JPS61218148A - Heat sink controller of semiconductor device - Google Patents

Heat sink controller of semiconductor device

Info

Publication number
JPS61218148A
JPS61218148A JP5826885A JP5826885A JPS61218148A JP S61218148 A JPS61218148 A JP S61218148A JP 5826885 A JP5826885 A JP 5826885A JP 5826885 A JP5826885 A JP 5826885A JP S61218148 A JPS61218148 A JP S61218148A
Authority
JP
Japan
Prior art keywords
substrate
coolant
refrigerant
sealing
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5826885A
Other languages
Japanese (ja)
Other versions
JPH0682768B2 (en
Inventor
Tomiya Sasaki
富也 佐々木
Yoshiro Miyazaki
芳郎 宮崎
Masaru Ishizuka
勝 石塚
Yoshitaka Fukuoka
義孝 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5826885A priority Critical patent/JPH0682768B2/en
Publication of JPS61218148A publication Critical patent/JPS61218148A/en
Publication of JPH0682768B2 publication Critical patent/JPH0682768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To improve the sealability by sealing grooves at least with any of a heat sink metal plate contacted with the back surface of a substrate and the substrate, providing corners in the section, and providing a coolant passage sealed with coolant, thereby readily sealing the coolant. CONSTITUTION:A substrate 1 is formed of a ceramic material for placing an IC chip A of a semiconductor device. A heat sink metal plate 2 of copper is contacted fixedly with the back surface of a chip A placing surface. Several fine grooves 4 are formed in parallel on the back surface of the substrate 1 contacted with the plate 2, and formed by sealing with the plate 2 in the coolant passage 3 of the square-sectional shape. Coolant 5 is sealed in the passage 3, and collected at the corner 3a of the passage 3 due to a capillary phenomenon at ambient temperature. Thus, since a pipe for sealing the coolant 5 can be connected with the passage 3, the sealability and the sealing of the coolant can be facilitated.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はIC等半導体素子を基板に取付けた半導体装置
の放熱性を高める放熱制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a heat radiation control device that improves the heat radiation performance of a semiconductor device in which a semiconductor element such as an IC is attached to a substrate.

(発明の技術的背景とその問題点) 従来、この種の放熱制御装置としては、例えば、JAT
EC社発行r Rcsearch  and  D e
valopmer+t  or  Heat  p t
pe  T echno+ogy J第328頁乃至第
335頁掲載の−r、 P、 Cotter著rPRI
NGIPI4s  AND  PRO3PECTS  
 FORMICRO)IEAT   PIPESJに記
載された、いわゆるマイクロヒートパイプがある。すな
わち、このものは、シリコン基板に酸化膜を施し、酸化
膜にエツチング加工して断面三角形あるいは四角形等の
溝部を形成し、この溝部を放熱板としての耐熱ガラスに
より酸化膜をシールして冷媒流通路に形成すると共に冷
媒を封入した。従って、半導体素子が局部的に加熱して
も、溝部が密封されて形成された冷1s流通路内の冷媒
が加熱部で蒸発すると共に、低温部で凝縮した冷媒が冷
媒流通路の角部を介した毛細管現象で加熱部へ流れ込み
、シリコン基板全体として均−m度となるように放熱制
御が行なわれる。ところで、冷媒の冷媒流通路への封入
は溝部が耐熱ガラスによりシールされるため、溝部シー
ル後の冷媒流通路内に封入することが困難であり、耐熱
ガラスでシールすると同時に溝部内に冷媒も一封入しな
ければならない。ところが、冷媒は常温では蒸気圧が高
いため、この方法で溝部内に封入しようとすると、非常
に低温で蒸気圧のない状態で行なわなければならないが
、このような方法は非常に困難であるばかりでなく、シ
ール性が悪くなり、信頼性が低いという問題がある。
(Technical background of the invention and its problems) Conventionally, as this type of heat radiation control device, for example, JAT
Published by EC Rcsearch and D e
Valopmer+t or Heat p t
-r, P. Cotter, rPRI, published in pe Techno+ogy J, pages 328 to 335.
NGIPI4s AND PRO3PECTS
There is a so-called micro heat pipe described in FORMICRO) IEAT PIPESJ. In other words, this method involves applying an oxide film to a silicon substrate, etching the oxide film to form a groove with a triangular or square cross section, and sealing the oxide film with heat-resistant glass that serves as a heat dissipation plate to allow refrigerant to flow through the groove. A refrigerant was sealed in the tube. Therefore, even if the semiconductor element heats up locally, the refrigerant in the cooling 1s flow path formed by sealing the groove evaporates in the heating section, and the refrigerant condensed in the low temperature section covers the corners of the refrigerant flow path. The heat flows into the heating section by capillary action through the silicon substrate, and heat dissipation is controlled so that the temperature is uniform throughout the silicon substrate. By the way, since the grooves are sealed with heat-resistant glass, it is difficult to seal the refrigerant into the refrigerant flow passages after the grooves have been sealed. must be enclosed. However, refrigerant has a high vapor pressure at room temperature, so if you try to seal it into the groove using this method, you have to do it at a very low temperature with no vapor pressure, which is not only extremely difficult. However, there are problems in that the sealing performance is poor and the reliability is low.

(発明の目的) 本発明は上記問題に鑑で創案されたものであって、溝部
を密封して冷媒流通路に形成後に、冷媒封入を可能とし
、製造が容易であり、しかも、シール性の信頼性を高め
ることができる半導体装置の放熱制御装置を提供しよう
とするものである。
(Object of the Invention) The present invention has been devised in view of the above-mentioned problems, and enables the refrigerant to be sealed after forming the refrigerant flow path by sealing the groove, is easy to manufacture, and has excellent sealing properties. It is an object of the present invention to provide a heat radiation control device for a semiconductor device that can improve reliability.

(発明の概要) 本発明は、半導体を取付ける基板と、この基板の裏面に
密着された放熱用の金属板と、前記基板と金属板との密
着面の少くともいずれか一方に形成した溝部が密封され
て形成されると共に断面内に角部を備え冷媒を封入した
冷媒流通路とよりなる構成とした。
(Summary of the Invention) The present invention provides a substrate on which a semiconductor is mounted, a metal plate for heat dissipation closely attached to the back surface of the substrate, and a groove portion formed in at least one of the contact surfaces of the substrate and the metal plate. The structure includes a refrigerant flow path that is sealed, has a corner in its cross section, and seals a refrigerant.

(発明の実施例) 本発明の一実施例を図面に基づいて説明する。(Example of the invention) An embodiment of the present invention will be described based on the drawings.

基板1は、半導体装置の半導体素子であるICCチップ
厚搭載するもので、セラミック材により形成されており
、ICチップA搭載面の反対面(裏面)には銅板からな
る放熱用の金属板2が密着固定されている。また、基板
1の金属板2が密着されている裏面には微細な溝部4が
平行に数本刻設されており、溝部4は金属板2による密
封により断面視四角形の冷媒流通路3に形成されている
。密封された冷媒流通路3には冷[5が封入されており
、常温では毛細管現象により、冷媒流通路3の角部3a
に凝集している。
The substrate 1 is used to mount an ICC chip, which is a semiconductor element of a semiconductor device, and is made of a ceramic material.The substrate 1 has a metal plate 2 for heat dissipation made of a copper plate on the opposite side (back side) to the surface on which the IC chip A is mounted. It is tightly fixed. In addition, several fine grooves 4 are carved in parallel on the back surface of the substrate 1 to which the metal plate 2 is in close contact, and the grooves 4 are sealed with the metal plate 2 to form a coolant flow path 3 having a rectangular cross-sectional view. has been done. The sealed refrigerant flow path 3 is filled with cold water, and at room temperature, due to capillary action, the corner 3a of the refrigerant flow path 3
are aggregated.

次に製造方法について説明する。Next, the manufacturing method will be explained.

まず、セラミック材により形成されている基板1の裏面
にエツチング加工、機械加工もしくはレーザビーム加工
により微細な溝部4を平行して複数本設ける。次に、こ
の溝部4のある裏面に金属板2を拡散溶接により、小さ
な加圧力で軽く接触させながら、高温で長時間加熱して
接合する。基板1と金属板2とが接合されると、基板1
の裏面側は完全にシールされることになり、溝部4が密
封されて冷媒流通路3が形成される。しかる後、機械加
工により金属板2に冷媒流通路3に通ずるパイプ(図示
省略)を接続する。パイプは金属板2との接続位置では
細管で、途中から大管に形成され、太管に形成された部
分にパルプが取付けられており、このパルプを介して冷
媒圧入装置(図示省略)に連通接続されている。パイプ
を放熱板2に接続した後、冷媒圧入装置を作動させ、加
圧下で冷媒5をパイプを介して冷媒流通路3に封入する
。この際、冷[5は毛細管現象により冷媒流通路3の角
部3aに凝集する。冷媒5の冷媒流通路3への封入が終
了した後に、加圧状態を保持したままでパイプを細管の
部分で絞って閉栓し、閉栓したまま、パイプを開栓位置
よりもパルプ寄りの位置で切断除去すると共に切断部を
溶接すると、基板1、金属板2、冷媒流通路3、冷媒5
からなるマイクロヒートパイプが構成される。このよう
に、基板1の裏面は金属板2が密着しており、−溝部4
が密封されて冷媒流通路3に形成された後に、この冷媒
流通路3に冷15封入用のパイプを接続することができ
るので、従来のガラスでシールすると同時に溝部内に冷
媒封入しなければならないものに比べ、シール及び冷媒
封入を非常に容易に行うことができ、しかもシール性が
良好になり信頼性を高めることができる。
First, a plurality of fine grooves 4 are formed in parallel on the back surface of a substrate 1 made of a ceramic material by etching, machining, or laser beam processing. Next, the metal plate 2 is bonded to the back surface where the groove portion 4 is located by diffusion welding by heating at a high temperature for a long time while making light contact with a small pressure force. When the substrate 1 and the metal plate 2 are joined, the substrate 1
The back side of the refrigerant flow path 3 is completely sealed, and the groove 4 is sealed to form a refrigerant flow path 3. Thereafter, a pipe (not shown) communicating with the refrigerant flow path 3 is connected to the metal plate 2 by machining. The pipe is a thin tube at the point where it connects to the metal plate 2, and is formed into a large tube from the middle, and a pulp is attached to the thick tube, and it communicates with a refrigerant injection device (not shown) through this pulp. It is connected. After connecting the pipe to the heat sink 2, the refrigerant injection device is operated to seal the refrigerant 5 into the refrigerant flow path 3 through the pipe under pressure. At this time, the cold [5] condenses at the corner 3a of the refrigerant flow path 3 due to capillary action. After the refrigerant 5 has been filled into the refrigerant flow path 3, the pipe is closed by squeezing it at the thin tube while maintaining the pressurized state. When cutting and removing and welding the cut parts, the substrate 1, metal plate 2, refrigerant flow path 3, and refrigerant 5 are removed.
A micro heat pipe is constructed. In this way, the metal plate 2 is in close contact with the back surface of the substrate 1, and the - groove portion 4
After the refrigerant flow passage 3 is sealed, a pipe for enclosing cold air filter 15 can be connected to this refrigerant flow passage 3, so the refrigerant must be sealed in the groove at the same time as the conventional glass seal. Compared to conventional products, sealing and refrigerant encapsulation can be performed much more easily, and the sealing performance can be improved and reliability can be improved.

このように構成されたマイクロヒートバイブはICCチ
ップ厚非°常に不均一な温度分布になった場合は、高温
部で冷媒5が蒸発して気体となり、冷媒流通路3の中央
部3bを通って低温部に移動する。低温部に移動した冷
媒5は凝縮して液体となり、角部3aに凝集し、毛細管
現象により再び高温部に戻る。このような冷媒5の循環
運動と共に、金属板2の放熱により、ICCチップ厚発
生した熱は放散されICチップΔは全体として均一した
温度に制御されるので、ICCチップ厚良好な状態で作
動することができる。
In the micro heat vib configured in this way, when the temperature distribution becomes extremely uneven due to the thickness of the ICC chip, the refrigerant 5 evaporates in the high temperature part and becomes a gas, passing through the central part 3b of the refrigerant flow path 3. Move to a cold area. The refrigerant 5 that has moved to the low temperature section condenses into a liquid, aggregates at the corner 3a, and returns to the high temperature section due to capillary action. Along with this circulation movement of the coolant 5, the heat generated in the ICC chip thickness is dissipated by the heat dissipation of the metal plate 2, and the IC chip Δ is controlled to a uniform temperature as a whole, so that the ICC chip operates in a good condition with a good thickness. be able to.

尚、溝部4は第3図に示すように金属板2側に設けても
よく、また、基板1、金属板2の双方に設けてもよい。
Note that the groove portion 4 may be provided on the metal plate 2 side as shown in FIG. 3, or may be provided on both the substrate 1 and the metal plate 2.

また、第4図に示すように金属板2に放熱効率を高める
フィン6を取付けてもよい。
Furthermore, as shown in FIG. 4, fins 6 may be attached to the metal plate 2 to improve heat dissipation efficiency.

さらに、本実施例の冷媒流通路3は四角形のものについ
て示したが、これに限定されるものではなく、第5図に
示すような三角形のものの他、五角形、六角形等多角形
のもの、不定形のものでもよく、要は角部を有し、この
角部の毛細管現象によって低温側で液体化された冷媒4
が再び高温側に戻るものならばよい。
Further, although the refrigerant flow passage 3 in this embodiment is shown as having a rectangular shape, it is not limited to this; in addition to a triangular one as shown in FIG. The refrigerant 4 may be of an amorphous shape, and essentially has corners, and is liquefied on the low temperature side due to capillary action at the corners.
It is sufficient if the temperature returns to the high temperature side again.

また、溝部4は平行に数本刻設したものについて示した
が1、交差状のもの、あるいは一本のもの、交差状に数
本のもの等適宜膜Gプることかできるものである。
In addition, although several grooves 4 are shown in parallel, they may be formed into a cross-shaped groove, one groove, or several grooves in a cross-shaped groove as appropriate.

(発明の効果) 以上より明らかなように本発明によれば、基板は金属板
を密着しており、シールと共に冷媒を溝部内に封入する
必要がなく、溝部を密封して冷媒流通路に形成した後に
、冷媒流入路内に冷媒を封することができるので、冷媒
の封入が殊更困難な手段を用いることなく非常に容易に
行うことができ、しかもシール性が向上し信頼性を高め
ることができる。
(Effects of the Invention) As is clear from the above, according to the present invention, the substrate is in close contact with the metal plate, and there is no need to seal the refrigerant in the groove with a seal, and the groove is sealed to form a refrigerant flow path. After that, the refrigerant can be sealed in the refrigerant inlet passage, so the refrigerant can be sealed very easily without using any particularly difficult means, and the sealing performance can be improved and reliability can be increased. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る半導体装置の放熱制御装置の実
施例であるマイクロヒートバイブの全体断面図、第2図
は同要部断面図、第3図乃至第5図はそれぞれ他の実施
例を示す断面図である。 A・・・ICチップ    1・・・基板2・・・金属
板      3・・・冷媒流通路3a・・・角部  
 4・・・溝部   5・・・冷媒第1図 第2図 第3図 Δ
FIG. 1 is an overall sectional view of a micro heat vibrator which is an embodiment of the heat dissipation control device for a semiconductor device according to the present invention, FIG. 2 is a sectional view of the same essential part, and FIGS. It is a sectional view showing an example. A... IC chip 1... Substrate 2... Metal plate 3... Refrigerant flow path 3a... Corner
4... Groove 5... Refrigerant Figure 1 Figure 2 Figure 3 Δ

Claims (1)

【特許請求の範囲】[Claims]  半導体を取付ける基板と、この基板の裏面に密着され
た放熱用の金属板と、前記基板と金属板との密着面の少
くともいずれか一方に形成した溝部が他方で密封されて
形成されると共に断面内に角部を備え冷媒を封入した冷
媒流通路とからなる半導体装置の放熱制御装置。
A substrate on which a semiconductor is mounted, a metal plate for heat dissipation closely attached to the back surface of this substrate, and a groove formed in at least one of the contact surfaces of the substrate and the metal plate are sealed with the other side. A heat radiation control device for a semiconductor device comprising a refrigerant flow path that has a corner in its cross section and seals a refrigerant.
JP5826885A 1985-03-25 1985-03-25 Heat dissipation control device Expired - Lifetime JPH0682768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5826885A JPH0682768B2 (en) 1985-03-25 1985-03-25 Heat dissipation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5826885A JPH0682768B2 (en) 1985-03-25 1985-03-25 Heat dissipation control device

Publications (2)

Publication Number Publication Date
JPS61218148A true JPS61218148A (en) 1986-09-27
JPH0682768B2 JPH0682768B2 (en) 1994-10-19

Family

ID=13079423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5826885A Expired - Lifetime JPH0682768B2 (en) 1985-03-25 1985-03-25 Heat dissipation control device

Country Status (1)

Country Link
JP (1) JPH0682768B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293573A (en) * 1995-04-20 1996-11-05 Daimler Benz Ag Micro cooler and its manufacture
CN102956583A (en) * 2011-08-29 2013-03-06 奇鋐科技股份有限公司 Temperature equalization plate structure and manufacturing method thereof
JP2013053837A (en) * 2011-09-06 2013-03-21 Kiko Kagi Kofun Yugenkoshi Structure of plate type heatpipe
CN105200403A (en) * 2014-06-26 2015-12-30 江苏格业新材料科技有限公司 Method for improving interface combination through surface silver deposition of foamy copper for heat pipe or vapor chamber
JP2018502460A (en) * 2015-01-15 2018-01-25 ラッペーンランナン・テクニッリネン・ユリオピストLappeenrannan Teknillinen Yliopisto Semiconductor module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293573A (en) * 1995-04-20 1996-11-05 Daimler Benz Ag Micro cooler and its manufacture
CN102956583A (en) * 2011-08-29 2013-03-06 奇鋐科技股份有限公司 Temperature equalization plate structure and manufacturing method thereof
JP2013053837A (en) * 2011-09-06 2013-03-21 Kiko Kagi Kofun Yugenkoshi Structure of plate type heatpipe
CN105200403A (en) * 2014-06-26 2015-12-30 江苏格业新材料科技有限公司 Method for improving interface combination through surface silver deposition of foamy copper for heat pipe or vapor chamber
JP2018502460A (en) * 2015-01-15 2018-01-25 ラッペーンランナン・テクニッリネン・ユリオピストLappeenrannan Teknillinen Yliopisto Semiconductor module

Also Published As

Publication number Publication date
JPH0682768B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US6631077B2 (en) Heat spreader with oscillating flow
US7100679B2 (en) Integrated circuit heat pipe heat spreader with through mounting holes
US7277283B2 (en) Cooling apparatus, cooled electronic module and methods of fabrication thereof employing an integrated coolant inlet and outlet manifold
US5179043A (en) Vapor deposited micro heat pipes
JP2569003B2 (en) Heat conduction device
US7421780B2 (en) Methods for fabricating thermal management systems for micro-components
US7233494B2 (en) Cooling apparatus, cooled electronic module and methods of fabrication thereof employing an integrated manifold and a plurality of thermally conductive fins
US20020062648A1 (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
US20100081191A1 (en) Anisotropic heat spreader for use with a thermoelectric device
JPS5936827B2 (en) Integrated circuit device cooling equipment
JPS61218148A (en) Heat sink controller of semiconductor device
US20180261522A1 (en) High-Performance Compliant Heat-Exchanger Comprising Vapor Chamber
JPH03186195A (en) Radiator with heat pipe and manufacture thereof
JP2002190560A (en) Semiconductor device
JP2001284513A (en) Power semiconductor device
JP3552553B2 (en) Planar heat pipe and method of manufacturing the same
Everhart et al. Manifold microchannel cooler for direct backside liquid cooling of SiC power devices
JPS61279157A (en) Cooling apparatus for semiconductor device
JPH01132146A (en) Semiconductor device
CN216624252U (en) Heat radiator for sealing device
JP2631121B2 (en) Laser melting recrystallization method of semiconductor thin film
JPH07336077A (en) Cooling structure of heating-element package
JPS63182844A (en) Semiconductor device
JPH08279577A (en) Cooling device for electronic component
JPH0827146B2 (en) heat pipe