JPS62167817A - Cooling fan starter for vacuum heat treatment furnace - Google Patents

Cooling fan starter for vacuum heat treatment furnace

Info

Publication number
JPS62167817A
JPS62167817A JP29590285A JP29590285A JPS62167817A JP S62167817 A JPS62167817 A JP S62167817A JP 29590285 A JP29590285 A JP 29590285A JP 29590285 A JP29590285 A JP 29590285A JP S62167817 A JPS62167817 A JP S62167817A
Authority
JP
Japan
Prior art keywords
cooling fan
furnace
gas
refrigerant gas
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29590285A
Other languages
Japanese (ja)
Inventor
Shuichi Tanaka
秀一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29590285A priority Critical patent/JPS62167817A/en
Publication of JPS62167817A publication Critical patent/JPS62167817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To simplify mechanism by constituting a cooling fan starter in such a manner that a gas introducing port for introducing a refrigerant gas is provided in the rotating direction of a cooling fan so as to face the cooling fan. CONSTITUTION:A vacuum gas hardening furnace is set with a treating material A in a treatment chamber 2 and the inside of the furnace is evacuated to a vacuum through a discharge pipe 10. After the treating material is heated to the prescribed hardening temp. by a heater 5 for heating, the refrigerant gas is introduced through the furnace into the gas introducing pipe 11 and is circulated by the cooling fan 3 in the furnace by which the treating material A is quickly cooled. The top ends 11a, 11b of the gas introducing pipe 11 for introducing the refrigerant gas into the furnace are provided in the rotating direction of the cooling fan 3 so as to face the cooling fan 3. A motor 7 is turned on to run after the cooling fan 3 is started by the refrigerant gas.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、真空焼入炉、真空焼結炉などの真空熱処理炉
の内部に設けられる冷却ファンの起動装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a starting device for a cooling fan provided inside a vacuum heat treatment furnace such as a vacuum quenching furnace or a vacuum sintering furnace.

[従来の技術] 真空熱外Pl!炉1例えば真空ガス焼入炉においては、
54空雰囲気で処理物を所定の温度に加熱保持した後、
引き続き炉内で処理物に冷媒ガス(不活性ガス)を噴射
して急冷するようにしている。この場合、炉殻に排気管
とガス導入管とを接続して必要な排気口と冷媒ガスの導
入口とを炉内に設けるとともに、炉内の一側に冷却ファ
ンを配置し、冷却時に該ファンによる送風で炉内に冷媒
ガスを強制循環させラジェータ等による強制冷却を促進
するのが通例となっている。そして、この冷却ファンは
1通常、炉外に設置したインダクションモータからその
回転軸にトルク伝達されて、炉内への冷媒ガスの導入と
同期して回転起動される。
[Conventional technology] Vacuum extrathermal Pl! Furnace 1 For example, in a vacuum gas quenching furnace,
54 After heating and maintaining the processed material at a predetermined temperature in an empty atmosphere,
Subsequently, refrigerant gas (inert gas) is injected into the processed material in the furnace to rapidly cool it. In this case, an exhaust pipe and a gas inlet pipe are connected to the furnace shell, and the necessary exhaust port and refrigerant gas inlet are provided in the furnace, and a cooling fan is placed on one side of the furnace to provide the necessary exhaust port and refrigerant gas inlet. It is customary to forcefully circulate refrigerant gas inside the furnace by blowing air with a fan to promote forced cooling using a radiator or the like. This cooling fan is normally started to rotate in synchronization with the introduction of refrigerant gas into the furnace by transmitting torque to its rotating shaft from an induction motor installed outside the furnace.

[発明の解決しようとする問題点] ところが、真空熱処理炉での冷却ファンの起動時におい
ては、それが炉内で定常回転に到達するまで、その駆動
用電動機に一時的ながら尖鋭なピークをなす過大電流が
必要とされる現象が見られる6そして、このために炉の
消費電力が増すばかりでなく、周辺機器への給電状態に
瞬間的に異常を来たすなど諸々の悪″#背を及ぼす不都
合を生じている。
[Problems to be Solved by the Invention] However, when the cooling fan in a vacuum heat treatment furnace is started, the driving electric motor makes a temporary but sharp peak until it reaches steady rotation in the furnace. A phenomenon in which excessive current is required6 is observed6, and this not only increases the power consumption of the furnace, but also causes various problems such as instantaneous abnormalities in the power supply to peripheral equipment. is occurring.

そこで、このような現象を改善するために、電動機にス
ターデルタ方式やコンドルファ方式などの起動方式を採
用し、起動電流のピークを低減することも行なわれてい
る。
Therefore, in order to improve this phenomenon, a starting method such as a star-delta method or a Condolfer method is adopted for the motor to reduce the peak of the starting current.

本発明は、冷却ファンの起動時に発生する起動電流のピ
ークを一層低減することを目的とし、上記電気的な起動
方式の改善とは別に、冷却ファンの起動を機械的な面よ
り改良工夫せんとしたものである。
The present invention aims to further reduce the peak of the starting current that occurs when starting the cooling fan, and in addition to improving the electrical starting method described above, it also aims to improve the starting of the cooling fan from a mechanical aspect. This is what I did.

[問題点を解決するための手段] すなわち、本発明が提供する真空熱処理炉の冷却ファン
起動装置は、冷媒ガスを炉内に導入するガス導入口を冷
却ファンに臨み該冷却ファンの回転方向に向けて設けた
ことを特徴としている。
[Means for Solving the Problems] That is, the cooling fan starting device for a vacuum heat treatment furnace provided by the present invention has a gas inlet for introducing refrigerant gas into the furnace facing the cooling fan and facing the rotation direction of the cooling fan. It is characterized by being designed for

C作用] このように構成すれば、処理物の冷却工程でそのガス導
入口から炉内に導入される冷媒ガスは、冷却ファンに噴
射して該冷却ファンをその回転方向に付勢しながら炉内
に流入することになる。したがって、この冷媒ガスの導
入に同期して冷却ファンの駆動用電動機を起動すれば、
冷却ファンに冷媒ガスによる回転駆動力が与えられるた
め電動機に負担すべき起動トルクは小さくなり、これに
より電動機に必要な起動電流のピークを低く抑えること
ができる。
C action] With this configuration, the refrigerant gas introduced into the furnace from the gas inlet in the process of cooling the material to be treated is injected into the cooling fan and flows through the furnace while urging the cooling fan in its rotational direction. It will flow inside. Therefore, if the cooling fan drive motor is started in synchronization with the introduction of this refrigerant gas,
Since the cooling fan is given rotational driving force by the refrigerant gas, the starting torque that must be borne by the electric motor is reduced, thereby making it possible to suppress the peak of the starting current required for the electric motor.

〔実施例] 以下1本発明の一実施例を図面を参照して説明する。〔Example] An embodiment of the present invention will be described below with reference to the drawings.

この実施例は一例として真空ガス焼入炉に本発明を適用
した場合を図示するもので、炉内処理物を真空雰囲気下
で先ず所定の焼入れ温度(例えば1230℃)に加熱昇
温し保持した後、冷媒ガス(不活性ガス)としてN1ガ
スを炉内に導入し、これを内股の冷却ファンで炉内に循
環させ、処理物を連続的に急冷できるようにしたもので
ある。
This example illustrates a case in which the present invention is applied to a vacuum gas quenching furnace, in which a product to be processed in the furnace is first heated to a predetermined quenching temperature (for example, 1230°C) and held in a vacuum atmosphere. After that, N1 gas is introduced into the furnace as a refrigerant gas (inert gas), and this is circulated through the furnace by an internal cooling fan, so that the processed material can be rapidly cooled continuously.

そこで、真空焼入炉の構成ついて概説する。この炉は、
密閉形の炉al内における中央部に断熱材で形成された
ボックス形の処理室2を配置するするとともに、その奥
部に当る一側に冷却ファン3を配置して構成される。前
記処理室2は、内部に加熱用ヒータ5を有し、ざらに前
記冷却ファン3から後述する送風ダクトを通して送られ
てくるN1ガスを該処理室2内にセットした処理物Aに
向けて噴射する噴射ノズル群6を具備する。そして、こ
の処理室2は両側に開閉自在のTI%2a、2aを有し
、炉内の冷却時には図示の如く両側の扉2aを開閉状態
を逆にして交互に開放するように構成しである。一方、
前記冷却ファン3は、その回転軸4を炉外に配設した駆
動用電動機7の出力軸と連結して、該電動機7からの伝
達トルクにより回転駆動される。この冷却ファン3は、
前記処理室z側に面する正面中央に吸込口3aを有し。
Therefore, the configuration of the vacuum quenching furnace will be outlined. This furnace is
A box-shaped processing chamber 2 made of a heat insulating material is disposed in the center of a closed furnace al, and a cooling fan 3 is disposed on one side at the back of the chamber. The processing chamber 2 has a heating heater 5 therein, and roughly injects N1 gas sent from the cooling fan 3 through a blower duct, which will be described later, toward the processing object A set in the processing chamber 2. The injection nozzle group 6 is equipped with a group of injection nozzles 6. This processing chamber 2 has TI%s 2a, 2a on both sides that can be opened and closed, and when cooling the furnace, the doors 2a on both sides are reversed and opened alternately as shown in the figure. . on the other hand,
The cooling fan 3 has its rotating shaft 4 connected to the output shaft of a driving electric motor 7 disposed outside the furnace, and is rotationally driven by the torque transmitted from the electric motor 7. This cooling fan 3 is
It has a suction port 3a at the center of the front facing the processing chamber z side.

外周の反対位置に一対の吐出口3b、3bを有するもの
である。そして、この各吐出口3bに炉殻1の上下内面
に沿設した送風ダクト8,8の一端を接続連通させてお
り、さらに前記処理室2の外周にまで延長した送風ダク
ト8,8に前記ノズル群6の各ガス渣入口を連通させて
いる。したがって、炉内で冷却ファン3から送り出され
るN1ガスは、冷却ファン3の吐出口3b、3bから送
風ダクト8.8に案内され、さらに噴射ノズル群6から
処理室2内に噴射されて、処理物Aの強制冷却に供され
る。かくして、処理室2内に供給されたN1ガスは、扉
2aを開放したその両端開口部から炉殻l内の空間を流
通し、前記吸込口3aから冷却ファン3により再循環さ
れる。そして、冷却ファン3の吸込口3a近傍に当るガ
ス通路に流通N1ガスと熱交換し冷却するラジェータ9
を設けている。なお、炉内でのNiガスの流れを図示矢
印で示している。
It has a pair of discharge ports 3b, 3b at opposite positions on the outer periphery. One end of the blower ducts 8, 8 provided along the upper and lower inner surfaces of the furnace shell 1 is connected and communicated with each of the discharge ports 3b, and the blower ducts 8, 8 extending to the outer periphery of the processing chamber 2 are connected to Each gas residue inlet of the nozzle group 6 is communicated with each other. Therefore, the N1 gas sent out from the cooling fan 3 in the furnace is guided from the discharge ports 3b, 3b of the cooling fan 3 to the ventilation duct 8.8, and is further injected into the processing chamber 2 from the injection nozzle group 6, where it is processed. Used for forced cooling of object A. Thus, the N1 gas supplied into the processing chamber 2 flows through the space inside the furnace shell l from the openings at both ends with the door 2a open, and is recirculated by the cooling fan 3 from the suction port 3a. A radiator 9 that exchanges heat with the circulating N1 gas in the gas passage near the suction port 3a of the cooling fan 3 for cooling.
has been established. Note that the flow of Ni gas within the furnace is indicated by arrows.

ざて、このような炉内構造を具備する真空炉には、真空
加熱時に炉内を真空排気するための排気管lOと、ガス
冷却時に炉内に一定圧のN1ガスを導入するためのガス
導入管11とを接続している。排気管10は、その開口
端を炉殻lの適宜位置に接続して、炉外の真空ポンプ1
2から排気方13を介し炉内を真空排気する。一方、ガ
ス導入省・11は炉外のサージタンク141からガス導
入ブF15を介して供給されるN1ガスを炉内に導入し
、前記冷却ファン3の作動の下に処理物Aの強制ガス冷
却を行なわしめる。
A vacuum furnace with such a furnace internal structure has an exhaust pipe lO for evacuating the inside of the furnace during vacuum heating, and a gas pipe for introducing N1 gas at a constant pressure into the furnace during gas cooling. It is connected to the introduction pipe 11. The exhaust pipe 10 has its open end connected to an appropriate position in the furnace shell l, and is connected to a vacuum pump 1 outside the furnace.
2, the inside of the furnace is evacuated via the exhaust method 13. On the other hand, the gas introduction unit 11 introduces N1 gas supplied from the surge tank 141 outside the furnace through the gas introduction valve F15 into the furnace, and under the operation of the cooling fan 3, the process material A is forcedly cooled with gas. to be carried out.

そして、この場合ガス4人管11を下流側で2木の管路
11a、llbに分岐させているとともに、炉殻lを貫
通して炉内に挿通された各管路lla、1lb(7)先
端部11A、IIBを上下がら炉殻lに沿わせて冷却フ
ァン3の外周部に向けて丁度反対側から配管し、さらに
ノズルをなす各先端ガス導入口16.16を冷却ファン
3に臨み近接配置している。そして、これらのガス導入
口16.16は、冷却ファン3の羽根3Aにガス噴射す
る冷却ファン3の回転方向Hに向けて設けたものである
In this case, the four-person gas pipe 11 is branched into two pipes 11a and llb on the downstream side, and each pipe lla and 1lb (7) penetrates the furnace shell l and is inserted into the furnace. The tips 11A and IIB are piped from the opposite side toward the outer periphery of the cooling fan 3 along the furnace shell l from above and below, and each tip gas inlet 16.16, which forms a nozzle, is placed close to the cooling fan 3. It is placed. These gas inlet ports 16.16 are provided toward the rotational direction H of the cooling fan 3 that injects gas to the blades 3A of the cooling fan 3.

このように構成した真空焼入炉では、そのガス冷却時に
おいて、冷却ファン3が次のようにして起動される。す
なわち、ガス冷却を開始するときニハ、前記ガス導入弁
15を開いてサージタンク14等から供給されるN丁ガ
スを2本の管路11a、llbに分配して炉内が一定圧
になるまで導入する。すると、各ガス導入口16.16
から導入されるN?ガスは冷却ファン3の羽根3Aに噴
射してから炉内に流入されることになり、これに対し冷
却ファン3は噴射N1ガスからの運動値を羽根3Aに受
け、その回転軸4まわりに偶力を生じて所定の回転方向
Rで空転することになる。しかして、このファン回転始
動状態で、炉外に設けられる駆動用電動機7を作動ON
シ、冷却ファン3を電気的に起動する。
In the vacuum quenching furnace configured in this manner, the cooling fan 3 is activated in the following manner during gas cooling. That is, when starting gas cooling, the gas introduction valve 15 is opened and the N gas supplied from the surge tank 14 etc. is distributed to the two pipes 11a and 11b until the pressure inside the furnace becomes constant. Introduce. Then, each gas inlet 16.16
N? introduced from? The gas is injected into the blades 3A of the cooling fan 3 and then flows into the furnace.In contrast, the cooling fan 3 receives the motion value from the injected N1 gas on the blades 3A, and causes an accidental movement around its rotation axis 4. This generates a force and causes it to idle in a predetermined rotational direction R. Therefore, when the fan rotation is started, the driving electric motor 7 provided outside the furnace is activated.
2. Start the cooling fan 3 electrically.

すなわち、このようにすれば冷却ファン3の回転状態で
電動機7が起動されることになり、電動4!!7の負担
する起動トルクが大幅に軽減される。
That is, if this is done, the electric motor 7 will be started while the cooling fan 3 is rotating, and the electric motor 4! ! The starting torque borne by 7 is significantly reduced.

したがって、今までのように冷却ファン3を静止状態か
ら始動する場合に比較すると、電動機7の起動電流に現
われるピークを低く抑えることができる。回持に又、こ
のような起動方式であれば、ガス導入後冷却ファン3が
回転始動してからその定常回転状態に到達するまでの時
間が短縮されるという利点がある。つまり、このことは
炉内における処理物Aの初期冷却速度を大きくすること
ができ、焼入特性が向上されるなどの付帯効果をもたら
すことを意味する。
Therefore, compared to the conventional case where the cooling fan 3 is started from a stationary state, the peak appearing in the starting current of the electric motor 7 can be suppressed to a low level. In addition, such a starting method has the advantage that the time from when the cooling fan 3 starts rotating after introducing gas until it reaches its steady rotation state is shortened. In other words, this means that the initial cooling rate of the processed material A in the furnace can be increased, resulting in additional effects such as improved hardening characteristics.

ところで、ガス冷却時にそのガス導入口16゜16から
炉内にN?ガスが導入される時間は、炉内が一定圧のN
1ガスで充満されるまでの極短時間ではあるけれども、
他方冷却ファン3の電動機7に過大電流が流れるのは起
動時における一瞬である。それ故、電動機7の起動に同
期させてN1ガスを導入しさえすれば、本発明によると
導入ガスのもつ流体エネルギを有効に活用して起動電流
のピークの発生を抑1Fできるという非常に合理的なシ
ステム設計が実現できるものとなるのである。
By the way, during gas cooling, N? The time the gas is introduced is such that the inside of the furnace is at a constant pressure of N.
Although it is a very short time until it is filled with one gas,
On the other hand, excessive current flows through the motor 7 of the cooling fan 3 for a moment at the time of startup. Therefore, according to the present invention, as long as the N1 gas is introduced in synchronization with the starting of the electric motor 7, the fluid energy of the introduced gas can be effectively utilized to suppress the occurrence of the peak of the starting current. This makes it possible to realize a system design that is practical.

本発明は、上記実施例に述べたような構成1作用効果を
有するものであるが4本発明が適用される熱処理炉は焼
入炉に限らず、冷媒ガスを導入し冷11Jフアンでこれ
を循環する形式のものには一般的に適用できる。また、
使用する冷媒ガスはN1ガス以外の不活性ガスも利用可
能である。
The present invention has the effects of Structure 1 as described in the above embodiments, but 4. The heat treatment furnace to which the present invention is applied is not limited to a quenching furnace. It is generally applicable to circular forms. Also,
Inert gas other than N1 gas can also be used as the refrigerant gas.

なお、冷却ファンを駆動する電動機の起動方式には、直
入起動、スターデルタ起動、コンドルファ起動等が利用
されるが、後二者のような起動方式を採用すれば、電気
的な改善が相まって効果が倍加されることになる。
Direct start, star-delta start, Condorpha start, etc. are used to start the electric motor that drives the cooling fan, but if the latter two start methods are adopted, electrical improvements will be achieved. The effect will be doubled.

[発明の効果] 本発明の冷却ファン起動装置では、真空熱処理炉に導入
する冷媒ガスで冷却ファンの起動を機械的に補助駆動す
ることができるものとなるため。
[Effects of the Invention] With the cooling fan starting device of the present invention, the starting of the cooling fan can be mechanically assisted by the refrigerant gas introduced into the vacuum heat treatment furnace.

その駆動用電動機の起動時に現われる過大電流のピーク
を低く抑えることができ、炉内の初期冷却速度の向上に
も資する効果がある。
The peak of excessive current that appears when starting the drive motor can be suppressed to a low level, and this has the effect of contributing to improving the initial cooling rate inside the furnace.

【図面の簡単な説明】[Brief explanation of drawings]

m1図は木発す1の一実施例を示す真空焼入炉の概略断
面図であり、第2図は:trJ1図のx−X線矢視図で
ある。 A・・・処理物 l・・・炉殻、      3・・・冷却ファン4・・
・回転軸、     7・・・電動機11・・・ガス導
入管、   11a、llb・・・管路11A、IIB
・・・先端部 14・・・サージタンク、15・・・ガス4人パ16・
・・ガス導入口
Fig. m1 is a schematic sectional view of a vacuum quenching furnace showing one embodiment of the wood grain 1, and Fig. 2 is a view taken along the line x-X of Fig. trJ1. A...Processed material l...Furnace shell, 3...Cooling fan 4...
-Rotating shaft, 7...Electric motor 11...Gas introduction pipe, 11a, llb...Pipe line 11A, IIB
... Tip part 14 ... Surge tank, 15 ... Gas 4-person party 16.
・・Gas inlet

Claims (1)

【特許請求の範囲】[Claims] 炉内の処理物を冷却するにさいし、炉内に冷媒ガスを導
入するとともに、冷却ファンを回転して冷媒ガスを炉内
で循環するようにした真空熱処理炉において、前記冷媒
ガスを炉内に導入するガス導入口を前記冷却ファンに臨
み該冷却ファンの回転方向に向けて設けたことを特徴と
する真空熱処理炉の冷却ファン起動装置。
In a vacuum heat treatment furnace in which a refrigerant gas is introduced into the furnace and a cooling fan is rotated to circulate the refrigerant gas within the furnace, the refrigerant gas is introduced into the furnace. A cooling fan starting device for a vacuum heat treatment furnace, characterized in that a gas introduction port is provided facing the cooling fan and facing the rotational direction of the cooling fan.
JP29590285A 1985-12-26 1985-12-26 Cooling fan starter for vacuum heat treatment furnace Pending JPS62167817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29590285A JPS62167817A (en) 1985-12-26 1985-12-26 Cooling fan starter for vacuum heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29590285A JPS62167817A (en) 1985-12-26 1985-12-26 Cooling fan starter for vacuum heat treatment furnace

Publications (1)

Publication Number Publication Date
JPS62167817A true JPS62167817A (en) 1987-07-24

Family

ID=17826630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29590285A Pending JPS62167817A (en) 1985-12-26 1985-12-26 Cooling fan starter for vacuum heat treatment furnace

Country Status (1)

Country Link
JP (1) JPS62167817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331458A (en) * 1989-09-11 1994-07-19 Kensington Laboratories, Inc. Compact specimen inspection station
JP2023098468A (en) * 2021-12-28 2023-07-10 いすゞ自動車株式会社 Method of manufacturing mold component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331458A (en) * 1989-09-11 1994-07-19 Kensington Laboratories, Inc. Compact specimen inspection station
JP2023098468A (en) * 2021-12-28 2023-07-10 いすゞ自動車株式会社 Method of manufacturing mold component

Similar Documents

Publication Publication Date Title
JP2000179339A (en) Cooling water circulating device
JPS62167817A (en) Cooling fan starter for vacuum heat treatment furnace
JPH0446666A (en) Reflow soldering method and device
JPS6160819A (en) Cooling method for hardening
JP4958725B2 (en) Heat treatment equipment
JPH07208876A (en) Vacuum furnace
US20200056547A1 (en) Air turbine start system
CN109943693A (en) A kind of cooling system of high-pressure gas quenching furnace
CN210237684U (en) Workpiece rapid cooling device under protective atmosphere
JPS62167803A (en) Vacuum sintering and quick cooling method and vacuum sintering and quick cooling furnace
JPH03257119A (en) Roller hearth type vacuum furnace
JPH10183236A (en) Vacuum heat treatment furnace
JPH05207702A (en) Cooling device for induction motor
JP2012515262A (en) Quenching apparatus and quenching method
JP2602405Y2 (en) Vacuum furnace
JPH0488120A (en) Atmosphere heating method for vacuum furnace
JPH03291563A (en) Column thermostatic chamber of gas chromatograph
CN215144408U (en) Hot forming equipment
JPS60152616A (en) Heat treating device
CN215144050U (en) Thermoforming apparatus
JP3486921B2 (en) Dew condensation prevention method in water-cooled vacuum heat treatment furnace
CN219037081U (en) Electric heater with good overheat prevention effect
JPH0543902Y2 (en)
JPH01203888A (en) Heat treating furnace
CN220224248U (en) Heat treatment vacuum furnace