake controller and method for controlling a brake system
JPH01254463A (en) Antiskid controller
JPH0729599B2 (en) Anti-skidding control method
JP3535358B2 (en) Road friction coefficient estimation device