JPS62166071A - Method for measuring heat storage quantity of refractories - Google Patents

Method for measuring heat storage quantity of refractories

Info

Publication number
JPS62166071A
JPS62166071A JP701686A JP701686A JPS62166071A JP S62166071 A JPS62166071 A JP S62166071A JP 701686 A JP701686 A JP 701686A JP 701686 A JP701686 A JP 701686A JP S62166071 A JPS62166071 A JP S62166071A
Authority
JP
Japan
Prior art keywords
refractory
refractories
ladle
cable
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP701686A
Other languages
Japanese (ja)
Inventor
Yoshihiro Igaki
井垣 至弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP701686A priority Critical patent/JPS62166071A/en
Publication of JPS62166071A publication Critical patent/JPS62166071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To improve the reliability of the measurement of heat storage quantity by inputting square wave pulses to cable sensors embedded into the inside surface of a ladle, determining the average temp. of the refractories in the embedded parts and determining the heat storage quantity from the average temp., average thickness and specific heat of the refractories. CONSTITUTION:The cable sensors 10a, 10e are embedded into the refractories on the inside surface of the ladle 40 and the square wave pulses are selectively impressed from a pulse generator 12 via a coaxial cable 18 to said sensors. The synthesized waves of the input pulses and the reflected pulses from the respective parts of the sensors are observed in an oscilloscope 14. The lengths and temps. in the parts where the sensors 10a-10e are embedded are inputted to respective arithmetic processing circuits which display the average thickness D and average temp. T of the refractories on display devices 32, 34. An arithmetic circuit 36 for the heat storage quantity determines the heat storage quantity Q as Qinfinity D.c.T from the average temp. T, average thickness D, and specific heat C of the refractories. The reliability in measuring the heat storage quantity of the ladle is thus improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、製鋼工場における取鍋の内面を構成する耐火
物の蓄熱量計測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the amount of heat stored in a refractory that constitutes the inner surface of a ladle in a steel factory.

〔従来の技術〕[Conventional technology]

製鋼工程における溶鋼温度は最終的には、造塊または連
続鋳造における鋳込温度を規定値に確保するものである
ことが重要であり、このため、ン容鋼の受入れ容器であ
る取鍋での温度降下代を考慮して上記鋳込温度になるよ
うに転炉での出鋼温度が制御される。
It is important that the temperature of molten steel in the steelmaking process ultimately maintains the specified value for the casting temperature in ingot making or continuous casting. The tapping temperature in the converter is controlled so that the above casting temperature is achieved in consideration of the temperature drop.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

取鍋での温度降下代は一般には取鍋の使用回数や前回の
鋳込終了からの経過時間等によりモデル的に演算して求
めているのが現状である。しかしこの方法では推定値に
大きなばらつきがあって、しばしば鋳込温度の的中不良
が生ずる。
Currently, the amount of temperature drop in the ladle is generally calculated using a model based on the number of times the ladle is used, the time elapsed since the last pouring, etc. However, this method has large variations in estimated values, often resulting in poor accuracy in casting temperature.

そこで取鍋耐火物の温度を実測して求めることがあり、
この場合耐火物の温度は一点だけでなく、耐火物の厚み
方向及び円周面方向の複数点の温度を計測する必要があ
る。
Therefore, the temperature of the refractory ladle may be measured and determined.
In this case, it is necessary to measure the temperature of the refractory not only at one point but at multiple points in the thickness direction and circumferential direction of the refractory.

従来高温度の計測法としては熱電式が広く用いられてい
るが、複数点の高温度計測にはその複数点の数だけの熱
電対を用いねばならず、取付は及び計測上の煩雑化は避
けられず、それに伴なう計測精度の低下は必至であった
Conventionally, thermoelectric methods have been widely used as a high temperature measurement method, but to measure high temperatures at multiple points, it is necessary to use as many thermocouples as there are multiple points, making installation and measurement complicated. This was unavoidable, and a corresponding decline in measurement accuracy was inevitable.

取鍋での温度降下化の算出には取鍋熱容量を知る必要が
あり、これには取鍋耐火物の質量mを求める必要がある
。この質量mは耐火物平均厚みDに比例するから、mの
代りにDを用いてもよく、そして耐火物厚みは溶損によ
り変るから推定もしくは実測が必要である。
To calculate the temperature drop in the ladle, it is necessary to know the heat capacity of the ladle, and for this it is necessary to find the mass m of the ladle refractory. Since this mass m is proportional to the average thickness D of the refractory, D may be used instead of m, and since the thickness of the refractory changes due to melting loss, estimation or actual measurement is required.

耐火物厚みの実測にはケーブルセンサを用いたTDR法
が有効である。そしてこのケーブルセンサを用いたTD
R法ではその埋込部位の温度計測も可能である。
The TDR method using a cable sensor is effective for actually measuring the thickness of refractories. And TD using this cable sensor
With the R method, it is also possible to measure the temperature of the implanted site.

本発明はか−る点に着目するものであり、ケーブルセン
サを利用して耐火物蓄熱量計測を簡潔に、信頼性高く行
なおうとするものである。
The present invention focuses on this point, and aims to simply and reliably measure the amount of heat stored in a refractory using a cable sensor.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、取鍋内面を構成する耐火物にケーブルセンサ
を埋込み、該耐火物より外出したケーブルセンサの一端
より矩形波パルスを入力し、該入力パルスとケーブルセ
ンサ各部からの反射パルスの合成波を観測し、該合成波
中の反射パルスよりケーブルセンサ埋設部の耐火物平均
温度を求め、また該耐火物の平均厚さを実測又は推定に
より求め、これらの耐火物平均温度Tと平均厚さDと耐
火物比熱Cとから耐火物蓄熱量QをQ  DcTとして
求めることを特徴とするものである。
The present invention embeds a cable sensor in a refractory that constitutes the inner surface of a ladle, inputs a rectangular wave pulse from one end of the cable sensor protruding from the refractory, and generates a composite wave of the input pulse and reflected pulses from various parts of the cable sensor. The average temperature of the refractories in the buried part of the cable sensor is determined from the reflected pulses in the composite wave, and the average thickness of the refractories is determined by actual measurement or estimation, and the average temperature T and average thickness of these refractories are determined. This method is characterized in that the refractory heat storage amount Q is determined as Q DcT from D and the refractory specific heat C.

〔作用〕[Effect]

この方法によれば、比較的簡潔な手段で取鍋蓄熱量を求
めることができ、取鍋での温度降下化を正確に知って転
炉出鋼温度を定めることができ、縫込温度通中不良など
を回避することができる。
According to this method, the amount of heat stored in the ladle can be determined by a relatively simple means, and the temperature drop in the converter can be determined by accurately knowing the temperature drop in the ladle. Defects can be avoided.

〔実施例〕〔Example〕

第1図で説明すると、40は取鍋で、外側の鉄皮と内側
の耐火物からなるが、この耐火物内にケーブルセンサ1
0a〜10eを埋設する。ケーブルセンサは具体的には
同軸ケーブル状センサであり (平行導体型ケーブル状
でもよいが)、ニッケルークロムの中心導体と、インコ
ネルの外部導体と、これらの導体間の酸化マグネシウム
からなる。
To explain with reference to Fig. 1, 40 is a ladle, which is made up of an outer iron shell and an inner refractory, and a cable sensor is placed inside this refractory.
0a to 10e are buried. The cable sensor is specifically a coaxial cable-like sensor (although a parallel-conductor cable may also be used), consisting of a nickel-chromium center conductor, an Inconel outer conductor, and magnesium oxide between these conductors.

ケーブルセンサ10a、10bは取鍋耐火物の胴部の円
周方向一部に亘って敷設され、またケーブルセンサ10
c、10dは該胴部の上下方向一部に亘って敷設され、
ケーブルセンサlOeは取鍋耐火物の厚さ方向に敷設さ
れる。センサ10.11と10b及び10cと10dは
、厚さ方向における各々の位置が異なる。これらのケー
ブルセンサは通常の(信号伝送用の)同軸ケーブル18
を介して切換スイッチ22に接続され、パルス発生器1
2からの矩形波パルスを選択的に(同時には1本のみが
)印加される。
The cable sensors 10a and 10b are laid over a part of the circumferential direction of the body of the ladle refractory, and the cable sensors 10a and 10b are
c, 10d are laid over a part of the body in the vertical direction,
The cable sensor lOe is laid in the thickness direction of the ladle refractory. The sensors 10.11 and 10b and 10c and 10d have different positions in the thickness direction. These cable sensors use regular (signal transmission) coaxial cables 18
is connected to the changeover switch 22 via the pulse generator 1
2 square wave pulses are selectively applied (only one at a time).

ケーブルセン連の一端に矩形波パルスを加えると、該パ
ルスはケーブルセンサを伝播して他端に至り、そこで反
射して送端に戻り、従って送端電位を観測すると最初は
送信パルスの電位が観測され、反射パルスが戻ると送信
パルスと反射パルスとの合成電位が観測され、送信パル
スが消滅すると反射パルス電位のみ観測される(送信パ
ルス幅はこの程度に長く選ばれる)。パルス送出から反
射パルスが戻ってくる迄の時間はケーブルセンサ長に比
例するから、送端電位観測で反射パルスが戻ってくる迄
の時間を知ればケーブルセンサ長を算出することができ
る。
When a square wave pulse is applied to one end of the cable sensor chain, the pulse propagates through the cable sensor and reaches the other end, where it is reflected and returns to the sending end. Therefore, when the sending end potential is observed, the potential of the sending pulse is initially When the reflected pulse returns, the combined potential of the transmitted pulse and the reflected pulse is observed, and when the transmitted pulse disappears, only the reflected pulse potential is observed (the transmitted pulse width is chosen to be this long). Since the time from pulse sending to the return of the reflected pulse is proportional to the cable sensor length, the cable sensor length can be calculated by knowing the time from sending end potential observation to the return of the reflected pulse.

取鍋耐大物の内表面は溶鋼に接触するので溶損し、該耐
火物の厚みは変化する。そこでケーブルセンサ10eの
ように耐火物厚み方向に埋設し、先端は溶鋼に晒される
ようにしておくと、溶鋼内に入ったケーブルセンサ部分
は熔失し、ケーブルセンサ端は耐火物内表面とはソ゛同
一になるので、上記のようにしてケーブルセンサ長を測
定することにより耐火物厚み、溶titを計測すること
ができる。
The inner surface of the ladle-resistant refractory comes into contact with molten steel, so it is eroded and the thickness of the refractory changes. Therefore, if the cable sensor 10e is buried in the thickness direction of the refractory and the tip is exposed to the molten steel, the part of the cable sensor that has entered the molten steel will melt, and the end of the cable sensor will be separated from the inner surface of the refractory. Therefore, by measuring the cable sensor length as described above, the refractory thickness and weld tit can be measured.

第2図(a)に送端で観測される波形の例を示ず。FIG. 2(a) does not show an example of the waveform observed at the sending end.

曲線Cの部分Caは同軸ケーブル18に、部分Cbはケ
ーブルセンサ10に対応し、部分Ccはケーブルセンサ
10の先端からの反射波に対応する。
A portion Ca of the curve C corresponds to the coaxial cable 18, a portion Cb corresponds to the cable sensor 10, and a portion Cc corresponds to the reflected wave from the tip of the cable sensor 10.

破線で示すようにケーブルセンサの先端部が溶損すると
曲線Cの先端反射波部分Ccも点線から実線の如く後退
し、この時間変化Δtから溶損量を知ることができる。
As shown by the broken line, when the tip of the cable sensor is eroded, the tip reflected wave portion Cc of the curve C also recedes from the dotted line as shown by the solid line, and the amount of erosion can be determined from this time change Δt.

即ち溶損量をΔLとすると、パルス速度はC/lである
から(こ−でCは光速、εは誘電率)、ΔL=Δt−C
/’lkである。耐火物の厚みは最初の厚みから溶損量
ΔLを差引いても、また原点O(矩形波送出タイミング
)から部分Ccまでの時間でケーブル全長を求め、それ
よりケーブル18の長さ等を差引いたものとして求めて
もよい。
That is, if the amount of erosion is ΔL, the pulse speed is C/l (here, C is the speed of light, and ε is the dielectric constant), so ΔL=Δt−C
/'lk. The thickness of the refractory can be determined by subtracting the amount of erosion ΔL from the initial thickness, or by calculating the total length of the cable from the time from origin O (rectangular wave sending timing) to section Cc, and subtracting the length of cable 18, etc. You can also ask for it as a thing.

ケーブルセンサ端からの反射波部分Ccは、該センサ端
の状態に関係している。即ち該センサ端が開放状態なら
立上り、短絡状態なら立下りである。また温度にも関係
しており、高温になる程立上りの傾斜は緩やかになり、
やがて立下りに転じ、その傾斜が急になって行く、第2
図(b)にこの状態を示す。従ってこの先端部の傾斜か
ら温度を知ることができる。また先端部の位置は、鎖線
で示す如き闇値レベルを引いて、曲線Cと闇値レベルの
交点として求めるが、先端部傾斜が変ると該交点はPI
、P2.・・・・・・となり、真の先端位置からずれて
くる。闇値レベルを曲線Cに接近させればこのずれは小
さくなるが、曲線Cは実際には直線でないから余り接近
させると途中で交点が発生して誤りを生じる。そこで成
る程度離す必要があり、上記ずれの発生が避けられない
が、これは傾斜部の勾配を求め、その勾配に応じた補正
値を用意しておいてそれを差引くという方法で修正でき
る。
The reflected wave portion Cc from the cable sensor end is related to the state of the sensor end. That is, if the sensor end is in an open state, it will rise, and if the sensor end is in a short-circuited state, it will be a fall. It is also related to temperature; the higher the temperature, the gentler the slope of the rise.
Eventually, the slope turns to a downward slope, and the slope becomes steeper.
Figure (b) shows this state. Therefore, the temperature can be determined from the slope of this tip. The position of the tip is obtained by subtracting the dark value level as shown by the chain line and finding the intersection of the curve C and the dark value level. However, if the tip slope changes, the intersection point becomes PI.
, P2. ..., and the tip deviates from the true tip position. If the dark value level is brought closer to the curve C, this deviation will be reduced, but since the curve C is not actually a straight line, if it is brought too close, an intersection will occur in the middle, causing an error. Therefore, the above-mentioned deviation is unavoidable, but this can be corrected by determining the slope of the slope, preparing a correction value corresponding to the slope, and subtracting it.

第2図(blの曲線Cの先端部を更に追跡するとやがて
一定レベルに落ち付く。第2図(C1にこの状態を示す
。立上りの勾配が大であったたちのは高いレベルに落ち
付き、立上りの勾配が緩やかであったものは低いレベル
に落ち付き、立下り側もこれに準する。従ってこの落ち
付いた状態のレベルで温度測定することができ、この方
が勾配を測定する必要もなく簡単である。
If you further trace the tip of the curve C in Figure 2 (bl), it will eventually settle down to a certain level. Figure 2 (C1) shows this state. If the rising slope is gentle, it will settle down to a low level, and the falling side will also follow this.Therefore, the temperature can be measured at this settled level, and there is no need to measure the slope. It's easy.

反射波はケーブルセンサの端部からだけでなく、温度異
常部があるとそこからも生じる。第2図(C)のCdは
この一例を示し、ケーブルセンサlOのこの部分に高温
部があると波形Cには凹みCdが現われる。この凹みC
dの深さく大きさ)も温度に対応している。従ってこの
深さから高温部の温度を知ることができる。このような
高温部は、耐火物が局部的に大きく′/g損して溶鋼が
ケーブルセンサに接近している様な場合に表われる。な
お凹みの深さと温度などを予めテーブルにしておくと、
温度算出が簡単である。
Reflected waves are generated not only from the ends of the cable sensor, but also from any temperature abnormalities. Cd in FIG. 2(C) shows an example of this, and if there is a high temperature part in this part of the cable sensor IO, a depression Cd appears in the waveform C. This dent C
The depth and size of d) also correspond to temperature. Therefore, the temperature of the high temperature area can be determined from this depth. Such a high-temperature area appears when the refractory has a locally large loss of '/g and molten steel approaches the cable sensor. In addition, if you prepare a table with the depth and temperature of the dent in advance,
Temperature calculation is easy.

第1図のオッシロスコープ14は第2図の曲線Cを表示
する。即ちパルス発生器12が発生する矩形波パルスは
サンプリングユニット16、切換スイッチ22を通って
該スイッチ22で選択された1つのケーブルセンサに入
力し、その送端電位がオッシロスコープで観測される。
The oscilloscope 14 of FIG. 1 displays curve C of FIG. That is, the rectangular wave pulse generated by the pulse generator 12 passes through the sampling unit 16 and the changeover switch 22, and is input to one cable sensor selected by the switch 22, and its sending end potential is observed with an oscilloscope.

矩形波パルスは周期的に発生し、オッシロスコープ14
の掃引は矩形波送出と同期して行なわれるから、オソシ
ロスコープの管面に表示される波形は静止波形である。
The square wave pulses are generated periodically and are detected by the oscilloscope 14.
Since the sweep is performed in synchronization with the rectangular wave transmission, the waveform displayed on the oscilloscope screen is a static waveform.

切換スイッチ22を操作して矩形波パルスを印加するケ
ーブルセンサを切換えれば、その切換えたケーブルセン
サに対する静止波形が表示される。この静止波形に対し
オペレータが前述の処理を行なって耐火物の厚み及び温
度分布を求めてもよい。処理回路またはコンピュータに
より求めてもよい。
When the changeover switch 22 is operated to switch the cable sensor to which the rectangular wave pulse is applied, the stationary waveform for the switched cable sensor is displayed. The operator may perform the above-described processing on this stationary waveform to determine the thickness and temperature distribution of the refractory. It may also be determined by a processing circuit or computer.

長さ計測信号処理回路26、温度計測信号処理回路24
は長さ及び温度計測を行なう回路である。
Length measurement signal processing circuit 26, temperature measurement signal processing circuit 24
is a circuit that performs length and temperature measurements.

コンピュータ処理の場合は、波形Cを微小なサンプリン
グ周期でサンプリングし、各サンプルをA/D変換して
ディジタル値にし、これらに対し先端部検出、長さ算出
、先端部レベル及び凹み深さ導出、テーブルを引いての
温度算出などを行なう。
In the case of computer processing, the waveform C is sampled at a minute sampling period, each sample is converted into a digital value by A/D conversion, and then the tip detection, length calculation, tip level and depression depth derivation, Calculate the temperature by drawing a table.

得られた各部温度は平均し、それを記憶すると共に耐火
物平均温度表示器34に表示する。また求めた耐火物厚
みも記憶し、耐火物厚み表示器32に表示する。耐火物
厚みは各部で異なることが予想されるから、厚み方向に
挿入するケーブルセンサ10eは複数箇所に挿入して平
均厚みが得られるようにする。蓄熱量演算回路36は、
こうして得られた耐火物平均厚みD、耐火物平均温度T
、定数設定器38からの耐火物比熱C1定数Kを利用し
て耐火物蓄熱量QをQ=に−D−c−Tとして算出し、
これを表示器3oに表示する。なお表示器30.32.
34は1つの表示器でもよく、またCRTディスプレイ
のような揮発性の表示器でなくプリンタのような恒久型
の表示手段であってもよい。
The obtained temperatures of each part are averaged, stored, and displayed on the refractory average temperature display 34. The obtained refractory thickness is also stored and displayed on the refractory thickness display 32. Since the thickness of the refractory material is expected to be different in each part, the cable sensors 10e inserted in the thickness direction are inserted at a plurality of locations to obtain an average thickness. The heat storage amount calculation circuit 36 is
The average refractory thickness D and the average refractory temperature T obtained in this way
, Calculate the refractory heat storage amount Q as -Dc-T to Q= using the refractory specific heat C1 constant K from the constant setting device 38,
This is displayed on the display 3o. In addition, display device 30.32.
34 may be one display, or may be a permanent display means such as a printer instead of a volatile display such as a CRT display.

M熱量が分れば、取鍋での温度降下化は次式より求める
ことができる。
If the amount of heat M is known, the temperature drop in the ladle can be calculated from the following equation.

ΔT=αW−To−cM−βQ ΔT:温度降下代 W:溶鋼重量 To:溶鋼温度 CM:溶鋼比熱 α、β:定数 なお取鍋耐火物の侵食状況は複雑で、耐火物平均厚みを
正確に求めるには厚み方向ケーブルセンサ10eを多数
設置する必要がある、そこでこの部分(厚み測定)は取
鍋使用回数等から推定した値、あるいは空の状態の取鍋
に対し光学式又は接触式厚み針で測定した値などとしし
てもよい。
ΔT=αW-To-cM-βQ ΔT: Temperature drop W: Molten steel weight To: Molten steel temperature CM: Molten steel specific heat α, β: Constant The erosion condition of the ladle refractory is complex, so it is difficult to accurately calculate the average thickness of the refractory. To calculate this, it is necessary to install a large number of thickness direction cable sensors 10e. Therefore, this part (thickness measurement) can be performed using a value estimated from the number of times the ladle is used, or an optical or contact type thickness needle for an empty ladle. It may also be a value measured by .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば比較的簡潔な手段で
取鍋蓄熱量を求めることができ、取鍋での温度降下化を
正確に知って転炉出鋼温度を定めることができ、鋳込温
度連中不良などを回避することができる。
As explained above, according to the present invention, the amount of heat stored in the ladle can be determined by a relatively simple means, the temperature drop in the ladle can be accurately known, and the temperature for tapping steel in the converter can be determined, and the It is possible to avoid problems such as failure due to overheating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図は厚み及び温度
測定要領の説明図である。 図面で、40は取鍋、10はケーブルセンサ、12は矩
形波パルス発生器、14はオッシロスコープである。 出 願 人  新日本製鐵株式会社 代理人弁理士  青 柳    稔 第1図 第2図
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is an explanatory diagram of the procedure for measuring thickness and temperature. In the drawing, 40 is a ladle, 10 is a cable sensor, 12 is a square wave pulse generator, and 14 is an oscilloscope. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)取鍋内面を構成する耐火物にケーブルセンサを埋
込み、該耐火物より外出したケーブルセンサの一端より
矩形波パルスを入力し、該入力パルスとケーブルセンサ
各部からの反射パルスの合成波を観測し、該合成波中の
反射パルスよりケーブルセンサ埋設部の耐火物平均温度
を求め、 また該耐火物の平均厚さを実測又は推定により求め、 これらの耐火物平均、温度Tと平均厚さDと耐火物比熱
cとから耐火物蓄熱量QをQ∝DcTとして求めること
を特徴とする取鍋耐火物の蓄熱量計測方法。
(1) A cable sensor is embedded in the refractory that makes up the inner surface of the ladle, a rectangular wave pulse is input from one end of the cable sensor protruding from the refractory, and a composite wave of the input pulse and reflected pulses from various parts of the cable sensor is generated. Observe and determine the average temperature of the refractories in the buried part of the cable sensor from the reflected pulses in the composite wave. Also, determine the average thickness of the refractories by actual measurement or estimation, and calculate the average temperature T and average thickness of the refractories. A method for measuring the amount of heat stored in a ladle refractory, characterized by determining the amount of heat stored in the refractory Q as Q∝DcT from D and the specific heat c of the refractory.
(2)ケーブルセンサは、耐火物の厚み方向で異なる位
置にそれぞれ埋設することを特徴とする特許請求の範囲
第1項記載の耐火物蓄熱量計測方法。
(2) The refractory heat storage amount measuring method according to claim 1, wherein the cable sensors are buried at different positions in the thickness direction of the refractory.
(3)耐火物の平均厚さは、耐火物の厚み方向に埋込ん
だケーブルセンサの長さとして実測することを特徴とす
る特許請求の範囲第1項記載の耐火物蓄熱量計測方法。
(3) The method for measuring the amount of heat stored in a refractory according to claim 1, wherein the average thickness of the refractory is actually measured as the length of a cable sensor embedded in the thickness direction of the refractory.
JP701686A 1986-01-16 1986-01-16 Method for measuring heat storage quantity of refractories Pending JPS62166071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP701686A JPS62166071A (en) 1986-01-16 1986-01-16 Method for measuring heat storage quantity of refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP701686A JPS62166071A (en) 1986-01-16 1986-01-16 Method for measuring heat storage quantity of refractories

Publications (1)

Publication Number Publication Date
JPS62166071A true JPS62166071A (en) 1987-07-22

Family

ID=11654241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP701686A Pending JPS62166071A (en) 1986-01-16 1986-01-16 Method for measuring heat storage quantity of refractories

Country Status (1)

Country Link
JP (1) JPS62166071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181164A (en) * 2011-03-03 2012-09-20 Kobe Steel Ltd Method for evaluating residual thickness of refractory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181164A (en) * 2011-03-03 2012-09-20 Kobe Steel Ltd Method for evaluating residual thickness of refractory

Similar Documents

Publication Publication Date Title
EP1066501A1 (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
EP0060069B1 (en) A probe and a system for detecting wear of refractory wall
KR100406371B1 (en) Apparatus and method for detecting thickness of slag layer in ladle
US5147137A (en) Refractory thermowell for continuous high temperature measurement of molten metal
US4133036A (en) Method and system for monitoring a physical condition of a medium
JPS62166071A (en) Method for measuring heat storage quantity of refractories
US3347099A (en) Molten bath temperature measurement
KR100470044B1 (en) Apparatus for detecting molten steel level using sub-lance
US3364745A (en) Apparatus and method of measuring molten metal temperature
JPS59125003A (en) Method for measuring erosion rate of refractories
JPS5811821A (en) Measuring method for molten steel temperature
JPH04351254A (en) Instrument for measuring level in mold in continuous casting
US3572124A (en) Apparatus for simultaneous determination of carbon-temperature in liquid steel during blowing
JP2003126942A (en) Detecting device for molten metal flow
JP3215532B2 (en) Measuring method of molten metal weight
JPH0438281B2 (en)
JPS6036924A (en) Device for measuring temperature change
JPS62147310A (en) Method and apparatus for measuring length of sensor cable
JPH09166407A (en) Device for measuring layer thickness of melted slug and measuring method using the device
JPS62165110A (en) Method for measuring level of molten metal
SU1300310A2 (en) Device for measuring melt temperature,particularly,in crucible
KR920006837B1 (en) Loop for measuring a trmperature of molten steel and its managing method
JPH0792376B2 (en) Method for measuring thickness of refractories with temperature gradient
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
KR970001967B1 (en) Thermometer