JPS6216748B2 - - Google Patents

Info

Publication number
JPS6216748B2
JPS6216748B2 JP59020353A JP2035384A JPS6216748B2 JP S6216748 B2 JPS6216748 B2 JP S6216748B2 JP 59020353 A JP59020353 A JP 59020353A JP 2035384 A JP2035384 A JP 2035384A JP S6216748 B2 JPS6216748 B2 JP S6216748B2
Authority
JP
Japan
Prior art keywords
solder
melting point
high melting
tape
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59020353A
Other languages
Japanese (ja)
Other versions
JPS60166192A (en
Inventor
Kaisuke Shiroyama
Sukeyuki Kikuchi
Keizo Kosugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2035384A priority Critical patent/JPS60166192A/en
Publication of JPS60166192A publication Critical patent/JPS60166192A/en
Publication of JPS6216748B2 publication Critical patent/JPS6216748B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/268Pb as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は半導体のダイボンデインクをはじめ、
リード線接続、部品組立等に使用される高融点ハ
ンダに関するものである。 従来各種ジヨイントや半導体のダイボンデイン
グには、Pb―Sn、Pb―In又はこれ等にAgを添加
したPbベースの高融点ハンダ、Sn―Sb、Sn―
Ag、Sn―Au等のSnベースの高融点ハンダ、Sn
―Cd、Sn―Zn―Cd等のCd入り高融点ハンダ、
Au―Si等の貴金属ベースの高融点ハンダなどが
用いられていたが、近年半導体の高密度化に伴な
い、ダイボンデイングには固相線温度が約300℃
以上の安価な高融点ハンダが望まれるようになつ
た。また半導体用基板には通常Niメツキが施さ
れているため、ハンダにはNiに対してのハンダ
付け性と作業性の面から固相線温度と液相線温度
が相互に接近していることが望まれている。 前記Pbベースの高融点ハンダやSnベースの高
融点ハンダは何れも溶融温度が低く、固相線温度
は最高で、300℃前後であり、Cd入り高融点ハン
ダはCdの添加により固、液相線温度が上昇する
も、Cdが有害物質であるため使用が規制されて
いる。また貴金属ベースの高融点ハンダは高い
固、液相線温度、例えばAu―2wt%Si(以下wt
%を単に%と略記)で固相線温度370℃、液相線
温度390℃が得られも、貴金属を多量に含むため
高価である。 本発明はこれに鑑み種々検討の結果、安価な
Pb―SnハンダにCuやNiを単独又は複合添加する
ことにより、固、液相線温度を高めることができ
ること、この合金は表面に酸化物を生じ易く、こ
れを何らかの物理的、化学的方法で除去する必要
があることを知見し、更に検討の結果、これにP
を添加することにより酸化物の発生を防止しうる
ことを知り、安価な高融点ハンダを開発したもの
で、Sn0.5〜5%とP0.01〜0.3%を含み、更に
Cu0.05〜5%、Ni0.05〜5%の範囲内で何れか1
種又は2種を5%以下含み、残部Pbからなるこ
とを特徴とするものである。 即ち本発明はPb―Sn高融点ハンダにCu又は/
及びNiを添加することにより、固、液相線温度
を高め、これにPを添加することにより高融点ハ
ンダとしての特性を損なうことなく、Cu又は/
及びNiの添加に基づく表面酸化を防止したもの
で、本発明ハンダの組成を上記の如く限定したの
は次の理由によるものである。 Sn含有量を0.5〜5%と限定したのは、Snはハ
ンダ付け性を付与するための必須元素であるが、
CuやNiの添加にSn―Cu母合金とSn―Ni母合金を
用いるところから相対的に下限を0.5%以上とす
る必要があり、0.5%未満では融点の高い母合金
を使用することになり、Pbの酸化、蒸発等の問
題もあつてハンダの製造が困難となる。一方Sn
含有量が上限を越えるとハンダの固相線温度が低
下するためである。Cu含有量を0.05〜5%、Ni
含有量を0.05〜5%と限定したのは、何れも下限
未満では固相線温度が十分に上らず、上限を越え
ると上記の如く高い融点の母合金を使用すること
になり、ハンダの製造が困難となるためである。
またCuとNiの合計含有量を5%以下と限定した
のは、5%を越えるとハンダの粘性を高め、ハン
ダの流動性及びハンダ付け性を低下するためであ
る。またP含有量を0.01〜0.3%と限定したの
は、0.01%未満ではハンダの表面酸化を十分に防
止することができず、0.3%を越えるとハンダの
固相線温度が低下するためである。 本発明ハンダの製造にはPb単体、Sn単体、Sn
―Cu母合金、Sn―Ni母合金、Cu―P母合金又は
Ni―P母合金を用い、所望の組成に配合し、こ
れを溶解鋳造して常法に従つて加工すればよい。
また半導体のダイボンデイング用の成形ハンダ
は、第1図に示すように矢印方向に回転する冷却
ロール1上に、下端にノズル3を設けたルツボ2
を配置し、ルツボ2内に溶湯4を装入して、該溶
湯4を矢印方向に加圧してノズル3を通し冷却ロ
ール1上に噴出することによりテープ又は線状体
5とする単ロール法、又は第2図に示すように矢
印方向に回転して接動する1対の冷却ロール1
a,1b上に、下端にノズル3を設けたルツボ2
を配置し、ルツボ2内に溶湯4を装入して、該溶
湯4を矢印方向に加圧してノズル3を通し冷却ロ
ール1a,1b間に噴出することによりテープ又
は線状体5とする双ロール法により、溶湯から直
接厚さ20μm〜1mmのテープ又は線状体とし、こ
れを必要に応じて切断、打抜き、曲げ加工するこ
とにより造られる。また図示してないが、回転水
中噴出法によつても直径0.1〜0.3mm程度の線状体
を得ることができる。尚この場合冷却水中に水溶
性フラツクスや酸化防止剤を入れておくとよい。 以下本発明を実施例について詳細に説明する。 Sn―10%Cu母合金、Sn―3%Ni母合金、Cu―
8%P母合金、Ni―10%P母合金、Pb単体、Sn
単体を用い、第1表に示す組成の高融点ハンダを
溶製し、これを第1図に示す単ロール法により巾
12mm、厚さ40〜50μmのテープ状ハンダを製造し
た。 このようにして製造したテープ状ハンダについ
て熱分析により固相線温度を測定すると共に、ニ
ツケル板上でのハンダ濡れ性を試べた。更にテー
プ状ハンダを用い、第3図に示すようにハンダ液
相線温度より100℃高い温度の加熱ブロツク6上
に厚さ2mmのNi板7a,7bをハンダ5aを介
して重ね合わせ、ガスノズル8からN2+20%H2
ガスを吹き付けた状態でハンダ付けを行ない、そ
の接合強度を測定した。これ等の結果を第1表に
併記した。
The present invention includes die bonding ink for semiconductors,
This relates to high melting point solder used for lead wire connections, parts assembly, etc. Conventionally, for die bonding of various joints and semiconductors, Pb-Sn, Pb-In, Pb-based high melting point solder with Ag added to these, Sn-Sb, Sn-
Sn-based high melting point solder such as Ag, Sn-Au, Sn
- High melting point solder containing Cd such as Cd, Sn-Zn-Cd,
High melting point solders based on noble metals such as Au-Si have been used, but in recent years, with the increasing density of semiconductors, die bonding has a solidus temperature of approximately 300°C.
There has been a demand for such inexpensive high melting point solders. In addition, since semiconductor substrates are usually plated with Ni, the solidus temperature and liquidus temperature of the solder must be close to each other in terms of solderability and workability to Ni. is desired. Both the Pb-based high melting point solder and the Sn-based high melting point solder have low melting temperatures, with a maximum solidus temperature of around 300°C, and the Cd-containing high melting point solder has a high melting point that changes from solid to liquid phase due to the addition of Cd. Although the temperature is rising, the use of Cd is regulated because it is a hazardous substance. In addition, noble metal-based high melting point solders have high solidus and liquidus temperatures, such as Au-2wt%Si (hereinafter wt%Si).
Although it can achieve a solidus temperature of 370°C and a liquidus temperature of 390°C, it is expensive because it contains a large amount of precious metals. In view of this, the present invention was developed as a result of various studies.
By adding Cu or Ni alone or in combination to Pb-Sn solder, the solid and liquidus temperatures can be increased.This alloy tends to generate oxides on the surface, and this can be removed by some physical or chemical method. It was discovered that it was necessary to remove it, and as a result of further consideration, P
Knowing that the generation of oxides can be prevented by adding
Any one within the range of Cu0.05~5%, Ni0.05~5%
It is characterized by containing 5% or less of one species or two species, and the remainder being Pb. That is, the present invention adds Cu or/ to Pb-Sn high melting point solder.
By adding and Ni, the solid and liquidus temperatures are increased, and by adding P to this, Cu or /
The composition of the solder of the present invention is limited as described above for the following reason. The Sn content was limited to 0.5-5% because Sn is an essential element for imparting solderability.
Since Sn-Cu mother alloy and Sn-Ni mother alloy are used for adding Cu and Ni, it is necessary to set the lower limit to 0.5% or more, and if it is less than 0.5%, a mother alloy with a high melting point will be used. There are also problems such as oxidation and evaporation of Pb, making it difficult to manufacture solder. On the other hand, Sn
This is because when the content exceeds the upper limit, the solidus temperature of the solder decreases. Cu content 0.05~5%, Ni
The reason for limiting the content to 0.05 to 5% is that if the content is below the lower limit, the solidus temperature will not rise sufficiently, and if it exceeds the upper limit, a mother alloy with a high melting point as mentioned above will be used, which makes it difficult to solder. This is because manufacturing becomes difficult.
Moreover, the reason why the total content of Cu and Ni is limited to 5% or less is that if it exceeds 5%, the viscosity of the solder increases and the fluidity and solderability of the solder decreases. Furthermore, the P content was limited to 0.01 to 0.3% because if it is less than 0.01%, surface oxidation of the solder cannot be sufficiently prevented, and if it exceeds 0.3%, the solidus temperature of the solder will decrease. . In the production of the solder of the present invention, Pb alone, Sn alone, Sn
-Cu master alloy, Sn-Ni master alloy, Cu-P master alloy or
Using a Ni--P master alloy, it may be blended to a desired composition, melted and cast, and processed according to a conventional method.
Molded solder for die bonding of semiconductors is produced in a crucible 2 with a nozzle 3 provided at the lower end on a cooling roll 1 rotating in the direction of the arrow as shown in FIG.
A single roll method in which a molten metal 4 is placed in a crucible 2, and the molten metal 4 is pressurized in the direction of the arrow and jetted through a nozzle 3 onto a cooling roll 1 to form a tape or linear body 5. , or a pair of cooling rolls 1 that rotate in the direction of the arrow and move in contact as shown in FIG.
A crucible 2 with a nozzle 3 provided at the lower end on a and 1b
The molten metal 4 is charged into the crucible 2, and the molten metal 4 is pressurized in the direction of the arrow and jetted through the nozzle 3 between the cooling rolls 1a and 1b to form a tape or linear body 5. The tape or linear body with a thickness of 20 μm to 1 mm is formed directly from the molten metal by the roll method, and the tape or linear body is cut, punched, or bent as necessary. Although not shown, a linear body having a diameter of about 0.1 to 0.3 mm can also be obtained by a rotating underwater jetting method. In this case, it is advisable to add water-soluble flux or antioxidant to the cooling water. Hereinafter, the present invention will be described in detail with reference to examples. Sn-10% Cu master alloy, Sn-3% Ni master alloy, Cu-
8% P master alloy, Ni-10% P master alloy, Pb alone, Sn
A high melting point solder having the composition shown in Table 1 is melted using a single piece, and it is rolled into a width by the single roll method shown in Figure 1.
A solder tape having a size of 12 mm and a thickness of 40 to 50 μm was manufactured. The solidus temperature of the tape-shaped solder produced in this way was measured by thermal analysis, and the wettability of the solder on a nickel plate was tested. Furthermore, using tape-shaped solder, as shown in FIG. 3, Ni plates 7a and 7b with a thickness of 2 mm are stacked on the heating block 6, which is heated to a temperature 100°C higher than the solder liquidus temperature, via the solder 5a, and the gas nozzle 8 From N 2 +20%H 2
Soldering was performed while gas was being sprayed, and the joint strength was measured. These results are also listed in Table 1.

【表】【table】

【表】 第1表から明らかなように、本発明ハンダNo.1
〜22は何れも従来ハンダNo.32と比較し、固相線温
度がはるかに高く、Ni板に対するハンダ濡れ性
も良好で、接合強度も高いことが判る。 これに対し本発明の組成範囲より外れる比較ハ
ンダでは固相線温度が低いか又はハンダ濡れ性が
劣るか、溶解鋳造が困難となる。即ちSn含有量
の多い比較ハンダNo.23〜24、Cu又はNi含有量の
少ない比較ハンダNo.25〜26では何れも固相線温度
が低い、Cu又はNi含有量の多い比較ハンダNo.27
〜28では何れも溶解鋳造が困難のため、テープ状
ハンダの製造を中止した。またCuとNiの合計含
有量が多い比較ハンダNo.29及びP含有量の少ない
比較ハンダNo.30ではハンダ濡れ性が悪く、良好な
ハンダ接合が得られず、P含有量の多い比較ハン
ダNo.31では固相線温度が低いことが判る。 このように本発明ハンダは、固相線温度が310
℃以上のPbを主成分とする安価な高融点ハンダ
で、半導体のダイボンデイングを安定化し、接合
性の良い信頼性の高い接合が得られる等工業上顕
著な効果を奏するものである。
[Table] As is clear from Table 1, the solder of the present invention is No. 1.
It can be seen that solder No. 22 has a much higher solidus temperature than the conventional solder No. 32, has good solder wettability to the Ni plate, and has high bonding strength. On the other hand, comparative solders outside the composition range of the present invention either have a low solidus temperature or poor solder wettability, or are difficult to melt and cast. In other words, Comparative solder No. 23 to 24 with a high Sn content and Comparative solder No. 25 to 26 with a low Cu or Ni content all have low solidus temperatures, and Comparative solder No. 27 with a high Cu or Ni content.
-28, production of tape-shaped solder was discontinued due to difficulty in melting and casting. In addition, comparative solder No. 29, which has a high total content of Cu and Ni, and comparative solder No. 30, which has a low P content, have poor solder wettability and cannot obtain a good solder joint. It can be seen that the solidus temperature is low at .31. In this way, the solder of the present invention has a solidus temperature of 310
This is an inexpensive high melting point solder whose main component is Pb with a temperature above ℃, and it has remarkable industrial effects such as stabilizing die bonding of semiconductors and obtaining highly reliable bonding with good bonding properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はテープ状の本発明ハンダを製造する単
ロール法の説明図、第2図はテープ状の本発明ハ
ンダを製造する双ロール法の説明図、第3図は接
合強度測定用の接合方法の説明図である。 1…冷却ロール、2…ルツボ、3…ノズル、4
…溶湯、5…テープ状ハンダ、6…加熱ブロツ
ク、7a,7b…Ni板、8…ガスノズル。
Figure 1 is an explanatory diagram of the single roll method for manufacturing the tape-shaped solder of the present invention, Figure 2 is an explanatory diagram of the twin-roll method for manufacturing the tape-shaped solder of the present invention, and Figure 3 is a diagram of the joint for measuring the joint strength. It is an explanatory diagram of a method. 1...Cooling roll, 2...Crucible, 3...Nozzle, 4
... Molten metal, 5... Tape-shaped solder, 6... Heating block, 7a, 7b... Ni plate, 8... Gas nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 Sn0.5〜5wt%とP0.01〜0.3wt%を含み、更
にCu0.05〜5wt%、Ni0.05〜5wt%の範囲内で何
れか1種又は2種を合計5wt%以下を含み、残部
Pbからなる高融点ハンダ。
1 Contains 0.5 to 5 wt% of Sn and 0.01 to 0.3 wt% of P, and further contains one or two types within the range of 0.05 to 5 wt% of Cu and 0.05 to 5 wt% of Ni, in total not more than 5 wt%. , remainder
High melting point solder made of Pb.
JP2035384A 1984-02-07 1984-02-07 High melting point solder Granted JPS60166192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2035384A JPS60166192A (en) 1984-02-07 1984-02-07 High melting point solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035384A JPS60166192A (en) 1984-02-07 1984-02-07 High melting point solder

Publications (2)

Publication Number Publication Date
JPS60166192A JPS60166192A (en) 1985-08-29
JPS6216748B2 true JPS6216748B2 (en) 1987-04-14

Family

ID=12024748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035384A Granted JPS60166192A (en) 1984-02-07 1984-02-07 High melting point solder

Country Status (1)

Country Link
JP (1) JPS60166192A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614507B2 (en) 2011-12-27 2014-10-29 千住金属工業株式会社 Sn-Cu lead-free solder alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128459A (en) * 1978-03-29 1979-10-05 Keiichirou Ebihara Phosphorrcontaining solder alloy and additive alloy therefor
JPS5838694A (en) * 1981-08-31 1983-03-07 Toshiba Corp Solder for semiconductor die bonding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128459A (en) * 1978-03-29 1979-10-05 Keiichirou Ebihara Phosphorrcontaining solder alloy and additive alloy therefor
JPS5838694A (en) * 1981-08-31 1983-03-07 Toshiba Corp Solder for semiconductor die bonding

Also Published As

Publication number Publication date
JPS60166192A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
US5378294A (en) Copper alloys to be used as brazing filler metals
JP3671815B2 (en) Solder composition and soldered article
JP3296289B2 (en) Solder alloy
JP2599890B2 (en) Lead-free solder material
CN108971793B (en) Low-temperature lead-free solder
CN103079751A (en) Bi-sn-based high-temperature solder alloy
KR20140050728A (en) Lead-free solder compositions
JP3353662B2 (en) Solder alloy
KR101203534B1 (en) Brazing solder alloy based on copper, product thereof and method for brazing
JP3878305B2 (en) Zn alloy for high temperature soldering
TWI781050B (en) Lead-free and antimony-free solder alloys, solder balls, and solder joints
TWI784761B (en) Lead-free and antimony-free solder alloys, solder balls, and solder joints
CN109848606A (en) A kind of Sn-Ag-Cu lead-free solder of high interfacial bonding strength and preparation method thereof
JPS6216748B2 (en)
JP3835582B2 (en) Zn alloy for high temperature soldering
EP0128356B1 (en) Homogeneous low melting point copper based alloys
KR100399338B1 (en) Compositions and Preparation Methods of Solder Alloys for Surface Mount Technology Applications
JPH0422595A (en) Cream solder
JPS6186091A (en) Sn-sb alloy solder
JP4079238B2 (en) Solder wire with metal Na core
JPS6188996A (en) Sn-sb alloy solder
JPH0534118B2 (en)
JPS60170595A (en) High-melting solder
JPS6192797A (en) Sn-sb alloy solder
JPS60148692A (en) Pb base high melting solder