JPS6216716B2 - - Google Patents

Info

Publication number
JPS6216716B2
JPS6216716B2 JP53113744A JP11374478A JPS6216716B2 JP S6216716 B2 JPS6216716 B2 JP S6216716B2 JP 53113744 A JP53113744 A JP 53113744A JP 11374478 A JP11374478 A JP 11374478A JP S6216716 B2 JPS6216716 B2 JP S6216716B2
Authority
JP
Japan
Prior art keywords
treated water
ferric hydroxide
added
iron
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53113744A
Other languages
Japanese (ja)
Other versions
JPS5539281A (en
Inventor
Asao Horiuchi
Tadao Pponma
Toshio Shimooka
Toyoichi Yokomaku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO ENJINIARINGU KK
Original Assignee
KANKYO ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO ENJINIARINGU KK filed Critical KANKYO ENJINIARINGU KK
Priority to JP11374478A priority Critical patent/JPS5539281A/en
Publication of JPS5539281A publication Critical patent/JPS5539281A/en
Publication of JPS6216716B2 publication Critical patent/JPS6216716B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、有機性排水の処理に際して、触媒と
して利用された鉄塩を中和し、析出させた水酸化
第2鉄を回収して再利用する方法に関するもので
更に詳しくは、有機性排水の生物学的処理水に残
留している有機物を前記の如くして回収された水
酸化第2鉄スラツジを用いて吸着除去のため使用
する有機性排水の処理方法に関するものである。 従来、有機性物質を含有する排水の処理におい
ては、設備が簡単なこと、ランニングコスストが
安価であることから、生物学的処理方式が多く用
られているが、近年になつて、湖沼、内湾等の閉
鎖水域の富栄養化の防止、あるいは又、環境保全
の立場から規制は益々強化されている。 特に、生物学的処理においては、排水中の生物
易分解性の物質は除去されるものの、生物難分解
性物質あるいは生物学的処理の過程で生成される
生物代謝老廃物質、つまりフミン酸、フルボ酸が
蓄積し、排水中の化学的酸素要求量(以下
CODMoと略す)は高水準に保たれるため、この
CODMoを低下させる方法が開発されている。 しかしながらいずれの方法も一長一短があり、
更に優れた処理方法が要求されており、本発明者
らは、鋭意研究を重ねた結果、本発明を完成した
ものである。 本発明は、有機性排水の生物学的処理水に水酸
化第2鉄を添加して有機物を吸着させたのち、懸
濁物質と共に凝集分離する第一工程、第一工程の
処理水に過酸化水素と共に鉄塩触媒を添加して、
該処理水中に未だ含有される有機物を酸化分解す
る第二工程、第二工程の処理水にアルカリを添加
し、鉄塩触媒を水酸化第2鉄スラツジとして析出
分離せしめる第三工程からなる有機性排水の処理
方法において、第三工程から回収される水酸化第
2鉄スラツジを第一工程の吸着剤としてPH3以上
で用いることを特徴とする有機性排水の処理方法
を要旨とするものである。 以下本発明を詳細に説明する。 生物学的処理水のCODMoの低減化技術は、一
般には、鉄およびアルミニウムの酸性塩を凝集剤
として用い、中和して発生する金属水酸化物と共
に、有機物を凝集分離する方法が用いられてい
る。しかし、薬剤として金属酸性塩、および中和
剤を使用するため、大量の有機性排水に利用する
場合には、ランニングコストに問題があるばかり
でなく、処理性能も必ずしも満足するものではな
かつた。 本発明者らは、有機性排水の生物学的処理水に
水酸化第2鉄を添加して有機物を吸着させたの
ち、懸濁物質と共に凝集分離する第一工程、第一
工程の処理水に過酸化水素と共に鉄塩触媒を添加
して、該処理水中に未だ含有される有機物を酸化
分解する第二工程、第二工程の処理水にアルカリ
を添加し、鉄塩触媒を水酸化第2鉄スラツジとし
て析出分離せしめる第三工程からなる有機性排水
の処理方法において、第三工程で回収した水酸化
第2鉄スラツジは、酸化還元電位の高い、過酸化
水素を用い触媒により強力に酸化されているた
め、有機物の部分酸化物を含むことなく無害であ
り、かつ酸性領域のPH3以上で強力に有機物を吸
着する性質を有することを確めた。 上記の如き優れた吸着能を有する水酸化第2鉄
スラツジは、第二工程で触媒として用いられる酸
性鉄塩より生成されるので、吸着剤として高価な
第2鉄塩を用いる必要がなく、他方酸性鉄塩とし
て鉄鋼業、チタン製造業等から大量に排出される
硫酸第1鉄、塩化第1鉄等の産業廃棄物が利用可
能であるため公害防止上極めて顕著な効果を奏す
るので、産業上稗益するところが極めて大であ
る。 本発明の特徴は、第三工程で析出分離された水
酸化第2鉄スラツジを回収して第一工程の吸着剤
として再利用する点にある。 第三工程で、回収された水酸化第2鉄スラツジ
を用いて生物学的処理水中の有機物を吸着後、凝
集助剤を添加して、凝集分離した第一工程処理水
に、第二工程において撹拌を加えつつ酸化触媒と
して、新たな新鮮な鉄塩を加えると同時に過酸化
水素が添加される。 第二工程において酸化触媒として、添加される
酸化鉄塩は、硫酸第1鉄、塩化第1鉄等のFe
()イオン、硫酸第2鉄、塩化第2鉄等のFe
()イオンを含有する化合物あるいは、その水
溶液であるが、酸化触媒活性、価格の低廉さか
ら、硫酸第1鉄が用いられる。 酸性鉄塩は、過酸化水素と反応して強力な酸化
性を有する水酸基ラジアルを生成すると共に、加
水分解し、反応至適のPH4以下になるが、必要に
応じ、最適反応PHに調整するため、PH調整剤を添
加し、反応を進行させる。 酸化触媒としての酸性鉄塩の添加量は、被酸化
性物質の種類、濃度、過酸化水素の注入量ならび
に反応時間により決定することが可能であるが、
通常は第一工程で吸着剤として再使用される鉄の
有効量に合せ決定されるもので、第一工程と同様
鉄原子換算で10ppm及至5000ppmの範囲で添加
される。 又、過酸化水素の添加量は、特に限定はないが
排水中の被酸化性物質の種類、濃度、処理水質目
標等により決定されるが、通常は排水中のCOPMo
量に対して、過酸化水素中の有効酸素換算で0.1
乃至2倍の範囲で添加される。 酸化反応時間は、排水中の被酸化性物質の種
類、濃度、反応温度、鉄塩触媒量、ならびに過酸
化水素量により異なるが、通常は常温で5分乃至
24時間で完結する。反応温度は高い程、迅速に効
率良く反応する傾向にあるが、常温においても十
分本発明の目的は達成されるので、特に限定され
るものではない。 酸化反応処理水中の鉄塩触媒を析出分離する
際、鉄塩触媒がFe()イオンの形態で存在す
る場合は、PH4以上で水酸化第2鉄フロツクを生
成するのでこれを分離し、第一工程の有機物吸着
剤として使用する。しかし、酸化反応処理水中の
鉄塩触媒が未反応のFe()イオンの形態で存
在している場合には、PH7以上に維持しながら、
曝気を行ない、Fe()イオンをFe()イオ
ンに変化させて、水酸化第2鉄として析出分離さ
せ、第一工程の吸着剤として利用する。 酸化反応処理水に、未反応の過酸化水素が残留
している場合には、CODMo測定時において
CODMo値として検出され、見掛けのCODMo値を
増大させるため、第1鉄塩、つまり硫酸第1鉄、
塩化第1鉄等のFe()イオンを添加し過酸化
水素を還元除去する。その際Fe()イオンは
酸化され水酸化第2鉄を生成するため、鉄塩触媒
から生成された水酸化第2鉄と共に、第一工程で
有機物吸着剤として再利用することができる。 第三工程において中和に要するアルカリ剤は水
に溶解してアルカリ性を呈する苛性ソーダ、苛性
カリ、消石灰であれば良いが、沈降性、価格等を
考慮して消石灰が用いられる。中和された処理水
は、凝集助剤を添加して沈澱あるいは浮上法によ
つて固液分離され、水酸化第2鉄フロツクと処理
水に分けられ、処理水は放流されるか、あるいは
又、PH調整ののち、より高度の処理を目標として
他の工程に送られる。一方、凝集分離された水酸
化第2鉄は、スラツジ濃縮槽で濃度を調整したの
ち第一工程に送られ吸着剤として利用される。 第一工程では、生物難分解性物質、生物代謝老
廃物質等のCODMoを含有する下水、し尿、廃棄
物埋立場浸出水、および有機性産業排水の生物学
的処理水に第三工程で回収された水酸化第2鉄を
吸着剤として添加し、PHを3以上に調整して、撹
拌を加えながら有機物を吸着除去する。 生物学的処理水中の有機物吸着に使用される回
収水酸化第2鉄スラツジ量は、排水中に含まれる
有機物の種類、濃度によりその添加量は異なるも
のの、回収水酸化第2鉄スラツジ量に比例して、
処理効果は良好になるが、通常は鉄原子換算で
10ppm乃至5000ppm添加される。 第一工程においてPHを酸性に調整するPH調整剤
は、強酸性を呈する鉱酸であれば良いが、処理水
の富栄養化等を考慮して通常は硫酸、塩酸が用い
られる。 第一工程において吸着時のPHを酸性に維持する
理由は、被吸着性物質の種類により一率ではない
が有機性排水の生物学的処理水は生物難分解性物
質、生物代謝老廃物質を主体とした分子量数千乃
至数万の有機高分子物質がPH3以上で良好に吸着
するためであり、好ましくはPH4乃至5が望まし
い。吸着に要する時間は被吸着物質の種類、PH条
件によつて異なるが、5分乃至300分で吸着を完
了する。 水酸化第2鉄スラツジで吸着処理された処理水
は、凝縮助剤が加えられ凝集沈澱あるいは又、凝
縮加圧浮上により、排水中の懸濁物質と共に除去
される。処理水から分離除去された汚泥は脱水後
中性にしたのち処分され、一方処理水は、第二工
程に送られる。 以上述べた如く、本発明は、第一工程により、
有機性排水の生物学的処理水中に含有され、従来
処理が著しく困難であつた生物難分解性物質、生
物代謝老廃物質を第三工程で回収される水酸化第
2鉄スラツジを有効に利用して吸着除去すること
により、有機物量を大巾に減少させることができ
るので、第二工程で鉄塩触媒の存在下で酸化分解
する際の過酸化水素の添加量を大巾に低減するこ
とを可能にする。之に加えて産業廃棄物として多
量に排出されている第1鉄意を鉄塩触媒として有
効に利用することができるので、本発明は今後
益々高度な処理が要求される排水の工業的処理方
法として極めて価値の高いものである。 次に実施例をあげて本発明の方法を、さらに具
体的に説明するが、本発明はこれらの実施例によ
つて限定されるものではない。 実施例 1 廃棄物埋立場浸出汚水の生物学的硝化脱窒処理
水に対して、本発明に従い、第三工程において沈
降分離せしめた水酸化第2鉄スラツジを鉄原子換
算により100〜4000ppmまで変化させて添加し、
60分間の撹拌により有機物質を吸着除去せしめ、
さらに凝集助剤を添加し静置沈降後の上澄水の水
質を測定した結果を第1図に示す。なお、このと
きの凝集時のPHを苛性ソーダによりPH7に調整し
た。 さらに、第一工程において第三工程よりの水酸
化第2鉄スラツジを鉄原子換算により600ppm添
加して吸着凝集せしめた処理水を、第二工程にお
いて鉄塩触媒として硫酸第1鉄を鉄原子換算で
600ppm、過酸化水素(有効酸素換算)50ppmを
添加し、酸性PHにて3時間にわたり撹拌による酸
化分解処理したときの処理水質を表―1に示す。
The present invention relates to a method for neutralizing iron salts used as catalysts and recovering and reusing precipitated ferric hydroxide during the treatment of organic wastewater. The present invention relates to a method for treating organic wastewater in which organic matter remaining in biologically treated water is adsorbed and removed using the ferric hydroxide sludge recovered as described above. Traditionally, biological treatment methods have been widely used to treat wastewater containing organic substances because of their simple equipment and low running costs. Regulations are becoming increasingly strict in order to prevent eutrophication of closed water areas such as inner bays and to protect the environment. In particular, biological treatment removes easily biodegradable substances from wastewater, but it also removes biodegradable substances or biometabolic waste substances produced during the biological treatment process, such as humic acid and fulvic acid. Acids accumulate and reduce the chemical oxygen demand (below) in the wastewater.
COD Mo ) is kept at a high level.
Methods have been developed to lower COD Mo. However, each method has advantages and disadvantages,
There is a need for a more excellent treatment method, and the present inventors have completed the present invention as a result of extensive research. The present invention involves the first step of adding ferric hydroxide to biologically treated water of organic wastewater to adsorb organic matter, and then coagulating and separating it together with suspended solids. By adding an iron salt catalyst along with hydrogen,
A second step of oxidatively decomposing the organic matter still contained in the treated water, and a third step of adding an alkali to the treated water of the second step to precipitate and separate the iron salt catalyst as ferric hydroxide sludge. The gist of the present invention is a method for treating organic wastewater, characterized in that ferric hydroxide sludge recovered from the third step is used as an adsorbent in the first step at a pH of 3 or higher. The present invention will be explained in detail below. The technology for reducing COD Mo in biologically treated water generally uses acid salts of iron and aluminum as flocculants to coagulate and separate organic matter along with the metal hydroxides generated by neutralization. ing. However, since metal acid salts and neutralizing agents are used as chemicals, when used for large amounts of organic wastewater, not only are running costs problematic, but the treatment performance is not always satisfactory. The present inventors added ferric hydroxide to biologically treated water of organic wastewater to adsorb organic matter, and then added ferric hydroxide to the treated water in the first step, in which the organic matter was coagulated and separated along with suspended solids. A second step in which an iron salt catalyst is added together with hydrogen peroxide to oxidize and decompose organic matter still contained in the treated water, an alkali is added to the treated water in the second step, and the iron salt catalyst is converted into ferric hydroxide. In a method for treating organic wastewater consisting of a third step of precipitation and separation as sludge, the ferric hydroxide sludge recovered in the third step is strongly oxidized by a catalyst using hydrogen peroxide, which has a high redox potential. Therefore, it was confirmed that it is harmless as it does not contain any partial oxides of organic substances, and has the property of strongly adsorbing organic substances in the acidic range of PH3 or higher. The ferric hydroxide sludge with excellent adsorption capacity as described above is produced from the acidic iron salt used as a catalyst in the second step, so there is no need to use expensive ferric salt as an adsorbent; Industrial wastes such as ferrous sulfate and ferrous chloride, which are discharged in large quantities from the iron and steel industry and titanium manufacturing industry, can be used as acidic iron salts, and are extremely effective in preventing pollution. There is a huge amount to gain from this. A feature of the present invention is that the ferric hydroxide sludge precipitated and separated in the third step is recovered and reused as an adsorbent in the first step. In the third step, the collected ferric hydroxide sludge is used to adsorb organic matter in the biologically treated water, and then a coagulation aid is added to the coagulated and separated first step treated water, and in the second step Hydrogen peroxide is added at the same time as new fresh iron salt is added as an oxidation catalyst with stirring. The iron oxide salt added as an oxidation catalyst in the second step is Fe such as ferrous sulfate and ferrous chloride.
Fe such as () ions, ferric sulfate, ferric chloride, etc.
(2) A compound containing ions or an aqueous solution thereof, ferrous sulfate is used because of its oxidation catalytic activity and low price. Acidic iron salts react with hydrogen peroxide to generate hydroxyl radials with strong oxidizing properties, and are hydrolyzed to the optimum reaction pH of 4 or less, but if necessary, the reaction pH can be adjusted to the optimum reaction pH. , a PH regulator is added, and the reaction is allowed to proceed. The amount of acidic iron salt added as an oxidation catalyst can be determined depending on the type and concentration of the oxidizable substance, the amount of hydrogen peroxide injected, and the reaction time.
Usually, it is determined according to the effective amount of iron that is reused as an adsorbent in the first step, and as in the first step, it is added in the range of 10 ppm to 5000 ppm in terms of iron atoms. In addition, the amount of hydrogen peroxide added is determined depending on the type and concentration of oxidizable substances in the wastewater, the target quality of the treated water, etc., although there are no particular limitations .
0.1 in terms of effective oxygen in hydrogen peroxide
It is added in a range of 2 to 2 times. The oxidation reaction time varies depending on the type and concentration of the oxidizable substance in the wastewater, the reaction temperature, the amount of iron salt catalyst, and the amount of hydrogen peroxide, but it is usually 5 minutes to 5 minutes at room temperature.
It will be completed in 24 hours. The higher the reaction temperature, the more quickly and efficiently the reaction tends to occur, but the purpose of the present invention can be sufficiently achieved even at room temperature, so it is not particularly limited. When precipitating and separating the iron salt catalyst in the oxidation reaction treatment water, if the iron salt catalyst exists in the form of Fe() ions, it will generate ferric hydroxide flocs at pH 4 or above, so this is separated and Used as an organic adsorbent in processes. However, if the iron salt catalyst in the oxidation reaction treatment water exists in the form of unreacted Fe() ions, while maintaining the pH at 7 or higher,
Aeration is performed to change Fe() ions to Fe() ions, which are precipitated and separated as ferric hydroxide, which is used as an adsorbent in the first step. If unreacted hydrogen peroxide remains in the oxidation reaction treated water, it will be
Ferrous salts, i.e. ferrous sulfate, are detected as COD Mo values and increase the apparent COD Mo value.
Fe() ions such as ferrous chloride are added to reduce and remove hydrogen peroxide. At this time, the Fe() ions are oxidized to produce ferric hydroxide, which can be reused as an organic matter adsorbent in the first step together with the ferric hydroxide produced from the iron salt catalyst. The alkaline agent required for neutralization in the third step may be caustic soda, caustic potash, or slaked lime, which dissolve in water and exhibit alkalinity, but slaked lime is used in consideration of sedimentation properties, cost, etc. The neutralized treated water is separated into solid-liquid by precipitation or flotation by adding a coagulation aid, and separated into ferric hydroxide flocs and treated water, and the treated water is either discharged or After PH adjustment, it is sent to other processes for more advanced treatment. On the other hand, the coagulated and separated ferric hydroxide is sent to the first step after its concentration is adjusted in a sludge concentration tank and used as an adsorbent. In the first step, biologically treated water from sewage, human waste, waste landfill leachate, and organic industrial wastewater containing COD Mo , such as persistent biodegradable substances and biometabolic waste materials, is collected in the third step. The resulting ferric hydroxide is added as an adsorbent, the pH is adjusted to 3 or more, and organic substances are adsorbed and removed while stirring. The amount of recovered ferric hydroxide sludge used to adsorb organic matter in biologically treated water is proportional to the amount of recovered ferric hydroxide sludge, although the amount added varies depending on the type and concentration of organic matter contained in the wastewater. do,
The treatment effect is good, but usually in terms of iron atoms.
Added from 10ppm to 5000ppm. The PH adjuster for adjusting the PH to acidic in the first step may be any mineral acid exhibiting strong acidity, but sulfuric acid or hydrochloric acid is usually used in consideration of eutrophication of the treated water. The reason for maintaining the pH during adsorption at an acidic level in the first step is that it varies depending on the type of adsorbed substance, but biologically treated water of organic wastewater mainly contains biorefractory substances and biometabolic waste substances. This is because organic polymeric substances having a molecular weight of several thousand to tens of thousands can be adsorbed well at a pH of 3 or higher, preferably a pH of 4 to 5. The time required for adsorption varies depending on the type of substance to be adsorbed and PH conditions, but adsorption is completed in 5 to 300 minutes. The treated water adsorbed by the ferric hydroxide sludge is removed together with suspended solids in the wastewater by coagulation sedimentation or condensation pressurized flotation with the addition of a condensation aid. The sludge separated and removed from the treated water is dehydrated and neutralized before being disposed of, while the treated water is sent to the second process. As described above, in the present invention, in the first step,
Biologically treated organic wastewater The ferric hydroxide sludge recovered in the third process is effectively used to remove biologically persistent substances and biologically metabolic waste substances that are extremely difficult to treat in the past. Since the amount of organic matter can be greatly reduced by adsorption and removal, the amount of hydrogen peroxide added during oxidative decomposition in the presence of an iron salt catalyst in the second step is greatly reduced. enable. In addition, since ferrous iron, which is discharged in large quantities as industrial waste, can be effectively used as an iron salt catalyst, the present invention can be applied to an industrial wastewater treatment method that will require increasingly sophisticated treatment in the future. It is of extremely high value. Next, the method of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 According to the present invention, the ferric hydroxide sludge separated by sedimentation in the third step was changed to 100 to 4000 ppm in terms of iron atoms for the biologically nitrified and denitrified treated water of waste landfill leachate sewage. and add
Organic substances are adsorbed and removed by stirring for 60 minutes.
Furthermore, a flocculation aid was added and the quality of the supernatant water after static sedimentation was measured and the results are shown in FIG. At this time, the pH at the time of aggregation was adjusted to PH7 with caustic soda. Furthermore, in the first step, 600 ppm of ferric hydroxide sludge from the third step was added in terms of iron atoms to adsorb and coagulate the treated water, and in the second step, ferrous sulfate was added as an iron salt catalyst to the treated water. in
Table 1 shows the quality of the treated water when oxidative decomposition treatment was carried out by adding 600 ppm and 50 ppm of hydrogen peroxide (effective oxygen equivalent) and stirring for 3 hours at acidic pH.

【表】 実施例 2 廃棄物埋立浸出汚水の生物学的硝化脱窒処理水
に対して、本発明に従い第三工程において沈降分
離せしめた水酸化第2鉄スラツジを鉄原子換算に
より100〜4000ppmまで変化させて添加し、60分
間の撹拌により有機物質を吸着除去せしめ、さら
に凝集助剤を添加し静置沈降後の上澄水の水質を
測定した結果を第2図に示す。なお、このときの
凝集時のPHを硫酸によりPH4に調整した。 さらに、第一工程において第三工程からの回収
水酸化第2鉄スラツジ(鉄添加量600ppm(鉄原
子換算))を添加して吸着凝集せしめた処理水を
第二工程において鉄塩触媒として硫酸第1鉄を鉄
原子換算で600ppm、過酸化水素(有効酸素換
算)50ppmを添加し、酸性PHにて3時間にわた
り撹拌による酸化分解処理したときの処理水質を
表―2に示す。
[Table] Example 2 Ferric hydroxide sludge, which was sedimented and separated in the third step according to the present invention, was added to biologically nitrified and denitrified treated water of waste landfill leachate to a concentration of 100 to 4000 ppm in terms of iron atoms. Figure 2 shows the results of measuring the water quality of the supernatant water after adding a different amount of water, adsorbing and removing organic substances by stirring for 60 minutes, adding a coagulation aid, and allowing the mixture to settle. Note that the pH at the time of aggregation was adjusted to 4 using sulfuric acid. Furthermore, in the first step, the treated water, which was adsorbed and coagulated by adding recovered ferric hydroxide sludge (iron addition amount 600 ppm (iron atom equivalent)) from the third step, is treated with sulfuric acid as an iron salt catalyst in the second step. Table 2 shows the quality of the treated water when oxidative decomposition treatment was carried out by adding 600 ppm of iron as iron atoms and 50 ppm of hydrogen peroxide (in terms of available oxygen) and stirring for 3 hours at acidic pH.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の第1工程における上澄水の
水質を示すグラフ図、第2図は実施例2の第1工
程における上澄水の水質を示すグラフである。
FIG. 1 is a graph showing the quality of supernatant water in the first step of Example 1, and FIG. 2 is a graph showing the quality of supernatant water in the first step of Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性排水の生物学的処理水に水酸化第2鉄
を添加して有機物を吸着させたのち、懸濁物質と
共に凝集分離する第一工程、第一工程の処理水に
過酸化水素と共に鉄塩触媒を添加して、該処理水
中に未だ含有される有機物を酸化分解する第二工
程、第二工程の処理水にアルカリを添加し、鉄塩
触媒を水酸化第2鉄スラツジとして析出分離せし
める第三工程からなる有機性排水の処理方法にお
いて、第三工程から回収される水酸化第2鉄スラ
ツジを第一工程の吸着剤としてPH3以上で用いる
ことを特徴とする有機性排水の処理方法。
1 The first step is to add ferric hydroxide to the biologically treated water of organic wastewater to adsorb organic matter, and then coagulate and separate it along with the suspended solids. A second step in which a salt catalyst is added to oxidize and decompose organic substances still contained in the treated water, an alkali is added to the treated water in the second step, and the iron salt catalyst is precipitated and separated as ferric hydroxide sludge. A method for treating organic wastewater comprising a third step, characterized in that ferric hydroxide sludge recovered from the third step is used as an adsorbent in the first step at a pH of 3 or higher.
JP11374478A 1978-09-16 1978-09-16 Organic waste water treating method Granted JPS5539281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11374478A JPS5539281A (en) 1978-09-16 1978-09-16 Organic waste water treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11374478A JPS5539281A (en) 1978-09-16 1978-09-16 Organic waste water treating method

Publications (2)

Publication Number Publication Date
JPS5539281A JPS5539281A (en) 1980-03-19
JPS6216716B2 true JPS6216716B2 (en) 1987-04-14

Family

ID=14620016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11374478A Granted JPS5539281A (en) 1978-09-16 1978-09-16 Organic waste water treating method

Country Status (1)

Country Link
JP (1) JPS5539281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010427A1 (en) * 1990-12-07 1992-06-25 Environ Umweltschutz Aktiengesellschaft Method of water purification

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477605B (en) * 2022-02-22 2023-05-02 浙江宏电环保股份有限公司 Membrane concentrate treatment equipment with sedimentation treatment structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255256A (en) * 1975-10-31 1977-05-06 Toa Gosei Chem Ind Waste water treating method
JPS5370561A (en) * 1976-12-07 1978-06-23 Ebara Infilco Co Ltd Method of treating solid waste smill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255256A (en) * 1975-10-31 1977-05-06 Toa Gosei Chem Ind Waste water treating method
JPS5370561A (en) * 1976-12-07 1978-06-23 Ebara Infilco Co Ltd Method of treating solid waste smill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010427A1 (en) * 1990-12-07 1992-06-25 Environ Umweltschutz Aktiengesellschaft Method of water purification

Also Published As

Publication number Publication date
JPS5539281A (en) 1980-03-19

Similar Documents

Publication Publication Date Title
JP4662059B2 (en) Purification process for steel manufacturing wastewater
JP2002030352A (en) Method for recovering valuable metal from metal- containing waste water
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
JPS6216716B2 (en)
JP2621090B2 (en) Advanced wastewater treatment method
JP3680742B2 (en) Method for treating wastewater containing dioxins
JP4552164B2 (en) Waste liquid treatment method
JPS6339308B2 (en)
KR100495765B1 (en) Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby
JP4527896B2 (en) Wastewater treatment equipment
KR100208477B1 (en) Method for treating industrial waste water by flocculation and oxidation
JPS591118B2 (en) How to treat organic wastewater
JPH0141110B2 (en)
JPH0585240B2 (en)
JPS6339307B2 (en)
JPH11319889A (en) Treatment of selenium-containing waste water and device therefor
CN114573088B (en) Method for treating wastewater by using iron-tannic acid through synchronous oxidation/coagulation and application
JPS591117B2 (en) How to treat organic wastewater
JP2002018485A (en) Method for treating metal-containing wastewater and method for recovery of valence metal from the metal- containing wastewater
JPS6339309B2 (en)
JPH0433518B2 (en)
JPS63258692A (en) Treatment of organic sewage
JPH0314519B2 (en)
JPS591120B2 (en) Advanced treatment method for organic wastewater
JPS591119B2 (en) Advanced treatment method for organic wastewater