JP2559212B2 - Substrate for integrated circuit with good thermal conductivity - Google Patents

Substrate for integrated circuit with good thermal conductivity

Info

Publication number
JP2559212B2
JP2559212B2 JP60163201A JP16320185A JP2559212B2 JP 2559212 B2 JP2559212 B2 JP 2559212B2 JP 60163201 A JP60163201 A JP 60163201A JP 16320185 A JP16320185 A JP 16320185A JP 2559212 B2 JP2559212 B2 JP 2559212B2
Authority
JP
Japan
Prior art keywords
substrate
heat
groove
integrated circuit
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60163201A
Other languages
Japanese (ja)
Other versions
JPS6224651A (en
Inventor
伸一 杉原
正孝 望月
耕一 益子
雅彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP60163201A priority Critical patent/JP2559212B2/en
Publication of JPS6224651A publication Critical patent/JPS6224651A/en
Application granted granted Critical
Publication of JP2559212B2 publication Critical patent/JP2559212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明はICやLSIあるいはハイブリッドICなどの集
積回路に用い基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate used in integrated circuits such as ICs, LSIs and hybrid ICs.

従来の技術 周知のようにこの種の集積回路は、シリコン製の基板
にフォトエッチングが拡散、蒸着などの方法によってト
ランジスタやダイオード等の素子を多数含む回路を形成
したものであり、小型で信頼性が高く、また安価である
などの優れた利点を有している。しかし集積回路は、パ
ッケージに密封した構成であるから、発熱による出力の
制約を受け、したがって高出力ICやハイブリッドICで
は、パッケージに放熱フィンを取付けて熱拡散を積極的
に行なったり、あるいはプリント基板に取付けた状態で
強制換気を行なって冷却を促進したりすることが行なわ
れている。
As is well known in the prior art, this type of integrated circuit is a small-sized and reliable circuit in which a large number of elements such as transistors and diodes are formed on a silicon substrate by methods such as photoetching diffusion and vapor deposition. It has high advantages such as high cost and low cost. However, since the integrated circuit is sealed in the package, output is restricted by heat generation. Therefore, in high-power ICs and hybrid ICs, heat dissipation fins are attached to the package to actively diffuse heat, or printed circuit boards are used. It is practiced to perform forced ventilation in the state where it is attached to and to promote cooling.

発明が解決しようとする課題 しかるに上述した従来の冷却のための手段は、パッケ
ージに密封した状態での外部との熱授受を促進するため
のものであるが、発熱源はセラミック基板上に形成した
回路であるから、その回路から放熱フィン等の外部に対
する放熱部までの熱移動を積極的に行なわなければ、効
率的な冷却とはなり得ない。この点に関して従来ではと
くに顧みられていず、集積回路の高出力化を図るうえ
で、未だ改良すべき余地があった。
However, the above-mentioned conventional means for cooling is for facilitating heat transfer with the outside in the sealed state of the package, but the heat source is formed on the ceramic substrate. Since the circuit is a circuit, efficient cooling cannot be achieved unless the heat is actively transferred from the circuit to the heat radiation part to the outside such as the heat radiation fins. This point has not been particularly considered in the past, and there is still room for improvement in order to increase the output of the integrated circuit.

この発明は上記の事情に鑑み、熱伝導性に優れ、した
がって高出力化を図ることのできる集積回路用基板を提
供することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a substrate for an integrated circuit, which is excellent in thermal conductivity and therefore can achieve high output.

課題を解決するための手段 この発明は、半導体素子集積回路を形成するための基
板として、その基板自体の発熱部分から放熱部分までの
熱移動を促進するようにしたものであり、具体的には、
基板用の板状素材に所定深さの溝が刻設されるとともに
その溝の開口端が蓋板によって密封されることにより、
基板の内部にその面方向に沿って所定の長さに空洞部が
形成されており、さらに前記溝の内壁面に、毛細管圧力
を生じさせるに充分な細い切込み部が長手方向に沿って
複数条形成されており、かつ前記空洞部に、蒸発凝縮を
行なって循環流動することにより熱輸送を行なう凝縮性
流体のみが封入されていることを特徴とするものであ
る。
Means for Solving the Problems The present invention is, as a substrate for forming a semiconductor element integrated circuit, designed to promote heat transfer from a heat generating portion to a heat radiating portion of the substrate itself, and specifically, ,
By engraving a groove of a predetermined depth on the plate-shaped material for the substrate and sealing the open end of the groove with the lid plate,
A cavity is formed in the substrate in a predetermined length along the surface direction, and a plurality of narrow cuts sufficient to generate capillary pressure are formed on the inner wall surface of the groove along the longitudinal direction. It is characterized in that it is formed and only the condensable fluid that carries out heat transport by evaporating and condensing and circulating is enclosed in the cavity.

作用 基板はその上に直接回路を形成するものであるから、
発熱源と実質的に一体であるが、この発明の基板では、
空洞部がヒートパイプとなり、凝縮性流体が熱を受けて
蒸発気化し、その蒸発が空洞部内を温度の低い部分に流
れた後に放熱して凝縮液化するので、凝縮性流体が相変
化(状態変化)に伴う潜熱として熱輸送を行ない、その
熱量が極めて大きいから、基板全体としての熱伝導性が
良好となる。特にこの発明においては、細い切込み部に
おいて生じる毛細管圧力によって液相の凝縮性流体を還
流させるから、空洞部自体の幅は特に制約を受けず、し
たがって空洞部の幅を広くして凝縮性流体の量を多くす
ることにより、凝縮性流体による熱輸送量が増大し、そ
の結果、回路からの発熱を効果的に放熱部分へ運んで回
路の温度上昇が防止される。
Since the substrate directly forms a circuit on it,
Although substantially integrated with the heat source, the substrate of this invention
The hollow part becomes a heat pipe, the condensable fluid receives heat to evaporate and evaporates, and the evaporation flows to the low temperature part and then radiates heat to condense and liquefy, so the condensable fluid undergoes a phase change (state change). The heat transfer is carried out as latent heat due to (1) and the amount of heat is extremely large, so that the thermal conductivity of the entire substrate becomes good. In particular, in the present invention, since the condensable fluid in the liquid phase is circulated by the capillary pressure generated in the narrow cut portion, the width of the cavity itself is not particularly limited, and therefore, the width of the cavity is widened and the condensable fluid By increasing the amount, the heat transport amount by the condensable fluid increases, and as a result, the heat generated from the circuit is effectively carried to the heat radiating portion, and the temperature rise of the circuit is prevented.

実 施 例 以下、この発明の実施例を添付の図面を参照して説明
する。
EXAMPLES Examples of the present invention will be described below with reference to the accompanying drawings.

第1図はこの発明の一実施例を示す部分断面斜視図で
あって、単結晶シリコン板等の板状素材1は数百μm程
度の厚さであり、その板状素材1に断面矩形状をなす所
定長さの溝2が表面側から刻設されるとともに、その上
部開口端がシリコン板やパイレックスガラスなどの蓋板
3によって密封され、その結果、板状素材1の内部に、
面方向に沿う所定長さの空洞部4が形成されている。そ
の空洞部4の内壁面のうち例えば第1図における下側の
面には、毛細管圧力を生じさせるに充分なように幅が数
μm程度の細い切込み部5が、長手方向に沿って複数条
形成されており、さらに空洞部4内には、空気等の非凝
縮性気体を排気した状態で水やアルコールなどの凝縮性
流体6が封入されている。
FIG. 1 is a partial cross-sectional perspective view showing an embodiment of the present invention, in which a plate-shaped material 1 such as a single crystal silicon plate has a thickness of about several hundred μm, and the plate-shaped material 1 has a rectangular cross section. A groove 2 having a predetermined length is formed from the surface side, and the upper opening end thereof is sealed by a cover plate 3 such as a silicon plate or Pyrex glass. As a result, inside the plate-shaped material 1,
A cavity 4 having a predetermined length along the surface direction is formed. In the inner wall surface of the cavity portion 4, for example, on the lower surface in FIG. 1, thin cut portions 5 each having a width of several μm, which is sufficient to generate capillary pressure, are provided along the longitudinal direction with a plurality of slits 5. Further, the hollow portion 4 is filled with a condensable fluid 6 such as water or alcohol in a state where a non-condensable gas such as air is exhausted.

なお、前記空洞部4の寸法は、一例として、幅200μ
m、長さ10mm程度に設定され、また切込み部5の幅は、
30μm程度に設定されている。
The size of the cavity 4 is, for example, 200 μm in width.
m, the length is set to about 10 mm, and the width of the cut 5 is
It is set to about 30 μm.

ここで、上記の基板の製造方法の一例を簡単に説明す
ると、まず単結晶シリコン板(シリコンウエハー)を用
意し、その表面に酸化層を形成した後、光硬化性樹脂
(フォトレジスト)を塗布し、所定のパターンのフォト
マスクを用いて紫外線に露光させ、ついで必要部分の樹
脂を溶剤で除去するとともに、その部分の酸化層を除去
し、その後他の部分の樹脂を溶剤で除去する。こうして
酸化層の一部に穴をあけた後、シリコンを溶かす異方性
エッチング用試薬によって細溝を刻み込む。ここで、異
方性エッチング用試薬とは、結晶の空隙格子中での異な
る方向における腐食割合が相違する酸の混合液であり、
従来から半導体製造プロセスなどで使用されている公知
のものを用いれば良い。そしてシリコンウエハーの表面
から酸化層を除去した後に、細溝の開口部にシリコン製
薄板等の蓋板を陽極処理接着法等の適当な方法によって
取付けて細溝を密閉し、空洞部とする。このような接合
を行なうにあたって、非凝縮性気体を排気することと併
せて、凝縮性流体を封入することは勿論である。
Here, an example of a method for manufacturing the above substrate will be briefly described. First, a single crystal silicon plate (silicon wafer) is prepared, an oxide layer is formed on the surface thereof, and then a photocurable resin (photoresist) is applied. Then, it is exposed to ultraviolet rays using a photomask having a predetermined pattern, and then the resin of the necessary portion is removed with a solvent, the oxide layer of that portion is removed, and then the resin of the other portion is removed with the solvent. After making a hole in a part of the oxide layer in this way, a fine groove is formed by an anisotropic etching reagent that dissolves silicon. Here, the anisotropic etching reagent is a mixed solution of acids having different corrosion rates in different directions in the void lattice of the crystal,
A publicly known one conventionally used in a semiconductor manufacturing process or the like may be used. Then, after removing the oxide layer from the surface of the silicon wafer, a lid plate such as a silicon thin plate is attached to the opening of the narrow groove by an appropriate method such as anodizing adhesion method, and the narrow groove is sealed to form a hollow portion. When performing such joining, it goes without saying that the non-condensable gas is exhausted and the condensable fluid is enclosed.

上述した構成の基板を用いて実際にモノリシックICあ
るいはLSIなどの集積回路を製造するにあたっては、そ
の基板自体の所定の部分に半導体素子の集合体を形成す
る。すなわち、基板のいずれか一方の面にエピタキシャ
ル層を形成するとともに、その表面に酸化膜を形成し、
しかる後通常の方法によりフォトエッチングおよび拡散
を繰返し行なって多数の素子を形造る。またハイブリッ
ドICとする場合には、印刷の手法、あるいは蒸着やスパ
ッタリング等によって回路を作り、ついでチップを取付
ける。
When actually manufacturing an integrated circuit such as a monolithic IC or LSI using the substrate having the above-described structure, an assembly of semiconductor elements is formed on a predetermined portion of the substrate itself. That is, an epitaxial layer is formed on either surface of the substrate, and an oxide film is formed on the surface of the epitaxial layer.
Then, photoetching and diffusion are repeated by a usual method to form a large number of elements. In the case of a hybrid IC, a circuit is made by a printing method, vapor deposition or sputtering, and then a chip is attached.

こうして作られた集積回路は、通電によって発熱する
が、その熱によって前記空洞部4内の凝縮性流体6が蒸
発するとともに、その蒸気が空洞部4内の温度の低い部
分へ流れて放熱し、凝縮液化するので、通電に伴って生
じた熱は前記凝縮性流体の潜熱として温度の低い部分へ
輸送される。また放熱して凝縮液化した前記凝縮性流体
は、前記切込み部5において生じる毛細管圧力によって
還流し、その結果、凝縮性流体は蒸発および凝縮を行な
いつつ循環流動し、継続して熱輸送を行なう。すなわ
ち、基板内部に形成したヒートパイプとして、集積回路
を形成した基板における特に高熱の部分で吸熱を行な
い、基板における集積回路を形成していない端部などの
低温部分が放熱部分として機能することになる。ここ
で、流体の潜熱としての輸送量は極めて大きいから、前
記空洞部4を、基板の強度を損わない程度に連続して複
数設けるとともに、パッケージに取付けた放熱フィン等
の放熱部材に熱伝導性の高い銅などからなる適当な熱的
コネクターを介して前述の基板端部などの放熱部分を連
結することにより、極めて効率良く冷却することができ
る。
The integrated circuit produced in this manner generates heat when energized, and the heat causes the condensable fluid 6 in the cavity 4 to evaporate, and the vapor flows to the low temperature portion in the cavity 4 to radiate heat. Since it is condensed and liquefied, the heat generated by the energization is transported to the low temperature portion as the latent heat of the condensable fluid. The condensable fluid that has radiated heat to be condensed and liquefied is recirculated by the capillary pressure generated in the cut portion 5, and as a result, the condensable fluid circulates while evaporating and condensing, and continuously transfers heat. In other words, as a heat pipe formed inside the substrate, it absorbs heat at a particularly high heat portion of the substrate on which the integrated circuit is formed, and a low temperature portion such as an end portion of the substrate on which the integrated circuit is not formed functions as a heat radiation portion. Become. Here, since the amount of transport of the fluid as latent heat is extremely large, a plurality of the hollow portions 4 are continuously provided so as not to impair the strength of the substrate, and heat is conducted to a heat radiation member such as a heat radiation fin attached to the package. By connecting the above-mentioned heat radiating portion such as the substrate end portion through an appropriate thermal connector made of highly resistant copper or the like, it is possible to cool very efficiently.

第2図はこの発明の他の実施例を示す部分断面斜視図
であって、ここに示す基板は、空洞部4を台形断面とす
ることにより、底面の左右両側におけるコーナ部を毛細
管圧力を発生させる切込み部5としたものである。した
がってこのような構成においても、放熱することによっ
て凝縮液化した凝縮性流体6がその切込み部5を介して
還流するから、空洞部4の幅を広くしても液相の凝縮性
流体6を確実に還流させることができ、その結果、空洞
部4の内容積の増大に伴って凝縮性流体6の量を多くで
きるために、熱輸送能力が高まり、基板としての熱伝導
性を優れたものとすることができる。
FIG. 2 is a partial cross-sectional perspective view showing another embodiment of the present invention. In the substrate shown here, the cavity portion 4 has a trapezoidal cross-section to generate capillary pressure in the corner portions on the left and right sides of the bottom surface. The cut portion 5 is provided. Therefore, even in such a configuration, since the condensable fluid 6 condensed and liquefied by radiating heat flows back through the cut portion 5, the condensable fluid 6 in the liquid phase can be surely maintained even if the width of the cavity 4 is widened. Since the amount of the condensable fluid 6 can be increased as the inner volume of the cavity 4 is increased, the heat transport capacity is increased and the heat conductivity of the substrate is excellent. can do.

なお第2図に示すような切込み部5を有する空洞部4
を有する空洞部4を形成するにあたっては、例えば第1
図の場合と同様にして断面矩形状の溝2を形成した後、
レーザ加工によって溝2の両側面下部を溶融除去した
り、あるいは最初からレーザ加工によって台形断面の溝
2を形成したりすれば良い。
It should be noted that the cavity portion 4 having the cut portion 5 as shown in FIG.
In forming the cavity 4 having the
After forming the groove 2 having a rectangular cross section in the same manner as shown in the figure,
The lower portions of both side surfaces of the groove 2 may be melted and removed by laser processing, or the groove 2 having a trapezoidal cross section may be formed by laser processing from the beginning.

発明の効果 以上の説明で明らかなようにこの発明においては、細
い複数条の切り込み部を空洞部の内壁面の一部に設け
て、その切込み部によって毛細管圧力を生じさせる構成
としたから、空洞部の幅を広くしても液相の凝縮性流体
を確実に還流させることができ、そのために空洞部を広
くして凝縮性流体の量を増すことにより、空洞部での熱
輸送量を多くし、ひいては基板全体としての熱伝導性を
高め、さらには回路の高出力化を図ることができる。
EFFECTS OF THE INVENTION As is apparent from the above description, in the present invention, a plurality of thin cutouts are provided in a part of the inner wall surface of the cavity, and the cutouts generate a capillary pressure. Even if the width of the part is widened, the condensable fluid in the liquid phase can be reliably recirculated. Therefore, by increasing the amount of the condensable fluid by widening the cavity, the heat transfer amount in the cavity can be increased. Further, it is possible to enhance the thermal conductivity of the entire substrate and further increase the output of the circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、それぞれこの発明の実施例を示
す部分断面拡大斜視図である。 1……板状素材、4……空洞部、5……切込み部、6…
…凝縮性流体。
1 and 2 are enlarged perspective views, each showing a partial cross section, showing an embodiment of the present invention. 1 ... Plate-shaped material, 4 ... Hollow part, 5 ... Notched part, 6 ...
… Condensable fluid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 益子 耕一 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 伊藤 雅彦 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 実開 昭59−71072(JP,U) 実開 昭60−2841(JP,U) 実開 昭56−26977(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Masuko 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Cable Co., Ltd. (72) Masahiko Ito 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Electric Cable Co., Ltd. (56) References Actually open 59-71072 (JP, U) Actually open 60-2841 (JP, U) Actually open 56-26977 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板用の板状素材に所定深さの溝が刻設さ
れるとともにその溝の開口端が蓋板によって密封される
ことにより、基板の内部にその面方向に沿って所定の長
さに空洞部が形成されており、さらに前記溝の内壁面
に、毛細管圧力を生じさせるに充分な細い切込み部が長
手方向に沿って複数条形成されており、かつ前記空洞部
に、蒸発凝縮を行なって循環流動することにより熱輸送
を行なう凝縮性流体のみが封入されていることを特徴と
する熱伝導性の良い集積回路用基板。
1. A plate-shaped material for a substrate is engraved with a groove having a predetermined depth, and an opening end of the groove is sealed by a cover plate, so that a predetermined amount is formed inside the substrate along its surface direction. A cavity is formed along the length of the groove, and a plurality of thin notches sufficient to generate capillary pressure are formed along the inner wall surface of the groove along the longitudinal direction. A substrate for an integrated circuit having good thermal conductivity, in which only a condensable fluid that carries out heat transport by condensing and circulating is enclosed.
JP60163201A 1985-07-24 1985-07-24 Substrate for integrated circuit with good thermal conductivity Expired - Fee Related JP2559212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163201A JP2559212B2 (en) 1985-07-24 1985-07-24 Substrate for integrated circuit with good thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163201A JP2559212B2 (en) 1985-07-24 1985-07-24 Substrate for integrated circuit with good thermal conductivity

Publications (2)

Publication Number Publication Date
JPS6224651A JPS6224651A (en) 1987-02-02
JP2559212B2 true JP2559212B2 (en) 1996-12-04

Family

ID=15769201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163201A Expired - Fee Related JP2559212B2 (en) 1985-07-24 1985-07-24 Substrate for integrated circuit with good thermal conductivity

Country Status (1)

Country Link
JP (1) JP2559212B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781563B2 (en) * 1989-01-09 1995-08-30 テイエチケー株式会社 Linear actuator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971072U (en) * 1982-10-26 1984-05-14 三菱電機株式会社 heat pipe

Also Published As

Publication number Publication date
JPS6224651A (en) 1987-02-02

Similar Documents

Publication Publication Date Title
JP3651790B2 (en) High density chip mounting equipment
US4995451A (en) Evaporator having etched fiber nucleation sites and method of fabricating same
RU2146067C1 (en) Organic chip holder for integrated circuits with wire connections
JP2002246514A (en) Semiconductor device
US20070200226A1 (en) Cooling micro-channels
US6473963B1 (en) Method of making electrical circuit board
JP2559212B2 (en) Substrate for integrated circuit with good thermal conductivity
JP3178288B2 (en) Cooling module and manufacturing method thereof
JPH0338838Y2 (en)
JPH0337237Y2 (en)
JPH0334951Y2 (en)
JPH02114597A (en) Method of cooling electronic device
JPH0337238Y2 (en)
JPS61265850A (en) Substrate for integrated circuit with excellent heat conductivity
JPH03273669A (en) Semiconductor device with cooling mechanism
JPS629651A (en) Manufacture of integrated circuit substrate with excellent thermal conductivity
JPS6216551A (en) Manufacture of substrate for integrated circuit having good thermal conductivity
JPH06244576A (en) Printed wiring board with unified heat pipe
JP3386267B2 (en) Radiator
JP2635770B2 (en) Printed wiring board
JPS60133290A (en) Heat pipe
JPH0310706Y2 (en)
JP2599464B2 (en) Mounting board with built-in heat pipe
JP2813376B2 (en) Mounting board with built-in heat pipe
JPH0563053U (en) Hybrid integrated circuit board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees