JPS62165110A - Method for measuring level of molten metal - Google Patents

Method for measuring level of molten metal

Info

Publication number
JPS62165110A
JPS62165110A JP701786A JP701786A JPS62165110A JP S62165110 A JPS62165110 A JP S62165110A JP 701786 A JP701786 A JP 701786A JP 701786 A JP701786 A JP 701786A JP S62165110 A JPS62165110 A JP S62165110A
Authority
JP
Japan
Prior art keywords
sensor
length
molten steel
level
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP701786A
Other languages
Japanese (ja)
Inventor
Yoshihiro Igaki
井垣 至弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP701786A priority Critical patent/JPS62165110A/en
Publication of JPS62165110A publication Critical patent/JPS62165110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure the level of a molten steel with high accuracy with an inexpensive sensor having a simple construction by detecting the erosion condi tion of a cable sensor. CONSTITUTION:The sensor 10 having a length l0 is inserted into a vessel 50 by a feeder 42 and in this stage, a proximity sensor 36 generates output at the point of the time when the front end of the sensor 10 passes in front thereof. The position of the sensor 36 is known and is designated as a reference level L0. The part entering the molten steel 52 is eroded when the sensor 10 enters the molten steel. The erosion is known from the decrease of the sensor length. The insertion length DELTAl0 of the sensor from the level L0 is known by counting 26 the output pulse of a pulse generator 40 from the point of the time when the output is generated in a detection part 34. The erosion length DELTAl1 is deter mined as l0-l1 from the present lengh l1 of the sensor 10 and the level L1 of the molten steel can be determined by making a calculation 28 of DELTAl0-DELTAl1. A rangefinder 44 irradiates laser light on a slag layer 54 and detects the surface position of said layer. The thickness of the layer 54 is determined by calculating 30 the surface position-of the layer 54-the surface L1 of the molten steel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、容器内の溶融金属のレベル計ヨリ詳しくは表
面がスラグで覆われている容器内溶融金属のスラグと溶
融金属との界面位置を検知する方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a level meter for molten metal in a container, and more specifically, to a level meter for molten metal in a container, and more specifically, to a position at the interface between slag and molten metal in a container whose surface is covered with slag. The present invention relates to a method for detecting.

〔従来の技術〕[Conventional technology]

溶銑表面はスラグ層で覆われているのが普通であるが、
この溶銑表面のスラグは除去したいことがあり、これに
は排出口付きの容器に溶銑をスラグと共に注入し、比重
差で溶銑は下、スラグは上になるから該注入でスラグ層
がせり上り、やがて排出口から出て行くのを利用すると
いう方法がある。勿論この場合、溶銑注入は容器内溶銑
面が排出口レベルまで上った所で停止する必要があり、
さもなければ溶銑が排出口から排出されてしまう。
The surface of hot metal is usually covered with a slag layer,
Sometimes it is desired to remove the slag on the surface of the hot metal, and to do this, the hot metal is poured into a container with a discharge port along with the slag.Due to the difference in specific gravity, the hot metal is on the bottom and the slag is on the top, so the slag layer rises due to the injection. There is a method that takes advantage of the fact that it eventually leaves the exhaust port. Of course, in this case, the injection of hot metal must be stopped when the surface of the hot metal in the container rises to the level of the outlet.
Otherwise, hot metal will be discharged from the outlet.

また転炉から出鋼された溶鋼表面にはスラグ層ができる
のが普通であるが、スラグ改質材を入れてこれを調整す
ることがあり、この場合はスラグ層厚の測定が必要にな
る。スラグ層厚の測定にもスラグ層と溶鋼との界面の検
知が必要である。
Additionally, it is normal for a slag layer to form on the surface of molten steel tapped from a converter, but this may be adjusted by adding a slag modifier, in which case it is necessary to measure the slag layer thickness. . Measuring the slag layer thickness also requires detection of the interface between the slag layer and molten steel.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

スラグで覆われている取鍋内の溶鋼レベルの計側法とし
ては、スラグと溶鋼の比重差を利用した等圧式や、導電
度差を利用した電極式がある。前者は窒素ガスやアルゴ
ンガス等の不活性ガスを吹込み管に吹込み、該管を次第
に下降させて背圧が急変する位置を溶鋼レベルとするも
のであり、また後者は2本の電極を下降させながら両電
極間の導電度をチェックし、電極先端がスラグ層から溶
鋼へ移るとき電極間導電度が急変するのを検知してその
急変位置として溶鋼レベルを知る。しかしながら前者で
は、吹込み管の溶損や詰りによって背圧が脈動し、溶鋼
レベルを安定して計測することが困難という問題があり
、また後者では電極の溶損や酸化でも電極間導電度が変
り、測定精度が悪い。また雑音がのり易い。
Methods for measuring the level of molten steel in a ladle covered with slag include an equal pressure method that uses the difference in specific gravity between slag and molten steel, and an electrode method that uses the difference in conductivity. The former method involves blowing an inert gas such as nitrogen gas or argon gas into a blowing pipe and gradually lowering the pipe to reach the molten steel level at the point where the back pressure suddenly changes. Check the conductivity between both electrodes while lowering the electrode, detect a sudden change in the conductivity between the electrodes as the electrode tip moves from the slag layer to the molten steel, and determine the molten steel level from the position of the sudden change. However, with the former, there is a problem that the back pressure pulsates due to melting or clogging of the blowing pipe, making it difficult to measure the molten steel level stably.In addition, with the latter, the conductivity between the electrodes decreases due to melting or oxidation of the electrodes. The measurement accuracy is poor. Also, it is easy to get noise.

本発明は、単純安価な構造のセンサで、高温、粉塵等の
周囲悪環境の影響を受けることなく高精度で溶鋼等の溶
融金属のレベルを計測する方法を提供しようとするもの
である。
The present invention aims to provide a method of measuring the level of molten metal such as molten steel with high precision using a sensor having a simple and inexpensive structure without being affected by adverse surrounding environments such as high temperature and dust.

C問題点を解決するだめの手段〕 本発明は、スラグで覆われた容器内溶融金属の該スラグ
と溶融金属の界面レベルを検知する溶融金属のレベル計
測方法において、センサを容器内に挿入し、該挿入され
るセンサの先端位置を近接センサで検出し、その検出時
点からのセンサ挿入長ΔRaを測定し、またTDR法に
より容器内挿入前のセンサの長さβ0および挿入後のセ
ンサの長さ11を測定し、これらの長さ!!o、/!+
の差としてセンサ溶損長Δ11を求め、かつ溶融金属の
レベルL1を前記近接センサの位置をLoとしてLl=
Lo+ΔRa−Δe+として求めることを特徴とするも
のである。
Means for Solving Problem C] The present invention provides a molten metal level measuring method for detecting the interface level between slag and molten metal in a container covered with slag, which includes inserting a sensor into the container. , the position of the tip of the inserted sensor is detected by a proximity sensor, the sensor insertion length ΔRa is measured from the time of detection, and the length β0 of the sensor before insertion into the container and the length of the sensor after insertion are determined by the TDR method. Measure 11 and these lengths! ! o,/! +
The sensor erosion length Δ11 is determined as the difference between the molten metal level L1 and the position of the proximity sensor as Lo, and Ll=
It is characterized by being determined as Lo+ΔRa−Δe+.

〔作用〕[Effect]

この方法ではケーブルセンサの溶損で溶融金属レベルの
計測を行なうので、測定が正確である。
In this method, the molten metal level is measured by the damage of the cable sensor, so the measurement is accurate.

即ち吹込み管による方法あるいは2電極間の導電度によ
る方法などではセンサっまり吹込み管又は電極は正常で
あるのが前提であるが、実際は測定対象が高温なので溶
損し、これが誤差を導入してしまう。しかし本発明では
センサのf6tJAそれ自体が測定原理になっているの
で溶損による誤差導入はない。またセンサは具体的には
同軸ケーブル状で、構造簡単、廉価である。
In other words, in the method using a blow tube or the method based on the conductivity between two electrodes, it is assumed that the sensor, blow tube, or electrode is normal, but in reality, the object to be measured is at a high temperature, so it melts and breaks down, which introduces errors. I end up. However, in the present invention, since the sensor f6tJA itself is the measurement principle, there is no error introduced due to melting damage. Moreover, the sensor is specifically in the form of a coaxial cable, and has a simple structure and low cost.

〔実施例〕〔Example〕

第1図は本発明の実施例を示し、50は取鍋などの容器
、52は該容器内の溶鋼、54は溶鋼表面のスラグ層で
ある。10は溶鋼とスラグの界面を検出するセンサ、2
0はその測定部である。センサ10は具体的には同軸ケ
ーブル状であり、中心導体はニッケル・クロム、外部導
体はインコネル、内、外部導体間の誘電体は酸化マグネ
シウムである。センサ10と測定部2oとの間は通常の
く信号伝送用の)同軸ケーブル18で接続され、この同
軸ケーブルはケーブルハンガーで支持、送給される。セ
ンサ10は送給装置42により容器50内に送り込まれ
、その送給量はメジャリングロール38、パルス発生器
40.センサ挿入長算出部26により求められる。36
は近接センサで、ケーブルセンサ10の先端が該センサ
36を通るとき出力を生じる。34は近接センサ36の
出力を受けて基準レベル信号を発生する基準レベル検知
部、22はケーブル長演算部、28は溶鋼レベル演算部
、30はスラグ層厚演算部、32は表示器、そして44
はスラグ層表面位置を検出するレーザ距離針である。
FIG. 1 shows an embodiment of the present invention, in which 50 is a container such as a ladle, 52 is molten steel in the container, and 54 is a slag layer on the surface of the molten steel. 10 is a sensor that detects the interface between molten steel and slag, 2
0 is its measurement part. Specifically, the sensor 10 is in the form of a coaxial cable, the center conductor is nickel chromium, the outer conductor is Inconel, and the dielectric between the inner and outer conductors is magnesium oxide. The sensor 10 and the measuring section 2o are connected by a coaxial cable 18 (for normal signal transmission), and this coaxial cable is supported and fed by a cable hanger. The sensor 10 is fed into the container 50 by a feeding device 42, and the feeding amount is controlled by a measuring roll 38, a pulse generator 40. It is determined by the sensor insertion length calculation section 26. 36
is a proximity sensor that produces an output when the tip of the cable sensor 10 passes through the sensor 36. 34 is a reference level detection section that generates a reference level signal in response to the output of the proximity sensor 36, 22 is a cable length calculation section, 28 is a molten steel level calculation section, 30 is a slag layer thickness calculation section, 32 is a display, and 44
is a laser distance needle that detects the slag layer surface position.

ケーブルセンサ10の長さはTDR法により測定する。The length of the cable sensor 10 is measured by the TDR method.

これを第2図で説明すると、測定部20ハハルスジエネ
レータ12およびオフシロスコープ14等からなり、パ
ルスジェネレータが出力する矩形波パルスが同軸ケーブ
ル18.ケーブルセンサ10に加えられ、この入射パル
スとケーブルセンサ10先端からの反射パルスとの合成
波をオンシロスコープ14で観察する。観測される波形
は第2図(11)の曲線Cの如くで、この曲線Cの部分
C1は同軸ケーブル18とセンサ10の接続部に、また
部分C2はセンサ10の先端部に対応する。
To explain this with reference to FIG. 2, it consists of a measurement section 20, a pulse generator 12, an off-scilloscope 14, etc., and a rectangular wave pulse outputted by the pulse generator is transmitted through a coaxial cable 18. A composite wave of the incident pulse and the reflected pulse from the tip of the cable sensor 10 is observed with an oncilloscope 14. The observed waveform is as shown in curve C in FIG.

このようになる理由は次の如くである。即ちセンサ10
の先端からの反射パルスは、センサ1oの先端の負荷イ
ンピーダンスZtが無限大(開放)なら第2図(C)の
実線で示すように正極性、21が0 (短絡)なら点線
で示すように負極性である。
The reason for this is as follows. That is, sensor 10
If the load impedance Zt at the tip of sensor 1o is infinite (open), the reflected pulse from the tip of sensor 1o will have positive polarity as shown by the solid line in Figure 2 (C), and if 21 is 0 (short circuit), it will have positive polarity as shown by the dotted line. It has negative polarity.

これはセンサ10の特性インピーダンスをZOとすれば
反射係数ρはρ= <Zt −Z o) / <Zt+
Z o)で表わされ、Zt=ooならρ=1.21=0
ならρ=−1であることによる。従って合成パルスは2
1が■なら実線、7.tが0なら点線の如くなる。第2
図(b)の曲線Cの部分C2が実線立上り波形であるの
はZt =■のとき、点線立下り波形であるのはZt=
0のときである。曲線Cの部分C1はセンサ10の特性
インピーダンスの方が、ケーブル18のそれより小であ
ることによる。
This means that if the characteristic impedance of the sensor 10 is ZO, the reflection coefficient ρ is ρ= <Zt −Z o) / <Zt+
Z o), and if Zt=oo then ρ=1.21=0
Then, it is because ρ=-1. Therefore, the composite pulse is 2
If 1 is ■, solid line, 7. If t is 0, it will look like a dotted line. Second
Part C2 of curve C in figure (b) is a solid line rising waveform when Zt = ■, and a dotted line falling waveform when Zt =
When it is 0. The portion C1 of the curve C is due to the fact that the characteristic impedance of the sensor 10 is smaller than that of the cable 18.

入射パルスに対する反射パルスの遅れ時間tはセンサ長
りに依存する。即ちこの時間tは往復距離2Lをパルス
速度C/hで割ったものであるからセンサ長りは、L=
C−t/2にである。こ\でCは光速、εは誘電率であ
る。この時間t、第2図(blで言えば原点OからCI
まで、あるいは原点0からC2まで、によりセンサ長を
求めることができる。第1図のセンサ長演算部22はか
\る方法でケーブル及びセンサの長さ、特にセンサ10
の長さを求める。
The delay time t of the reflected pulse with respect to the incident pulse depends on the sensor length. That is, since this time t is the reciprocating distance 2L divided by the pulse speed C/h, the sensor length is L=
It is at C-t/2. Here, C is the speed of light and ε is the dielectric constant. This time t, as shown in Figure 2 (in bl, from origin O to CI
The sensor length can be calculated from the origin 0 to C2. The sensor length calculating section 22 in FIG.
Find the length of.

センサ10は送給装置42により容器10内に挿入され
、このとき近接センサ36はセンサ先端が自己の前を通
過する時点で出力を生じる。近接センサ36の位置を既
知であり、この位置を第3図に示すように基準レベルL
oとする。容器50へのセンサ挿入前にセンサ長を測定
して長さ10を得てお(。長さdoのセンサ10を、セ
ンサ長測定を行ないながら基準レベルLoを越えて容器
50内へ挿入して行くと、やがてセンサ先端部がスラグ
層に入り、次いで溶鋼内に入ってその溶鋼内に入った部
分が溶損する。なおセンサ10はスラグ層に入ると赤熱
状態になるが溶損(溶融)はせず、そしてン容鋼に入る
と溶損してしまう。溶損は、繰り返し計測中のセンサ長
が短くなることで判る。また基準レベルLoからのケー
ブルセンサ挿入長Δtoは、検知部34が出力を生じた
時点からのパルスジェネレータ40の出力パルスを計数
することで分る。これはセンサ挿入長算出部26が行な
う。センサの最初の長さI O、現在の長さ11から、
fa tN長ΔlIはlo  IIとして求まり、i1
4レベルL1はΔl1a−Δ11として求まる。溶鋼レ
ベル演算部28はこの計算を行なう。
The sensor 10 is inserted into the container 10 by the delivery device 42, and the proximity sensor 36 produces an output when the sensor tip passes in front of it. The position of the proximity sensor 36 is known, and this position is set to the reference level L as shown in FIG.
o. Before inserting the sensor into the container 50, measure the sensor length to obtain a length of 10 (.The sensor 10 of length do is inserted into the container 50 beyond the reference level Lo while measuring the sensor length. As the sensor 10 enters the slag layer, the tip of the sensor eventually enters the slag layer, then enters the molten steel, and the part that enters the molten steel becomes red hot, but the sensor 10 becomes red hot when it enters the slag layer, but it does not melt (melt). Otherwise, if it enters the container steel, it will be eroded and damaged. Erosion damage can be seen by the shortening of the sensor length during repeated measurements.Furthermore, the cable sensor insertion length Δto from the reference level Lo is output by the detection unit 34. This can be determined by counting the output pulses of the pulse generator 40 from the time when the sensor insertion length calculation unit 26 generates the sensor insertion length.
fa tN length ΔlI is found as lo II, i1
The 4th level L1 is found as Δl1a−Δ11. The molten steel level calculating section 28 performs this calculation.

距離計44は、レーザ光を照射し、反射光を受光してそ
の受光位置から反射面の本例ではスラグ層表面の位置を
検出する。スラグ層表面位置が求まればスラグ層厚はス
ラグ層表面位置−溶鋼表面として求まる。スラグ層厚演
算部30はこの計算を行なう。得られたスラグ層厚及び
又は溶鋼レベルは表示器32に表示する。
The distance meter 44 irradiates the laser beam, receives the reflected light, and detects the position of the reflective surface, in this example, the surface of the slag layer, from the receiving position. Once the slag layer surface position is determined, the slag layer thickness can be determined as the slag layer surface position minus the molten steel surface. The slag layer thickness calculating section 30 performs this calculation. The obtained slag layer thickness and/or molten steel level are displayed on the display 32.

第4図はセンサ長計測部の構成を示す図で、第1図、第
2図と対応する部分には同じ符号を付して示す。19は
サンプリングユニット、21はXY庄標読取装置である
。X、Y座標読取りは、オンシロスコープ上に表示され
た第2図(blの波形の特に部分C2の座標を読取り、
波形補正などを行なう。
FIG. 4 is a diagram showing the configuration of the sensor length measuring section, and parts corresponding to those in FIGS. 1 and 2 are denoted by the same reference numerals. 19 is a sampling unit, and 21 is an XY mark reading device. To read the X and Y coordinates, read the coordinates of part C2 of the waveform shown in Figure 2 (bl) displayed on the oncilloscope.
Perform waveform correction, etc.

センサは溶融金属で溶融するものであれば、同軸う−−
ブル状に限るものでなく、平行導体型のケーブル状など
でもよい。
If the sensor is melted by molten metal, it can be coaxial.
The shape is not limited to a bull shape, but a parallel conductor type cable shape or the like may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明ではセンサの溶損状態等から
溶鋼レベルを知るので、従来方式の目詰りなどの問題が
なく、確実な計測ができる。またセンサ構造が簡単、安
価で、高温、粉塵等の悪環境の影響も受けけ易い利点が
ある。
As explained above, in the present invention, the molten steel level is known from the melting state of the sensor, etc., so there is no problem such as clogging of the conventional method, and reliable measurement can be performed. Further, the sensor structure is simple, inexpensive, and has the advantage of being easily affected by adverse environments such as high temperatures and dust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図はT
DR法の説明図、第3図は計測要領の説明図、第4図は
ケーブル長測定部の説明図である。 図面で、10はセンサ、50は容器、52は溶融金属、
54はスラグ、36は近接センサ、28は溶鋼レベル演
算部である。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a T
FIG. 3 is an explanatory diagram of the DR method, FIG. 3 is an explanatory diagram of the measurement procedure, and FIG. 4 is an explanatory diagram of the cable length measuring section. In the drawing, 10 is a sensor, 50 is a container, 52 is a molten metal,
54 is a slag, 36 is a proximity sensor, and 28 is a molten steel level calculating section.

Claims (1)

【特許請求の範囲】 スラグで覆われた容器内溶融金属の該スラグと溶融金属
の界面レベルを検知する溶融金属のレベル計測方法にお
いて、 センサを容器内に挿入し、該挿入されるセンサの先端位
置を近接センサで検出し、その検出時点からのセンサ挿
入長Δl_0を測定し、またTDR法により容器内挿入
前のセンサの長さl_0および挿入後のセンサの長さl
_1を測定し、これらの長さl_0、l_1の差として
センサ溶損長Δl_1を求め、かつ溶融金属のレベルL
_1を前記近接センサの位置をL_0としてL_1=L
_0+Δl_0−Δl_1として求めることを特徴とす
る溶融金属のレベル計測方法。
[Claims] A molten metal level measuring method for detecting the interface level between the slag and molten metal in a container covered with slag, comprising: inserting a sensor into the container; and inserting a sensor into the container; The position is detected by a proximity sensor, the sensor insertion length Δl_0 is measured from the time of detection, and the length l_0 of the sensor before insertion into the container and the length l of the sensor after insertion are measured by the TDR method.
_1, find the sensor erosion length Δl_1 as the difference between these lengths l_0 and l_1, and calculate the molten metal level L
_1 is the position of the proximity sensor as L_0, and L_1=L
A method for measuring the level of molten metal, characterized in that it is determined as _0+Δl_0−Δl_1.
JP701786A 1986-01-16 1986-01-16 Method for measuring level of molten metal Pending JPS62165110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP701786A JPS62165110A (en) 1986-01-16 1986-01-16 Method for measuring level of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP701786A JPS62165110A (en) 1986-01-16 1986-01-16 Method for measuring level of molten metal

Publications (1)

Publication Number Publication Date
JPS62165110A true JPS62165110A (en) 1987-07-21

Family

ID=11654268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP701786A Pending JPS62165110A (en) 1986-01-16 1986-01-16 Method for measuring level of molten metal

Country Status (1)

Country Link
JP (1) JPS62165110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044867A (en) * 2005-08-11 2007-02-22 Hilti Ag Working machine capable of measuring intrusion depth of tool
KR100723224B1 (en) 2005-12-26 2007-05-29 주식회사 포스코 The method and apparatus to manage level of zn in cgl zn pot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044867A (en) * 2005-08-11 2007-02-22 Hilti Ag Working machine capable of measuring intrusion depth of tool
KR100723224B1 (en) 2005-12-26 2007-05-29 주식회사 포스코 The method and apparatus to manage level of zn in cgl zn pot

Similar Documents

Publication Publication Date Title
US6139180A (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
US4413810A (en) Ascertaining the level of the slag-liquid-metal interface in metallurgical vessels
TWI396833B (en) Apparatus for determination of an interface of a slag layer
KR100406371B1 (en) Apparatus and method for detecting thickness of slag layer in ladle
CN111289572A (en) Method and device for nondestructive testing of quality of conductive material based on resistance parameters
JPS62165110A (en) Method for measuring level of molten metal
JP3138953B2 (en) Slag thickness measuring device
JP2854256B2 (en) Apparatus for discontinuously detecting the thickness of a layer above a metal melt
CN209166587U (en) A kind of liquid level detection device and metal base vertical continuous casting equipment
CN110470353B (en) Electromagnetic flow measuring device based on correlation algorithm
KR100470044B1 (en) Apparatus for detecting molten steel level using sub-lance
JPS62174313A (en) Apparatus for detecting slag level of molten metal bath
CN109073430A (en) Flow measurement device
Huhtiniemi et al. Special instrumentation developed for FARO and KROTOS FCI experiments: High temperature ultrasonic sensor and dynamic level sensor
JPS59125003A (en) Method for measuring erosion rate of refractories
JP2759420B2 (en) How to check grouting status of PC members
JPH09166407A (en) Device for measuring layer thickness of melted slug and measuring method using the device
JPS59217102A (en) Erosion position detection of blast furnace refractory material
JPH0438281B2 (en)
SU1047962A1 (en) Device for monitoring metal temperature in converter
SU1067372A1 (en) Device for measuring temperature
CN203011882U (en) Sublance phosphorus-measurement detecting probe
JPH0719930A (en) Method and device for measuring level height
JPS62166071A (en) Method for measuring heat storage quantity of refractories
Lerner Automatic melt-level indicator