JP2023098468A - Method of manufacturing mold component - Google Patents

Method of manufacturing mold component Download PDF

Info

Publication number
JP2023098468A
JP2023098468A JP2021215253A JP2021215253A JP2023098468A JP 2023098468 A JP2023098468 A JP 2023098468A JP 2021215253 A JP2021215253 A JP 2021215253A JP 2021215253 A JP2021215253 A JP 2021215253A JP 2023098468 A JP2023098468 A JP 2023098468A
Authority
JP
Japan
Prior art keywords
container
diffusion bonding
mold part
manufacturing
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021215253A
Other languages
Japanese (ja)
Other versions
JP7212872B1 (en
Inventor
俊夫 竹中
Toshio Takenaka
良男 杉村
Yoshio Sugimura
伸也 佐々木
Shinya Sasaki
壮人 辻
Masato Tsuji
隆ニ 永田
Ryuji Nagata
真堂 今岡
Masataka Imaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2021215253A priority Critical patent/JP7212872B1/en
Application granted granted Critical
Publication of JP7212872B1 publication Critical patent/JP7212872B1/en
Publication of JP2023098468A publication Critical patent/JP2023098468A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a method and an apparatus for manufacturing a mold component, which enable a reduction in apparatus cost and the shortening of manufacturing time.SOLUTION: A method of manufacturing a mold component includes: a diffusion joining step of diffusion-joining first and second mold component materials 31 and 32 by making the first and second mold component materials 31 and 32 pressure-adhere to each other within a container 5 of a diffusion joining furnace 1 so as to increase a temperature; and a quenching step of rapidly cooling the first and second mold component materials 31 and 32, in a high-temperature state after the diffusion joining step, within the container 5.SELECTED DRAWING: Figure 1

Description

本開示は、入子や分流子などの成形金型部品の製造方法及び製造装置に関する。 TECHNICAL FIELD The present disclosure relates to a manufacturing method and manufacturing apparatus for mold parts such as cores and shunts.

入子や分流子などの成形金型部品の製造において、拡散接合工程の後に焼入れ工程を行なう方法が公知である(例えば特許文献1)。拡散接合工程では、第1の金型部品素材と第2の金型部品素材とを、真空加熱炉内で加圧密着させた状態で昇温して拡散接合する。焼入れ工程では、拡散接合され徐冷された第1及び第2の金型部品素材を、真空加熱炉から取出して熱処理炉内に設置し、加熱後急冷して焼入れを行なう。 BACKGROUND ART A method of performing a quenching step after a diffusion bonding step in the manufacture of molding die parts such as inserts and shunts is known (for example, Patent Document 1). In the diffusion bonding step, the first mold part material and the second mold part material are pressure-bonded in a vacuum heating furnace, and the temperature is raised to diffusion-bond them. In the quenching step, the first and second mold component materials that have been diffusion-bonded and slowly cooled are taken out from the vacuum heating furnace, placed in a heat treatment furnace, heated, then quenched and quenched.

特許第5113549号公報Japanese Patent No. 5113549

上記従来の製造方法では、拡散接合工程を行なう真空加熱炉と焼入れ工程を行なう熱処理炉とが必要であるため、装置コストが増大する。また、拡散接合された第1及び第2の金型部品素材を、真空加熱炉内で徐冷した後に真空加熱炉内から取出し、熱処理炉内に設置して焼入れを行なうので、第1及び第2の金型部品素材を真空加熱炉内で徐冷する冷却時間と、焼入れのために熱処理炉内で第1及び第2の金型部品素材を加熱する加熱時間とが必要であり、製造時間が増長する。 The above-described conventional manufacturing method requires a vacuum heating furnace for performing the diffusion bonding process and a heat treatment furnace for performing the hardening process, resulting in an increase in equipment cost. In addition, the diffusion-bonded first and second mold part materials are slowly cooled in the vacuum heating furnace, then taken out from the vacuum heating furnace and placed in the heat treatment furnace for quenching. A cooling time for slowly cooling the mold part material of 2 in a vacuum heating furnace and a heating time for heating the first and second mold part materials in a heat treatment furnace for quenching are required. increases.

そこで本開示は、装置コストの低減及び製造時間の短縮が可能な成形金型部品の製造方法及び製造装置の提供を目的とする。 Therefore, an object of the present disclosure is to provide a manufacturing method and a manufacturing apparatus for molding die parts that can reduce the apparatus cost and shorten the manufacturing time.

上記目的を達成すべく、本開示の第1の態様の成形金型部品の製造方法は、拡散接合炉の容器内で第1の金型部品素材と第2の金型部品素材とを加圧密着させて昇温し、第1の金型部品素材と第2の金型部品素材とを拡散接合する拡散接合工程と、拡散接合工程後の高温状態の第1及び第2の金型部品素材を、容器内で急冷する焼入れ工程と、を備える。 In order to achieve the above object, a method for manufacturing a molding die part according to the first aspect of the present disclosure includes pressure-sealing a first die part material and a second die part material in a vessel of a diffusion bonding furnace. a diffusion bonding step in which the first mold part material and the second mold part material are diffusion-bonded, and the first and second mold part materials in a high temperature state after the diffusion bonding step. and a quenching step of quenching in a container.

上記方法では、拡散接合炉の容器内で拡散接合工程と焼入れ工程とを行なうので、焼入れ工程を行なうための熱処理炉を別途設ける必要がなく、装置コストを低減することができる。また、拡散接合された第1及び第2の金型部品素材を拡散接合炉内で徐冷せず、高温状態の第1及び第2の金型部品素材を拡散接合炉内で急冷して焼入れを行なうので、拡散接合された第1及び第2の金型部品素材を徐冷する時間及び焼入れのために再加熱する時間を省略することができ、製造時間を短縮することができる。 In the above method, the diffusion bonding process and the quenching process are performed in the vessel of the diffusion bonding furnace, so there is no need to separately provide a heat treatment furnace for performing the quenching process, and the equipment cost can be reduced. Further, the diffusion-bonded first and second mold part materials are not slowly cooled in the diffusion bonding furnace, and the first and second mold part materials in a high temperature state are rapidly cooled in the diffusion bonding furnace and quenched. Therefore, the time for slowly cooling the diffusion-bonded first and second mold component materials and the time for reheating for quenching can be omitted, and the manufacturing time can be shortened.

本開示の第2の態様の製造方法は、第1の態様の製造方法であって、容器には、容器内の気体を吸引して排出する吸引口と、不活性ガスを冷却ガスとして容器内へ供給する冷却ガス供給口とが設けられる。拡散接合工程では、冷却ガス供給口から容器内への不活性ガスの供給を停止した状態で、容器内の気体を吸引口から排出して容器内を真空化する。焼入れ工程では、容器内の気体を吸引口から継続して排出しながら、冷却ガス供給口から不活性ガスを容器内へ供給することにより、第1及び第2の金型部品素材を急冷する。 A manufacturing method according to a second aspect of the present disclosure is the manufacturing method according to the first aspect, wherein the container includes a suction port for sucking and discharging the gas in the container, and an inert gas as a cooling gas in the container. A cooling gas supply port is provided to supply to. In the diffusion bonding step, the gas inside the container is discharged from the suction port to evacuate the inside of the container while the supply of the inert gas into the container from the cooling gas supply port is stopped. In the quenching step, the inert gas is supplied into the container from the cooling gas supply port while the gas in the container is continuously discharged from the suction port, thereby rapidly cooling the first and second mold component materials.

上記方法では、焼入れ工程において、吸引口からの気体の吸引を継続することにより不活性ガスを容器内に流通させるので、不活性ガスを容器内に流通させるための手段を別途設ける必要がなく、装置コストを低減することができる。また、第1及び第2の金型部品素材を冷却する冷却ガスとして不活性ガスを用いるので、第1及び第2の金型部品素材の酸化を抑制することができる。 In the above method, in the quenching step, the inert gas is circulated in the container by continuing to suck the gas from the suction port. Equipment costs can be reduced. Further, since an inert gas is used as the cooling gas for cooling the first and second mold component materials, oxidation of the first and second mold component materials can be suppressed.

本開示の成形金型部品の製造装置は、容器と、容器内で第1の金型部品素材と第2の金型部品素材とを加圧密着させて保持する保持手段と、保持手段に保持された第1及び第2の金型部品素材を加熱する加熱手段と、容器内の気体を吸引して排出する吸引口と、を有する拡散接合炉と、容器に設けられ、不活性ガスを冷却ガスとして容器内へ供給する冷却ガス供給口と、を備える。吸引口と冷却ガス供給口とは、第1及び第2の金型部品素材を挟んで対峙する。 The molding die part manufacturing apparatus of the present disclosure includes: a container; holding means for pressing and holding a first mold part material and a second mold part material in the container; a diffusion bonding furnace having heating means for heating the first and second mold component materials thus obtained, and a suction port for sucking and discharging the gas in the container; and a cooling gas supply port for supplying the cooling gas into the container as a gas. The suction port and the cooling gas supply port face each other with the first and second mold component materials interposed therebetween.

本開示の第3の態様の製造方法は、第2の態様の製造方法であって、吸引口と冷却ガス供給口とは、第1及び第2の金型部品素材を挟んで対峙する。 A manufacturing method according to a third aspect of the present disclosure is the manufacturing method according to the second aspect, in which the suction port and the cooling gas supply port face each other with the first and second mold component materials sandwiched therebetween.

上記装置及び方法では、吸引口と冷却ガス供給口とが第1及び第2の金型部品素材を挟んで対峙し、第1及び第2の金型部品素材の外面上を通過するように不活性ガスが冷却ガス供給口から吸引口へ流通するので、第1及び第2の金型部品素材を不活性ガスによって効率良く冷却することができる。 In the apparatus and method described above, the suction port and the cooling gas supply port face each other across the first and second mold component blanks, and are arranged so as to pass over the outer surfaces of the first and second mold component blanks. Since the active gas flows from the cooling gas supply port to the suction port, the first and second mold component materials can be efficiently cooled by the inert gas.

本開示によれば、装置コストの低減及び製造時間の短縮が可能な成形金型部品の製造方法及び製造装置を提供することができる。 Advantageous Effects of Invention According to the present disclosure, it is possible to provide a manufacturing method and a manufacturing apparatus for molding die parts that can reduce the apparatus cost and shorten the manufacturing time.

本発明の一実施形態に係る成形金型部品の製造装置の概略構成を模式的に示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view schematically showing the schematic configuration of a molding die component manufacturing apparatus according to an embodiment of the present invention; 図1のII-II矢視断面図である。It is a II-II arrow directional cross-sectional view of FIG. 図1のIII-III矢視断面図である。FIG. 2 is a cross-sectional view taken along line III-III of FIG. 1; 本実施形態の製造方法における温度と時間との関係を模式的に示す図である。It is a figure which shows typically the relationship of the temperature and time in the manufacturing method of this embodiment. 従来の製造方法における温度と時間との関係を模式的に示す図である。It is a figure which shows typically the relationship of the temperature and time in the conventional manufacturing method.

以下、本発明の一実施形態について図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

本実施形態の成形金型部品は、例えばアルミダイカスト金型を構成する入子や分流子などの部品であり、図1~図3に示すように、第1の金型部品素材31と第2の金型部品素材32とを拡散接合することによって製造される。なお、成形金型部品は、溶融した原料を金型内で成形した後、金型内で急速に冷却する成形金型を構成する部品であればよく、例えば、アルミダイカスト以外のダイカスト金型や樹脂成形金型や重力鋳造金型などを構成する任意の部品が本実施形態の製造方法の対象となり得る。 Molding die parts of this embodiment are parts such as inserts and shunts that constitute an aluminum die-casting die, for example. As shown in FIGS. is manufactured by diffusion bonding the mold part material 32 of In addition, the molding die part may be any part that constitutes a molding die that rapidly cools in the mold after molding the molten raw material in the mold, for example, die casting molds other than aluminum die casting Any part that constitutes a resin molding die, a gravity casting die, or the like can be subject to the manufacturing method of the present embodiment.

第1の金型部品素材31は、例えば熱間工具鋼であり、有底のテーパ穴33を有する円柱体状に形成される。第2の金型部品素材32は、例えば無酸素銅であり、テーパ軸体状に形成され、第1の金型部品素材31のテーパ穴33に押圧挿入される。第1及び第2の金型部品素材31,32は、第1の金型部品素材31のテーパ穴33が上方に開口し、テーパ穴33に第2の金型部品素材32が挿入された状態で、後述する拡散接合炉2内に設置される。なお、第1及び第2の金型部品素材31,32の材質及び形状は、上記に限定されず、任意に設定可能である。 The first mold component material 31 is, for example, hot work tool steel, and is formed in a columnar shape having a bottomed tapered hole 33 . The second mold part material 32 is, for example, oxygen-free copper, is formed in a tapered shaft shape, and is inserted into the tapered hole 33 of the first mold part material 31 under pressure. The first and second mold part blanks 31 and 32 are in a state in which the tapered hole 33 of the first mold part blank 31 opens upward and the second mold part blank 32 is inserted into the tapered hole 33. and installed in a diffusion bonding furnace 2 to be described later. The materials and shapes of the first and second mold component materials 31 and 32 are not limited to those described above, and can be set arbitrarily.

成形金型部品の製造装置1は、拡散接合炉2と、真空ポンプ3と、不活性ガス供給装置4と、を備える。 A mold component manufacturing apparatus 1 includes a diffusion bonding furnace 2 , a vacuum pump 3 , and an inert gas supply device 4 .

拡散接合炉2は、真空加熱炉によって構成され、容器(真空容器)5と、容器5内で第1の金型部品素材31と第2の金型部品素材32とを加圧密着させて保持する保持機構(保持手段)6と、保持機構6に保持された第1及び第2の金型部品素材31,32を加熱するヒータなどの発熱体(加熱手段)7と、容器5内の気体を吸引して排出する吸引口8と、を有する。容器5は、略水平に倒伏した円柱状空間を内側(容器5内)に区画し、容器5内を開放可能に密閉する。 The diffusion bonding furnace 2 is composed of a vacuum heating furnace, and holds a container (vacuum container) 5 and a first mold part material 31 and a second mold part material 32 in pressure contact with each other in the container 5. a holding mechanism (holding means) 6, a heating element (heating means) 7 such as a heater for heating the first and second mold component materials 31 and 32 held by the holding mechanism 6, and the gas in the container 5 and a suction port 8 for sucking and discharging the The container 5 partitions the inside (the inside of the container 5) of a columnar space that is laid down substantially horizontally, and seals the inside of the container 5 so that it can be opened.

保持機構6は、第1及び第2の金型部品素材31,32の上面に載置される円板状の上支持板11と、第1の金型部品素材31の下面が載置される円板状の下支持板12と、下支持板12を下方から支持する台座13と、上支持板11の上面から容器5の上方外部へ延びる加圧ロッド14と、容器5に対して固定される雌ネジ部15と、を有する。雌ネジ部15は、加圧ロッド14の上部に形成された雄ネジ部16と螺合する。第1及び第2の金型部品素材31,32は、上支持板11と下支持板12との間に上下から挟まれた状態(加圧密着状態)で保持される。容器5の外部で加圧ロッド14の上端部を回すことにより上支持板11が昇降し、第1及び第2の金型部品素材31,32に対する押圧力が減増する。なお、保持機構6は上記構成に限定されず、他の構成であってもよい。 The holding mechanism 6 includes a disk-shaped upper support plate 11 placed on the upper surfaces of the first and second mold part blanks 31 and 32, and a lower surface of the first mold part blank 31 placed thereon. A disk-shaped lower support plate 12 , a pedestal 13 supporting the lower support plate 12 from below, a pressure rod 14 extending from the upper surface of the upper support plate 11 to the upper outside of the container 5 , and fixed to the container 5 . and a female threaded portion 15 . The female threaded portion 15 is screwed with the male threaded portion 16 formed on the upper portion of the pressure rod 14 . The first and second mold part blanks 31 and 32 are held in a state of being sandwiched from above and below between the upper support plate 11 and the lower support plate 12 (in a pressurized contact state). By rotating the upper end of the pressure rod 14 outside the container 5, the upper support plate 11 moves up and down, and the pressing force against the first and second mold part blanks 31 and 32 increases or decreases. Note that the holding mechanism 6 is not limited to the configuration described above, and may have another configuration.

発熱体7は、保持機構6に保持された第1及び第2の金型部品素材31,32の外周を囲むように容器5内に設けられる。吸引口8は、容器5の上部に設けられて容器5の内部と外部とを連通する。吸引口8には、吸引管17を介して真空ポンプ3が接続される。なお、容器5内には、容器5内の温度や第1及び第2の金型部品素材31,32の温度を検出するための温度センサ(図示省略)が設けられる。 The heating element 7 is provided inside the container 5 so as to surround the outer peripheries of the first and second mold component materials 31 and 32 held by the holding mechanism 6 . The suction port 8 is provided in the upper portion of the container 5 and communicates the inside and the outside of the container 5 . A vacuum pump 3 is connected to the suction port 8 via a suction pipe 17 . A temperature sensor (not shown) for detecting the temperature inside the container 5 and the temperatures of the first and second mold component materials 31 and 32 is provided inside the container 5 .

不活性ガス供給装置4は、不活性ガス(例えば、窒素ガス)を貯留する貯留タンク(図示省略)と、貯留タンクに接続されるガス供給管18と、ガス供給管18の下流端に接続され容器5の内部へ延びるガス供給ノズル19と、を備える。ガス供給ノズル19の下流端は、容器5内に設けられ、不活性ガスを冷却ガスとして容器5内へ供給する冷却ガス供給口20を構成する。ガス供給管18には、容器5内への不活性ガスの供給を停止可能に許容する開閉バルブ21が設けられている。 The inert gas supply device 4 includes a storage tank (not shown) that stores an inert gas (eg, nitrogen gas), a gas supply pipe 18 connected to the storage tank, and a downstream end of the gas supply pipe 18. and a gas supply nozzle 19 extending into the interior of the container 5 . A downstream end of the gas supply nozzle 19 is provided inside the container 5 and constitutes a cooling gas supply port 20 for supplying an inert gas as a cooling gas into the container 5 . The gas supply pipe 18 is provided with an opening/closing valve 21 that allows the supply of the inert gas into the container 5 to be stopped.

吸引口8と冷却ガス供給口20とは、保持機構6に保持された第1及び第2の金型部品素材31,32を挟んで対峙する位置に配置されている。第1及び第2の金型部品素材31,32を挟んで対峙するとは、各々が第1及び第2の金型部品素材31,32を通り、且つ互いに直交する3つの仮想の平面であって、各平面が容器5内を2つの空間に分割する3つの分割面の何れに対しても、吸引口8と冷却ガス供給口20とが互いに異なる空間に位置することを意味する。本実施形態では、第1及び第2の金型部品素材31,32を通る水平面(第1の分割面)22に対し、吸引口8は一方の空間(図2中の上側の空間)に、冷却ガス供給口20は他方の空間(図2中の下側の空間)にそれぞれ位置し、第1及び第2の金型部品素材31,32を通る第1の鉛直面(第2の分割面)23に対し、吸引口8は一方の空間(図3中の下側の空間)に、冷却ガス供給口20は他方の空間(図3中の上側の空間)にそれぞれ位置し、第1及び第2の金型部品素材31,32を通り第1の鉛直面23に直交する第2の鉛直面(第3の分割面)24に対し、吸引口8は一方の空間(図3中の左側の空間)に、冷却ガス供給口20は他方の空間(図3中の右側の空間)にそれぞれ位置する。 The suction port 8 and the cooling gas supply port 20 are arranged at positions facing each other with the first and second mold component blanks 31 and 32 held by the holding mechanism 6 therebetween. The first and second mold part blanks 31, 32 facing each other are three imaginary planes that pass through the first and second mold part blanks 31, 32 and are perpendicular to each other. , means that the suction port 8 and the cooling gas supply port 20 are located in mutually different spaces with respect to any of the three dividing planes, each of which divides the inside of the container 5 into two spaces. In this embodiment, the suction port 8 is located in one space (upper space in FIG. The cooling gas supply ports 20 are located in the other space (lower space in FIG. 2), and are located on a first vertical plane (second dividing plane) passing through the first and second mold component blanks 31 and 32. ) 23, the suction port 8 is located in one space (lower space in FIG. 3), and the cooling gas supply port 20 is located in the other space (upper space in FIG. 3). The suction port 8 is located in one space (left side in FIG. 3), and the cooling gas supply port 20 is located in the other space (the space on the right side in FIG. 3).

次に、成形金型部品の製造方法について説明する。 Next, a method for manufacturing the molding die component will be described.

本実施形態の製造方法は、素材加工工程と、拡散接合準備工程と、拡散接合工程(接合工程)と、熱処理工程と、製品加工工程とを備える。熱処理工程は、焼入れ工程と、焼戻し工程とを含む。 The manufacturing method of this embodiment includes a material processing step, a diffusion bonding preparation step, a diffusion bonding step (bonding step), a heat treatment step, and a product processing step. The heat treatment process includes a hardening process and a tempering process.

素材加工工程では、切削加工等により、第1の金型部品素材31を有底のテーパ穴33を有する円柱体状に形成し、第2の金型部品素材32を、テーパ穴33に押圧挿入されるテーパ軸体状に形成する。 In the material processing step, the first mold part material 31 is formed into a cylindrical body having a bottomed tapered hole 33 by cutting or the like, and the second mold part material 32 is pressed into the tapered hole 33. formed into a tapered shaft shape.

拡散接合準備工程では、発熱体7による加熱を開始せず、真空ポンプ3を停止し、ガス供給管18の開閉バルブ21を閉止した状態で、拡散接合炉2の容器5を開けて、第1及び第2の金型部品素材31,32を容器5内に設置し、保持機構6によって加圧密着させて保持する。第1及び第2の金型部品素材31,32は、第1の金型部品素材31のテーパ穴33が上方に開口し、テーパ穴33に第2の金型部品素材32が挿入された状態で保持される。 In the diffusion bonding preparation step, heating by the heating element 7 is not started, the vacuum pump 3 is stopped, and the opening/closing valve 21 of the gas supply pipe 18 is closed. And the second mold part materials 31 and 32 are placed in the container 5 and held in pressure contact by the holding mechanism 6 . The first and second mold part blanks 31 and 32 are in a state in which the tapered hole 33 of the first mold part blank 31 opens upward and the second mold part blank 32 is inserted into the tapered hole 33. is held in

拡散接合工程では、ガス供給管18の開閉バルブ21が閉止した状態(容器5内への不活性ガスの供給を停止した状態)で、真空ポンプ3を駆動し、容器5内の気体を吸引口8から吸引して排出し、容器5内を減圧(真空化)する。本実施形態では、拡散接合工程の間、真空ポンプ3を停止せずに継続して駆動する。また、発熱体7による加熱を開始し、容器5内(及び/又は第1又は第2の金型部品素材31,32)が目標温度(例えば950℃)に達した後、圧力と温度とを所定時間(例えば2時間)維持して拡散接合を生じさせ、所定時間経過後に発熱体7による加熱を終了する(図4中に実線で示す)。なお、容器5内の残留酸素を低減するため、真空ポンプ3の駆動後であって加熱開始前に、開閉バルブ21を一時的に開放して不活性ガスの供給を許容してもよい。また、保持機構6による第1及び第2の金型部品の押圧力を、拡散接合工程中に変化させてもよい。また、拡散接合のために必要な温度及び時間は、上記に限定されず、任意に設定可能である。 In the diffusion bonding step, the vacuum pump 3 is driven with the opening/closing valve 21 of the gas supply pipe 18 closed (the supply of the inert gas into the container 5 is stopped), and the gas in the container 5 is sucked out. 8 is sucked and discharged, and the inside of the container 5 is decompressed (evacuated). In this embodiment, the vacuum pump 3 is continuously driven without being stopped during the diffusion bonding process. Further, heating by the heating element 7 is started, and after the inside of the container 5 (and/or the first or second mold component materials 31, 32) reaches the target temperature (for example, 950° C.), the pressure and temperature are changed. Diffusion bonding is caused by maintaining for a predetermined time (for example, 2 hours), and heating by the heating element 7 is terminated after the predetermined time (indicated by a solid line in FIG. 4). In order to reduce residual oxygen in the container 5, after the vacuum pump 3 is driven and before heating is started, the on-off valve 21 may be temporarily opened to allow the supply of inert gas. Also, the pressing force of the holding mechanism 6 on the first and second mold parts may be changed during the diffusion bonding process. Moreover, the temperature and time required for diffusion bonding are not limited to the above, and can be set arbitrarily.

焼入れ工程では、拡散接合工程後の第1及び第2の金型部品素材31,32を容器5内に設置し、真空ポンプ3の駆動を継続したまま、ガス供給管18の開閉バルブ21を開放する。すなわち、容器5内の気体(冷却ガス供給口20から供給された不活性ガスを含む)を吸引口8から継続して排出しながら、冷却ガス供給口20から不活性ガスを容器5内へ供給する(容器5内の負圧によって不活性ガスが冷却ガス供給口20から容器5内に吸引される)。不活性ガスの供給により、第1及び第2の金型部品素材31,32が急冷される(図4中に破線で示す)。なお、焼入れ工程では、保持機構6による第1及び第2の金型部品素材31,32の押圧力を拡散接合工程から変化(例えば低減や解除)させてもよい。 In the quenching process, the first and second mold component materials 31 and 32 after the diffusion bonding process are placed in the container 5, and the opening/closing valve 21 of the gas supply pipe 18 is opened while the vacuum pump 3 continues to be driven. do. That is, while the gas (including the inert gas supplied from the cooling gas supply port 20) in the container 5 is continuously discharged from the suction port 8, the inert gas is supplied into the container 5 from the cooling gas supply port 20. (inert gas is sucked into the container 5 from the cooling gas supply port 20 by the negative pressure in the container 5). By supplying the inert gas, the first and second mold component blanks 31, 32 are rapidly cooled (indicated by broken lines in FIG. 4). In the quenching process, the pressing force of the holding mechanism 6 against the first and second mold component materials 31 and 32 may be changed (for example, reduced or released) from that in the diffusion bonding process.

焼戻し工程では、焼入れ工程後の第1及び第2の金型部品素材31,32を容器5内に設置したまま、ガス供給管18の開閉バルブ21を閉止し、発熱体7による加熱を開始し、容器5内(及び/又は第1又は第2の金型部品素材31,32)が目標温度(拡散接合工程よりも低い目標温度)に達した後、圧力と温度とを所定時間(拡散接合工程とは別に設定した所定時間)維持して焼戻しを行ない、所定時間経過後に発熱体7による加熱を終了する(図4中に一点鎖線で示す)。 In the tempering process, the opening/closing valve 21 of the gas supply pipe 18 is closed while the first and second mold component materials 31 and 32 after the quenching process are placed in the container 5, and heating by the heating element 7 is started. , after the inside of the container 5 (and/or the first or second mold component materials 31, 32) reaches the target temperature (target temperature lower than the diffusion bonding step), the pressure and temperature are maintained for a predetermined time (diffusion bonding After the predetermined time has passed, heating by the heating element 7 is terminated (indicated by the dashed line in FIG. 4).

製品加工工程では、焼戻し工程後の第1及び第2の金型部品素材31,32を、切削加工等によって所望の形状に形成する。 In the product processing process, the first and second mold component materials 31 and 32 after the tempering process are formed into desired shapes by cutting or the like.

本実施形態によれば、拡散接合炉2の容器5内で拡散接合工程と焼入れ工程と焼戻し工程とを行なうので、焼入れ工程及び焼戻し工程を行なうための熱処理炉を別途設ける必要がなく、装置コストを低減することができる。 According to this embodiment, the diffusion bonding process, the quenching process, and the tempering process are performed in the container 5 of the diffusion bonding furnace 2, so there is no need to separately provide a heat treatment furnace for performing the quenching process and the tempering process, and the equipment cost is reduced. can be reduced.

拡散接合された第1及び第2の金型部品素材31,32を拡散接合炉2内で徐冷せず、高温状態の第1及び第2の金型部品素材31,32を拡散接合炉2内で急冷して焼入れを行なうので、従来のように拡散接合後の第1及び第2の金型部品素材を拡散接合炉内で徐冷し、熱処理炉内で第1及び第2の金型部品素材の焼入れ及び焼戻しを行なう場合(図5参照)と比較して、拡散接合後の第1及び第2の金型部品素材を拡散接合炉内で徐冷する時間、拡散接合後の第1及び第2の金型部品素材を拡散接合炉から取出して熱処理炉内に設置する時間、及び焼入れのために熱処理炉内で第1及び第2の金型部品素材を再加熱する時間を省略することができ、製造時間を短縮することができる。 The diffusion-bonded first and second mold part materials 31, 32 are not slowly cooled in the diffusion bonding furnace 2, and the first and second mold part materials 31, 32 in a high temperature state are transferred to the diffusion bonding furnace 2. Since quenching is performed by quenching in the furnace, the first and second mold component materials after diffusion bonding are slowly cooled in the diffusion bonding furnace and the first and second mold parts are placed in the heat treatment furnace as in the conventional method. Compared to the case where the component materials are quenched and tempered (see FIG. 5), the time for slowly cooling the first and second mold component materials after diffusion bonding in the diffusion bonding furnace, And the time for removing the second mold part material from the diffusion bonding furnace and placing it in the heat treatment furnace, and the time for reheating the first and second mold part materials in the heat treatment furnace for quenching are omitted. can reduce manufacturing time.

焼入れ工程において、吸引口8からの気体の吸引を継続することにより、不活性ガスを容器5内に流通させるので、不活性ガスを容器5内に流通させるための手段を別途設ける必要がなく、装置コストを低減することができる。また、第1及び第2の金型部品素材31,32を冷却する冷却ガスとして不活性ガスを用いるので、第1及び第2の金型部品素材31,32の酸化を抑制することができる。 In the quenching process, the inert gas is circulated in the container 5 by continuing to suck the gas from the suction port 8, so there is no need to separately provide a means for circulating the inert gas in the container 5. Equipment costs can be reduced. In addition, since the inert gas is used as the cooling gas for cooling the first and second mold component materials 31, 32, oxidation of the first and second mold component materials 31, 32 can be suppressed.

また、吸引口8と冷却ガス供給口20とが第1及び第2の金型部品素材31,32を挟んで対峙するので、冷却ガス供給口20から吸引口8へ向かって流れる不活性ガスの少なくとも一部は、第1及び第2の金型部品素材31,32の外面上を通過する。このため、第1及び第2の金型部品素材31,32を不活性ガスによって効率良く冷却することができる。 In addition, since the suction port 8 and the cooling gas supply port 20 face each other with the first and second mold component materials 31 and 32 interposed therebetween, the inert gas flowing from the cooling gas supply port 20 toward the suction port 8 is At least part of it passes over the outer surfaces of the first and second mold part blanks 31,32. Therefore, the first and second mold part blanks 31, 32 can be efficiently cooled by the inert gas.

以上、本発明について、上記実施形態に基づいて説明を行ったが、本発明は上記実施形態の内容に限定されるものではなく、当然に本発明を逸脱しない範囲で適宜変更が可能である。すなわち、この実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれることは勿論である。 Although the present invention has been described above based on the above embodiments, the present invention is not limited to the contents of the above embodiments, and can be appropriately modified without departing from the scope of the present invention. In other words, all other embodiments, examples, operation techniques, etc. made by those skilled in the art based on this embodiment are naturally included in the scope of the present invention.

例えば、上記実施形態では、焼戻し工程を拡散接合炉2内で行なっているが、焼入れ工程の後に第1及び第2の金型部品素材31,32を拡散接合炉2から取出し、他の加熱炉で焼戻し工程を行なってもよい。 For example, in the above embodiment, the tempering process is performed in the diffusion bonding furnace 2, but after the quenching process, the first and second mold component materials 31, 32 are removed from the diffusion bonding furnace 2 and placed in another heating furnace. You may perform a tempering process at.

本発明は、成形金型部品の製造方法及び製造装置に広く適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be widely applied to manufacturing methods and manufacturing apparatuses for mold parts.

1:製造装置
2:拡散接合炉
3:真空ポンプ
4:不活性ガス供給装置
5:容器
6:保持機構(保持手段)
7:発熱体(加熱手段)
8:吸引口
17:吸引管
18:ガス供給管
19:ガス供給ノズル
20:冷却ガス供給口
31:第1の金型部品素材
32:第2の金型部品素材
1: Manufacturing Equipment 2: Diffusion Bonding Furnace 3: Vacuum Pump 4: Inert Gas Supply Device 5: Container 6: Holding Mechanism (Holding Means)
7: heating element (heating means)
8: Suction port 17: Suction pipe 18: Gas supply pipe 19: Gas supply nozzle 20: Cooling gas supply port 31: First mold part material 32: Second mold part material

Claims (4)

拡散接合炉の容器内で第1の金型部品素材と第2の金型部品素材とを加圧密着させて昇温し、前記第1の金型部品素材と前記第2の金型部品素材とを拡散接合する拡散接合工程と、
前記拡散接合工程後の高温状態の前記第1及び第2の金型部品素材を、前記容器内で急冷する焼入れ工程と、を備える
ことを特徴とする成形金型部品の製造方法。
The first mold part material and the second mold part material are brought into pressure contact with each other in a container of a diffusion bonding furnace, and the temperature is raised to increase the temperature of the first mold part material and the second mold part material. A diffusion bonding step of diffusion bonding the
and a quenching step of rapidly cooling the first and second mold part materials in a high temperature state after the diffusion bonding step in the container.
請求項1に記載の製造方法であって、
前記容器には、前記容器内の気体を吸引して排出する吸引口と、不活性ガスを冷却ガスとして前記容器内へ供給する冷却ガス供給口とが設けられ、
前記拡散接合工程では、前記冷却ガス供給口から前記容器内への不活性ガスの供給を停止した状態で、前記容器内の気体を前記吸引口から排出して前記容器内を真空化し、
前記焼入れ工程では、前記容器内の気体を前記吸引口から継続して排出しながら、前記冷却ガス供給口から不活性ガスを前記容器内へ供給することにより、前記第1及び第2の金型部品素材を急冷する
ことを特徴とする成形金型部品の製造方法。
The manufacturing method according to claim 1,
The container is provided with a suction port for sucking and discharging the gas in the container, and a cooling gas supply port for supplying an inert gas as a cooling gas into the container,
In the diffusion bonding step, in a state in which the supply of inert gas from the cooling gas supply port to the inside of the container is stopped, the gas in the container is discharged from the suction port to evacuate the inside of the container,
In the quenching step, the inert gas is supplied into the container from the cooling gas supply port while continuously discharging the gas in the container from the suction port, thereby removing the first and second molds. A method of manufacturing a molding die part characterized by quenching a material for the part.
請求項2に記載の製造方法であって、
前記吸引口と前記冷却ガス供給口とは、前記第1及び第2の金型部品素材を挟んで対峙する
ことを特徴とする成形金型部品の製造方法。
The manufacturing method according to claim 2,
A method of manufacturing a molding die part, wherein the suction port and the cooling gas supply port face each other with the first and second die part materials sandwiched therebetween.
容器と、前記容器内で第1の金型部品素材と第2の金型部品素材とを加圧密着させて保持する保持手段と、前記保持手段に保持された前記第1及び第2の金型部品素材を加熱する加熱手段と、前記容器内の気体を吸引して排出する吸引口と、を有する拡散接合炉と、
前記容器に設けられ、不活性ガスを冷却ガスとして前記容器内へ供給する冷却ガス供給口と、を備え、
前記吸引口と前記冷却ガス供給口とは、前記第1及び第2の金型部品素材を挟んで対峙する
ことを特徴とする成形金型部品の製造装置。
a container; holding means for holding the first mold part material and the second mold part material in pressure contact with each other in the container; and the first and second metals held by the holding means. a diffusion bonding furnace having heating means for heating a mold part material and a suction port for sucking and discharging gas in the container;
a cooling gas supply port provided in the container for supplying an inert gas as a cooling gas into the container;
An apparatus for manufacturing molding die parts, wherein the suction port and the cooling gas supply port are opposed to each other with the first and second die part materials sandwiched therebetween.
JP2021215253A 2021-12-28 2021-12-28 Method for manufacturing molding die parts Active JP7212872B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021215253A JP7212872B1 (en) 2021-12-28 2021-12-28 Method for manufacturing molding die parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021215253A JP7212872B1 (en) 2021-12-28 2021-12-28 Method for manufacturing molding die parts

Publications (2)

Publication Number Publication Date
JP7212872B1 JP7212872B1 (en) 2023-01-26
JP2023098468A true JP2023098468A (en) 2023-07-10

Family

ID=85035349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021215253A Active JP7212872B1 (en) 2021-12-28 2021-12-28 Method for manufacturing molding die parts

Country Status (1)

Country Link
JP (1) JP7212872B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167817A (en) * 1985-12-26 1987-07-24 Shimadzu Corp Cooling fan starter for vacuum heat treatment furnace
JPH05230528A (en) * 1992-02-24 1993-09-07 Daido Steel Co Ltd Method for accelerating gas circulation cooling in vacuum furnace
JPH11151581A (en) * 1997-11-19 1999-06-08 Denso Corp Joining method for steel material and manufacture of metallic mold
JP2006266615A (en) * 2005-03-24 2006-10-05 Daido Steel Co Ltd Heat treatment furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167817A (en) * 1985-12-26 1987-07-24 Shimadzu Corp Cooling fan starter for vacuum heat treatment furnace
JPH05230528A (en) * 1992-02-24 1993-09-07 Daido Steel Co Ltd Method for accelerating gas circulation cooling in vacuum furnace
JPH11151581A (en) * 1997-11-19 1999-06-08 Denso Corp Joining method for steel material and manufacture of metallic mold
JP2006266615A (en) * 2005-03-24 2006-10-05 Daido Steel Co Ltd Heat treatment furnace

Also Published As

Publication number Publication date
JP7212872B1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
TWI537070B (en) Molding system of metal sheet and its forming method
TWI501823B (en) Hot rolling forming method and hot rolling forming mold
CN111842637B (en) Composite forming die and forming method for titanium alloy deep cavity component
TWI551554B (en) The forming device and forming method of glass frame body
CA2952325C (en) Molding apparatus, method for replacing components of molding apparatus, and replacement unit for molding apparatus
JP2017515689A (en) Method of forming parts from sheet metal alloy
KR101912181B1 (en) Continuous casting-forging manufacturing equipment
JP7212872B1 (en) Method for manufacturing molding die parts
JPS6126528A (en) Apparatus for producing pressed lens
WO2022012062A1 (en) Glass forming device and method
JP2007131466A (en) Method and apparatus for manufacturing optical lens
TWI481570B (en) Continuous work piece mold equipment and a manufacturing method thereof
CN117500763A (en) Method for forming glass articles, in particular three-dimensionally formed sheet glass articles, device for carrying out said method and use of a metal melt for carrying out said method
CN112779382B (en) Heat treatment method for hot work die steel
JP2006035430A (en) Hot press and hot-pressing method
TWM519021U (en) Sheet metal shape forming system
US20170341139A1 (en) Unit Cell Titanium Casting
JP3185159B2 (en) Glass lens molding equipment
TWI603791B (en) Sheet metal shape forming system
TWI605900B (en) Lance nozzle, method for manufacturing lance nozzle, apparatus for manufacturing lance nozzle
TW201808835A (en) Heat isolation layer of airtight chamber for molded three-dimensional glass continuous forming device capable of avoiding the release of oxygen from the heat isolation layer during heating, thereby reducing oxidation of components
JP2519835B2 (en) Method and apparatus for hot isostatic pressing
US20170320131A1 (en) Unit Cell Titanium Casting
JPH04310717A (en) Gate seal injection molding device and injection molding method using the same device
TWI483907B (en) The forming method and forming device of optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221229

R150 Certificate of patent or registration of utility model

Ref document number: 7212872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150