JPS6216551A - Manufacture of substrate for integrated circuit having good thermal conductivity - Google Patents

Manufacture of substrate for integrated circuit having good thermal conductivity

Info

Publication number
JPS6216551A
JPS6216551A JP15585585A JP15585585A JPS6216551A JP S6216551 A JPS6216551 A JP S6216551A JP 15585585 A JP15585585 A JP 15585585A JP 15585585 A JP15585585 A JP 15585585A JP S6216551 A JPS6216551 A JP S6216551A
Authority
JP
Japan
Prior art keywords
condensable
substrate
fine groove
condensable fluid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15585585A
Other languages
Japanese (ja)
Inventor
Koichi Masuko
耕一 益子
Katsuma Tanaka
勝磨 田中
Hajime Kishi
岸 元
Masushi Sakatani
益司 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP15585585A priority Critical patent/JPS6216551A/en
Publication of JPS6216551A publication Critical patent/JPS6216551A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To form a heat pipe in a plate material for substrate by a method wherein a fine groove, both ends of which in the longitudinal direction are shut, is engraved and condensable fluid is inhaled in the fine groove. CONSTITUTION:A fine groove 2 is engraved in a plate material 1, and the fine groove 2 is shut with a cover plate 4 having a fine hole 3. The whole is heated up to the prescribed temperature, and is cooled with condensable liquid which should be encapsulated in the fine groove 2 as the operating fluid. Such an operation is repeatedly executed plural times. After the condensable fluid is injected in the fine groove 2, the condensable liquid is frozen and the fine hole 3 is sealed in a vacuum atmosphere. An epitaxial layer is formed on the surface of the substrate, and at the same time and oxide film is formed on the surface thereof. Many elements are formed by repeatedly performing photo etchings and diffusions to form the integrated circuit. The integrated circuit in such a way generates heat by conduction, but the condensable fluid 7 in the fine groove 2, which is the heat pipe evaporates with the heat, flows to the lower-temperature part, and radiates heat, thus condensing into liquid. As a result, the substrate is very efficiently cooled.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はICやLSIあるいはハイブリッドICなど
の集積回路に用いる基板の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method of manufacturing a substrate used for an integrated circuit such as an IC, an LSI, or a hybrid IC.

従来の技術 周知のようにこの種の集積回路は、シリコン製の基板の
表面にフォトエツチングや拡散、蒸着などの方法によっ
て1〜ランジスタやダイオード等の素子を多数含む回路
を形成したものであり、小型で信頼性が高く、また安価
であるなどの優れた利点を有している。しかし集積回路
は、パッケージに密封した構成であるから、発熱による
出力の制約を受け、したがって高出力XCやハイブリッ
トICでは、パッケージに放熱フィンを取付けて熱放散
をIll的に行なったり、あるいはプリント基板に取付
けた状態で強制換気を行なって冷却な促進したりするこ
とが行なわれている。
As is well known in the art, this type of integrated circuit is one in which a circuit including a large number of elements such as transistors and diodes is formed on the surface of a silicon substrate by methods such as photoetching, diffusion, and vapor deposition. It has excellent advantages such as being small, highly reliable, and inexpensive. However, since integrated circuits are sealed in packages, their output is limited by heat generation. Therefore, in high-output XCs and hybrid ICs, heat dissipation is carried out by attaching heat dissipation fins to the package, or printed circuit boards are used to dissipate heat. Forced ventilation is used to promote cooling when installed in a

、 発明が解決しようとする問題点 しかるに上述した従来の冷却のための手段は、パッケー
ジに密封した状態での外部との熱授受を促進するための
ものであるが、発熱源はセラミック基板上に形成した回
路であるから、その回路から放熱フィン等の外部に対す
る放熱部までの熱移動を積極的に行なわなければ、効率
的な冷却とはなり得ない。この点に関して従来ではとく
に顧みられていす、集積回路の高出力化や高機能化を図
るうえで、未だ改良すべき余地があった。
, Problems to be Solved by the Invention However, the conventional cooling means described above are intended to promote heat exchange with the outside in a sealed state of the package, but the heat source is located on the ceramic substrate. Since it is a formed circuit, efficient cooling cannot be achieved unless heat is actively transferred from the circuit to an external heat radiating part such as a heat radiating fin. Although this point has not been given much attention in the past, there is still room for improvement in achieving higher output and higher functionality of integrated circuits.

この発明は上記の事情に鑑み、熱伝導率が高く、したが
って高出力化や高l!能化を図ることのできる集積回路
用基板のに法を提供することを目的とするものである。
In view of the above-mentioned circumstances, this invention has high thermal conductivity, thus achieving high output and high l! The object of the present invention is to provide a method for manufacturing integrated circuit substrates that can be used to improve performance.

問題点を解決するための手段 この発明は、発熱源から外部への放熱部分までの熱移動
を促進するためのヒートパイプを内部に有する基板を製
造する方法であって、より詳しくは、基板用の板材に長
手方向の両端が閉じた[!1を刻設するとともに、その
amのn口端を微細孔を有する蓋板によってW!閉し、
ついでその板材に、所定温度までの加熱昇温操作と′1
1縮性縮性中での冷却操作とを複数回繰返し施して、前
記1m溝内に前記凝t/a@流体を吸入するとともにI
ll洞内の非凝縮性気体を凝縮性流体蒸気によって置換
し、ざらにtR11I内に吸入したi縮性流体を凍結さ
せた状態で真空中において前記微細孔を封止することに
より、前記板材中にヒートパイプを形成することを特徴
とする方法である。
Means for Solving the Problems The present invention is a method of manufacturing a substrate having a heat pipe inside to promote heat transfer from a heat generation source to a heat dissipation portion to the outside. The board has both longitudinal ends closed [! 1 is engraved, and the N end of the am is covered with W! by a cover plate having micro holes. close,
Next, the plate material is heated to a predetermined temperature and '1
1 cooling operation in a condensable environment is repeated several times to draw the condensed t/a@ fluid into the 1 m groove and
The non-condensable gas in the cavity is replaced with condensable fluid vapor, and the condensable fluid roughly sucked into the tR11I is frozen and the micropores are sealed in a vacuum. This method is characterized by forming a heat pipe.

作   用 すなわち集積回路用の基板に形成するヒートパイプは、
幅が数百μ−程度の細いものとなり、そのため細溝を形
成するとともに、その細溝から非凝縮性気体を排気し、
かつ作動流体となる凝縮性流体を注入し、さらにそのF
il溝を密閉する必授があり、したがって同時に多数の
amについてそのような操作を行なう必要がある。そこ
でこの発明では、加熱釘温することにより有孔蓋で覆っ
た細溝の内部の圧力を上昇させて既存の非凝縮性気体を
排気し、しかる後作動流体とするべき凝縮性流体中で冷
却することにより、前記sI1gの内部の圧力を低下さ
せて、微細孔から凝縮性流体を吸入させる。したがって
このような加熱昇温および冷却の操作を繰返し行なうこ
とにより、si内に次第亀 に多量の凝縮性流体M人させるとともに、その凝縮性流
体の蒸気によって非凝縮性気体がII換される。しかる
後、凝縮性流体を凍結させた状態で真空中において微細
孔を封止することにより、凝縮性流体の飛散や非凝縮性
気体の侵入を生じさせることなく、細溝を密封してヒー
トパイプとすることができる。
In other words, the heat pipe formed on the substrate for integrated circuits is
The width is narrow, on the order of several hundred micrometers, and as a result, a narrow groove is formed, and non-condensable gas is exhausted from the narrow groove.
In addition, a condensable fluid to be used as a working fluid is injected, and the F
It is necessary to seal the il groove, and therefore it is necessary to perform such an operation on a large number of ams at the same time. Therefore, in this invention, the existing non-condensable gas is exhausted by increasing the pressure inside the narrow groove covered with a perforated lid by heating the nail, and then cooling it in the condensable fluid that is to be used as the working fluid. By doing so, the pressure inside the sI1g is reduced and the condensable fluid is sucked through the micropores. Therefore, by repeating such operations of heating and cooling, a large amount of condensable fluid is gradually produced in the interior of the system, and the non-condensable gas is replaced by the vapor of the condensable fluid. After that, by sealing the micropores in a vacuum while the condensable fluid is frozen, the narrow grooves are sealed without causing the condensable fluid to scatter or the non-condensable gas to enter. It can be done.

実施例 以下、この発明の詳細な説明する。Example The present invention will be described in detail below.

この発明の方法では、先ず、第1図に示すように対象と
する板材1にI[lrf:i2を刻設する。ここで板材
1としては、ICあるいはしSl用として単結晶シリコ
ンウェハーが用いられ、またハイブリッドIC用として
はセラミック板が用いられる。
In the method of this invention, first, as shown in FIG. 1, I[lrf:i2 is engraved on a target board 1. Here, as the plate material 1, a single crystal silicon wafer is used for IC or SI, and a ceramic plate is used for hybrid IC.

また細?112は最終的にはヒートパイプとするもので
あって、例えば幅および深さが共に200μ■程度で長
さが10111+程度のV溝とすることができ、その場
合にはコーナ部での椙が更に狭くなるから、そのコーナ
部をウィックとして作用させることができる、なお、シ
リコンウェハーに前記細溝2を形成する方法としては、
まずシリコンウェハーの表面に酸化層を形成した後、フ
ォトレジストをその酸化層の表面に塗布するとともに、
所定のパターンのフォトマスクを用いて紫外線に露光さ
せ、ついで必要部分のフォトレジストを溶剤で除去し、
しかる後信の部分の7オトレジストを溶剤で除去する。
Thin again? 112 is ultimately intended to be a heat pipe, and for example, it can be a V-groove with a width and depth of about 200μ■ and a length of about 10111+, in which case the grooves at the corners are Since it becomes even narrower, the corner part can act as a wick.The method for forming the narrow groove 2 in a silicon wafer is as follows.
First, an oxide layer is formed on the surface of a silicon wafer, and then a photoresist is applied to the surface of the oxide layer.
Expose to ultraviolet light using a photomask with a predetermined pattern, then remove the photoresist in the required areas with a solvent,
After that, the photoresist in the exposed area is removed using a solvent.

こうして酸化層の一部に孔をあけた後に、シリコンを溶
かす異方性エツチング用試薬によって細溝2を刻み込む
。ここで、異方性エツチング用試薬とは、結晶の空隙格
子中での買なる方向における腐食割合が相違する特殊な
腟の混合液である。
After forming a hole in a portion of the oxide layer in this way, a narrow groove 2 is etched using an anisotropic etching reagent that dissolves silicon. Here, the anisotropic etching reagent is a special liquid mixture that has different corrosion rates in different directions in the crystal void lattice.

上記のようにして形成した細溝2を、微細孔3を有する
蓋板4によって閉じる。この蓋板4としては、中結晶シ
リコン板や適宜のセラミック板あるいはパイレックスガ
ラスなどを使用でき、またその微細孔3は第2図に示す
ように蓋板4に単に穿孔したものでもよく、あるいは第
3図に示すようにキャピラリーチューブ(毛111り5
を接続したものであってもtよく、特にキャピラリーチ
ューブ5を接続しである場合には、これを溶融させるこ
とにより微細孔3の封止が容易になる。さらに蓋板4の
板材1への接着は、m極処理1!着沫等の適当な方法を
採用することができる。
The narrow groove 2 formed as described above is closed by a cover plate 4 having fine holes 3. As this cover plate 4, a medium-crystalline silicon plate, a suitable ceramic plate, or Pyrex glass can be used, and the fine holes 3 may be simply bored in the cover plate 4 as shown in FIG. As shown in Figure 3, the capillary tube (hair 111
In particular, when the capillary tube 5 is connected, the fine pores 3 can be easily sealed by melting the capillary tube 5. Furthermore, the adhesion of the cover plate 4 to the plate material 1 is performed using m-pole treatment 1! An appropriate method such as splashing can be adopted.

細溝2の開孔部を前記蓋板4によって閉じた後に、全体
を所定の濃度まで加熱昇温し、ついで作動流体として前
記細溝2内に封入すべき凝縮性流体(例えば、水、フロ
ン、アルコール等)中で冷却し、このような操作をl!
数回繰返し行なう、この加熱操作と冷却操作とは、11
12の内部の空気等の既存の非凝縮性気体を排気すると
とも、に、凝縮性流体を細溝2の内部に注入するための
操作であって、加熱することにより11a12の内部の
圧力が上昇するから、非凝縮性気体が先ず幾分排気され
、ついで凝縮性流体中で冷却することにより、細溝2内
の内部圧力が下がるために、凝縮性流体が細892内に
吸入される。また2n目以降の加熱の場合には、細溝2
内で凝縮性流体が蒸発するから、lI−凝縮性気体が更
に積極的に排出され、したがって上述した加熱と冷却と
を繰返し行なうことにより、細溝2内に次第に多母のU
縮性流体が暇人され、また非凝縮性気体が凝縮性流体蒸
気によって置換される。なお、加熱の手段として電熱ヒ
ータや赤外線ヒータ等を用いればよく、これに対し冷却
の方法としては、低温の液相凝縮性流体中に2!漬する
方法が有効である。
After the opening of the narrow groove 2 is closed by the cover plate 4, the entire body is heated to a predetermined concentration, and then a condensable fluid (for example, water, fluorocarbon, etc.) to be sealed in the narrow groove 2 as a working fluid is heated. , alcohol, etc.) and perform such operations l!
This heating operation and cooling operation, which are repeated several times, are described in 11.
This is an operation for exhausting existing non-condensable gas such as air inside the groove 12 and injecting condensable fluid into the narrow groove 2, and the pressure inside the groove 11a12 is increased by heating. Therefore, condensable fluid is drawn into the slot 892 because the non-condensable gas is first vented somewhat and then by cooling in the condensable fluid the internal pressure within the slot 2 is reduced. In addition, in the case of heating after the 2nth groove,
Since the condensable fluid evaporates within the narrow groove 2, the lI-condensable gas is further actively discharged. Therefore, by repeating the heating and cooling described above, a large number of U atoms are gradually formed within the narrow groove 2.
The condensable fluid is removed and the non-condensable gas is replaced by condensable fluid vapor. Incidentally, an electric heater, an infrared heater, etc. may be used as a heating means, whereas a cooling method is as follows: 2! Soaking is an effective method.

上述のようにして細溝2内に凝縮性流体を注入した後、
その凝縮性流体を凍結し、ついで真空雰囲気中で前記微
細孔3を封止する。微細孔3の封止は、要は、適当な材
料で栓をすればよいのであって、例えば前述したキャピ
ラリーチューブ5を取付けである場合には、第4図に示
すように加熱板6を押付けてキャピラリーチューブ5を
溶融し、これを微輯孔3に押込んで栓とすればよい。第
5図にその結果の状態を示す。また封止のための伯の方
法としては、スパッタリングや蒸着によってIIIを形
成する方法を援ることもできる。このような封止作業は
真空中で行なわれるから、112内に空気などの非凝縮
性流体が入り込むおそれがなく、また凝縮性流体7は凍
結しであるから、キャピラリーチューブ5を*aするた
めに一時的な加熱を行なってもa縮性流体が蒸発飛散す
ることを防止できる。
After injecting the condensable fluid into the narrow groove 2 as described above,
The condensable fluid is frozen and then the micropores 3 are sealed in a vacuum atmosphere. The fine holes 3 can be sealed by plugging them with a suitable material. For example, when the capillary tube 5 described above is attached, the heating plate 6 is pressed as shown in FIG. The capillary tube 5 may be melted and pushed into the fine hole 3 to form a plug. FIG. 5 shows the resulting state. Further, as a method for sealing, a method of forming III by sputtering or vapor deposition can also be used. Since such sealing work is carried out in a vacuum, there is no risk of non-condensable fluid such as air entering into 112, and since condensable fluid 7 is frozen, it is necessary to seal capillary tube 5 *a. Even if temporary heating is performed, it is possible to prevent the a-contractile fluid from evaporating and scattering.

したがって前記細溝2は、凝縮性流体7のみを封入し、
かつコーナ部が毛細管圧力を生じる程度に幅が狭くなっ
ていることにより、ヒートパイプとして構成されている
Therefore, the narrow groove 2 encloses only the condensable fluid 7,
In addition, the width of the corner portion is narrow enough to generate capillary pressure, so that it is configured as a heat pipe.

上述した構成の基板をモノシリツクICあるいはLSI
とするためには、いずれか一方の面にエピタキシャル層
を形成するとともに、その表面に酸化膜を形成し、しか
る後通常の方法によりフォトエツチングおよび拡散を繰
返し行なって多数の素子を形造る。またハイブリッド1
Gとする場合には、印刷の手法、あるいは蒸着ヤスバッ
タリング等によって回路を作り、ついでチップを取付け
る。
The board with the above structure can be used as a monolithic IC or LSI.
In order to do this, an epitaxial layer is formed on one of the surfaces, and an oxide film is formed on that surface, and then photo-etching and diffusion are repeated by a conventional method to form a large number of elements. Also hybrid 1
In the case of G, a circuit is made by a printing method or vapor deposition Yasbuttering, etc., and then a chip is attached.

こうして作られた集WA回路は1通電によって発熱する
。が、その熱によってヒートパイプである前記1112
内の凝縮性流体7が蒸発するとともに、その蒸気が細溝
2内のm度の低い部分へ流れて故熱し、am液化するの
で、通電に伴って生じた熱は前記凝縮性流体のSVAと
して温度の低い部分へ輸送される。したがって流体の潜
熱としての輸送量は極めて大きいから、前記暢満2を、
基板の強度を損わない程度に連続して複数設けるととも
己、パッケージに取付けた放熱フィン等の放熱部分に適
当な熱的コネクターを介して基板を1!結することによ
り、憔めて効率良く冷」することができる。
The integrated WA circuit created in this way generates heat when energized once. However, due to its heat, the heat pipe 1112
As the condensable fluid 7 inside evaporates, the vapor flows to the low temperature part of the narrow groove 2 and heats up, becoming liquefied, so the heat generated by energization is converted into SVA of the condensable fluid. transported to a cooler area. Therefore, since the amount of fluid transported as latent heat is extremely large,
In addition to providing a plurality of boards in succession to the extent that the strength of the board is not impaired, one board is connected to a heat dissipating part such as a heat dissipating fin attached to the package via an appropriate thermal connector. By tying it together, it can be cooled efficiently.

なお、上述した実1111r!4では、qAWIiを三
角形断面としたが、この発明では@溝の断面形状を任意
の形状としてよく、要は毛細管圧力を生じさせるに充分
な狭幅部を有したものであればよい。
In addition, the above-mentioned fruit 1111r! In No. 4, the qAWIi had a triangular cross section, but in the present invention, the cross-sectional shape of the @groove may be any shape, as long as it has a narrow portion sufficient to generate capillary pressure.

発明の効果 以上の説明から明らかなようにこの発明の方法によれば
、加熱冷却をsI返し行なうことによる真空圧を禰用し
て作!Il流体としてのill!!性流体の注入を行な
うから、注入口が数十μm程度の狭い個所であっても、
対象とする流体の粘性・P注入口での毛細管圧力に特に
影響されずに、qfI易に注入作業を(iなうことがで
きる。また蓋板に設けである微細孔の封止を、真空中で
、かつ凝縮性流体を凍結した状態で行なうから、非凝縮
性気体の侵入や凝縮性流体の飛散を生じさせることなく
微細孔を封止し、その結果性能の良いヒートバイブを基
板中に形成することができる。総じてこの発明の方法に
よれば、熱伝導率が高く、高出力化あるいは高礪能化を
図ることのできる集積回路用基板を得ることができる。
Effects of the Invention As is clear from the above explanation, according to the method of the present invention, heating and cooling are performed by sI return, thereby making use of vacuum pressure. Ill as a fluid! ! Because sexual fluid is injected, even if the injection port is in a narrow place of several tens of micrometers,
The qfI injection process can be easily carried out without being affected by the viscosity of the target fluid or the capillary pressure at the P injection port.Also, the sealing of the microholes provided in the lid plate can be done using vacuum. Because the process is carried out inside the substrate and with the condensable fluid frozen, the micropores are sealed without the intrusion of non-condensable gases or the scattering of condensable fluid, and as a result, a high-performance heat vibrator can be placed inside the substrate. Overall, according to the method of the present invention, it is possible to obtain an integrated circuit substrate that has high thermal conductivity and can achieve high output or high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は細溝の拡大斜視図、第2図は細溝の開口部に有
孔1IIiを取付けた状態の断面図、第3図はキャピラ
リーチューブを取付け1;有孔蓋板を用いた状態の断面
図、第4図は微細孔を封止する方法の一例を説明するた
めの模式図、第5図は細溝をヒートバ、rプとした状態
の断面図である。 1・・・板材、 2・・・flI溝、 3・・・wll
l孔、 4・・・語根、 7・・・凝縮性流体。
Figure 1 is an enlarged perspective view of the narrow groove, Figure 2 is a cross-sectional view of the perforated 1IIi attached to the opening of the narrow groove, and Figure 3 is the state with the capillary tube installed and the perforated lid plate used. FIG. 4 is a schematic diagram for explaining an example of a method of sealing micropores, and FIG. 5 is a cross-sectional view of a state in which the narrow grooves are formed into a heat bath or r-p. 1...Plate material, 2...flI groove, 3...wll
l hole, 4...root, 7...condensable fluid.

Claims (1)

【特許請求の範囲】[Claims]  基板用の板材に長手方向の両端が閉じた細溝を刻設す
るとともに、その細溝の開口端を微細孔を有する蓋板に
よつて密閉し、ついでその板材に、所定温度までの加熱
昇温操作と凝縮性流体中での冷却操作とを複数回繰返し
施して、前記細溝内に前記凝縮性流体を吸入するととも
に細溝内の非凝縮性気体を凝縮性流体蒸気によつて置換
し、さらに細溝内に吸入した凝縮性流体を凍結させた状
態で真空中において前記微細孔を封止することにより、
前記板材中にヒートパイプを形成することを特徴とする
熱伝導率の良い集積回路用基板の製法。
A thin groove with both longitudinal ends closed is cut into a plate material for the substrate, and the open end of the narrow groove is sealed with a lid plate having micro holes, and then the plate material is heated to a predetermined temperature. The temperature operation and the cooling operation in the condensable fluid are repeated multiple times to suck the condensable fluid into the narrow groove and replace the non-condensable gas in the narrow groove with condensable fluid vapor. Furthermore, by sealing the micropores in a vacuum with the condensable fluid sucked into the microchannels frozen,
A method for producing an integrated circuit board with good thermal conductivity, characterized by forming a heat pipe in the plate material.
JP15585585A 1985-07-15 1985-07-15 Manufacture of substrate for integrated circuit having good thermal conductivity Pending JPS6216551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15585585A JPS6216551A (en) 1985-07-15 1985-07-15 Manufacture of substrate for integrated circuit having good thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15585585A JPS6216551A (en) 1985-07-15 1985-07-15 Manufacture of substrate for integrated circuit having good thermal conductivity

Publications (1)

Publication Number Publication Date
JPS6216551A true JPS6216551A (en) 1987-01-24

Family

ID=15614969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15585585A Pending JPS6216551A (en) 1985-07-15 1985-07-15 Manufacture of substrate for integrated circuit having good thermal conductivity

Country Status (1)

Country Link
JP (1) JPS6216551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179043A (en) * 1989-07-14 1993-01-12 The Texas A&M University System Vapor deposited micro heat pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179043A (en) * 1989-07-14 1993-01-12 The Texas A&M University System Vapor deposited micro heat pipes

Similar Documents

Publication Publication Date Title
JP3651790B2 (en) High density chip mounting equipment
US4995451A (en) Evaporator having etched fiber nucleation sites and method of fabricating same
EP1378153B1 (en) Electronic module including a cooling substrate and manufacturing method thereof
US6976527B2 (en) MEMS microcapillary pumped loop for chip-level temperature control
US6490160B2 (en) Vapor chamber with integrated pin array
CN100388474C (en) Thermally enhanced microcircuit package and method of forming same
US7110258B2 (en) Heat dissipating microdevice
EP1378154B1 (en) Electronic module including a cooling substrate with fluid dissociation electrodes and operating method thereof
AU2002254176A1 (en) Electronic module including a cooling substrate and related methods
Ivanova et al. Heat pipe integrated in direct bonded copper (DBC) technology for cooling of power electronics packaging
AU2002306686A1 (en) Electronic module with fluid dissociation electrodes and methods
US7842553B2 (en) Cooling micro-channels
US20020092166A1 (en) Heat pipe and method and apparatus for making same
JPS6216551A (en) Manufacture of substrate for integrated circuit having good thermal conductivity
JPH03186195A (en) Radiator with heat pipe and manufacture thereof
JPH0334951Y2 (en)
JPH0338838Y2 (en)
JPS629650A (en) Manufacture of integrated circuit substrate with excellent thermal conductivity
JPH0337237Y2 (en)
JPS61265850A (en) Substrate for integrated circuit with excellent heat conductivity
Shen et al. Micro heat spreader enhanced heat transfer in MCMs
JP2559212B2 (en) Substrate for integrated circuit with good thermal conductivity
JPH0337238Y2 (en)
JPS61218148A (en) Heat sink controller of semiconductor device
JPS629651A (en) Manufacture of integrated circuit substrate with excellent thermal conductivity