JPS62164886A - Production of acetylene - Google Patents

Production of acetylene

Info

Publication number
JPS62164886A
JPS62164886A JP61004781A JP478186A JPS62164886A JP S62164886 A JPS62164886 A JP S62164886A JP 61004781 A JP61004781 A JP 61004781A JP 478186 A JP478186 A JP 478186A JP S62164886 A JPS62164886 A JP S62164886A
Authority
JP
Japan
Prior art keywords
electrode
gas
metal catalyst
methane
acetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61004781A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamamoto
山本 光生
Yoshio Iwamoto
岩本 嘉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Air Conditioning Co Ltd
Original Assignee
Shinryo Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Air Conditioning Co Ltd filed Critical Shinryo Air Conditioning Co Ltd
Priority to JP61004781A priority Critical patent/JPS62164886A/en
Publication of JPS62164886A publication Critical patent/JPS62164886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To convert a gaseous hydrocarbon such as methane into acetylene at a high rate of conversion with high selectivity by placing a metallic catalytic electrode as at least one of confronting electrodes and exciting a feed gas contg. the gaseous hydrocarbon by electric discharge in the space between the electrodes. CONSTITUTION:A conventional needle-shaped electrode 1 is placed on the upper stream side of a reaction chamber and a metallic catalytic electrode 2 on the downstream side. The electrode 2 is preferably made of Ni, Ti, Zn, the chloride, sulfate or nitrate thereof. Positive voltage is applied to the electrode 1, negative voltage to the electrode 2 and a feed gas 3 contg. a gaseous hydrocarbon such as methane is fed. Electric discharge is caused between the electrodes 1, 2 and the methane in the feed gas 3 is converted into acetylene and hydrogen on the surface of the electrode 2 by the catalytic action of the electrode 2 as well as by a plasma reaction on the electrode 2.

Description

【発明の詳細な説明】 ・−・−の1 本発明はアセチレンの製造方法に関し、さらに詳しく述
べるとメタンなどの炭化水素ガスを放電させてアセチレ
ンと水素に転化する方法に関づる。
DETAILED DESCRIPTION OF THE INVENTION - Part 1 The present invention relates to a method for producing acetylene, and more specifically, to a method for converting hydrocarbon gas such as methane into acetylene and hydrogen by discharging it.

とその口 天然ガスはメタンなどの炭化水素ガスを土成分とするも
のであり、燃料ガスとしての用途のほか化学工業原料と
しても用いられている。しかしながらメタンは反応性に
乏しいため、これをプラスチック、合成遷移あるいは合
成ゴムの原料として有用なアセチレンに転化することが
行われている。
Natural gas consists of hydrocarbon gases such as methane, and is used not only as a fuel gas but also as a raw material for the chemical industry. However, since methane has poor reactivity, it has been converted into acetylene, which is useful as a raw material for plastics, synthetic transitions, and synthetic rubber.

メタンからアセチレンを製造する方法として熱分解法が
あるが、この方法は、多量の熱エネルギーを消費するた
め、これに替わって電弧分解法が行なわれている。この
電弧分解法としてはヒュルツ(Hjils>法、シ:a
 ッ* (Schoch) 法ナトカ知うttでいる。
Pyrolysis is a method for producing acetylene from methane, but since this method consumes a large amount of thermal energy, electric arc decomposition is used instead. This electric arc decomposition method is the Hürtz method,
* (Schoch) I'm a tt who knows the law.

ヒュルツ法は天然ガスあるいは石油系炭化水素ガスを加
圧下で高圧直流電弧放電させてアセチレンと水素を1!
造する方法である。ショッホ法は天然ガスなどをグロー
放電させてアセチレンを製造する方法である。これら従
来の方法では主反応:2CH4→C21−12+382 とともに以下の副反応: CH4→C+282 が起り、カーボンブラック(C)が副生ずる。また、上
記副反応のほかに他の副反応も生じてエチレン、エタン
など不純物が形成されるという問題点がある。
In the Hürtz method, natural gas or petroleum-based hydrocarbon gas is subjected to high-voltage DC electric arc discharge under pressure to convert acetylene and hydrogen into 1!
It is a method of building. The Schoch method is a method of producing acetylene by subjecting natural gas to glow discharge. In these conventional methods, the main reaction: 2CH4→C21-12+382 and the following side reaction: CH4→C+282 occur, and carbon black (C) is produced as a by-product. Furthermore, there is a problem in that other side reactions occur in addition to the above side reactions, resulting in the formation of impurities such as ethylene and ethane.

尺1と」貞 本発明は前記従来技術の欠点を解消するものであって、
高転換率かつ高選択性でもってメタンなどの炭化水素を
アセチレンに転化する方法を提供することを目的とする
The present invention solves the drawbacks of the prior art, and includes:
It is an object of the present invention to provide a method for converting hydrocarbons such as methane to acetylene with high conversion and high selectivity.

ところで化学反応速度を向上させるとともに反応の転換
率Jγ!に選択性を高めるために触媒を用いることは周
知の技術である。本命囲者はメタンガスの放電によるア
セチレンの製造方法において、放電領域に種々の金属触
媒からなる触IlX層を設けて実験を行ったが転換率お
よび選択性の向上を図ることができなかった。次に、こ
の触媒層のかわりにこれら金属触媒でもって作られた電
極を用いてメタンの放心を行ったところ、予想外にも転
換率および選択性が向上することを見出し本発明を完成
するに至ったものである。
By the way, as well as improving the chemical reaction rate, the conversion rate of the reaction Jγ! It is a well-known technique to use catalysts to increase selectivity. In a method for producing acetylene by discharging methane gas, the applicant conducted experiments by providing a catalytic IlX layer made of various metal catalysts in the discharge region, but was unable to improve the conversion rate and selectivity. Next, when we used an electrode made of these metal catalysts instead of this catalyst layer to carry out methane centering, we discovered that the conversion rate and selectivity were unexpectedly improved, and we completed the present invention. This is what we have come to.

すなわち本発明の要旨とするところは、少なくとも一方
の電極が金属触媒電極である対向する電極の間で、炭化
水素ガスを含む供給ガスを放電させることを特徴とする
アセチレンの製造方法である。
That is, the gist of the present invention is a method for producing acetylene, characterized in that a supply gas containing a hydrocarbon gas is discharged between opposing electrodes, at least one of which is a metal catalyst electrode.

11の  しい。11 new ideas.

本発明の方法においては少なくとも一方の電極、好まし
くは対向する両電極を金属触媒電極とする。
In the method of the present invention, at least one electrode, preferably both opposing electrodes, are metal catalyst electrodes.

本明細書において用語「金属触媒電極」とは、電極それ
自身が後記する金属触媒でもって作られているもの、あ
るいは導電性支持体電極表面上にこの金属触媒を担持し
たものを意味する。
As used herein, the term "metal catalyst electrode" means an electrode that is itself made of a metal catalyst described below, or an electrode that supports this metal catalyst on the surface of a conductive support electrode.

電極の形状は線状、板状、網状等の任意の形であってよ
いが、本発明においては主として電極表面上において反
応が起るため、金属触媒電極は供給ガスとの接触が良好
であるもの、すなわち表面積の大きい電橋形状とするこ
とが好ましい。例えば網状電極、繊維状電極、発泡金属
電極、あるいは粒状金属触媒の充填層を電極としたもの
(この場合、粒状金属触媒は導電性材料にする)は特に
好ましい金属触媒電極の形態である。
The shape of the electrode may be any shape such as linear, plate, or net, but in the present invention, the reaction mainly occurs on the electrode surface, so the metal catalyst electrode has good contact with the supplied gas. In other words, it is preferable to use an electric bridge shape with a large surface area. For example, a mesh electrode, a fibrous electrode, a foamed metal electrode, or a packed bed of granular metal catalyst as an electrode (in this case, the granular metal catalyst is a conductive material) are particularly preferred forms of the metal catalyst electrode.

本発明において用いる金属触媒はニッケル、クロム、チ
タン、亜鉛、マンガン、銅、錫、タングステン、鉛およ
びこれらの組合せからなる群から選ばれる元素状金属:
これら金属の酸化物;ハロゲン化物、例えば塩化物:硫
酸塩;および硝酸塩である。好ましい金属触媒はニッケ
ル、チタン、あるいは亜鉛の元素状金属、これらの塩化
物、硫酸塩、または硝酸塩である。最も好ましい金属触
媒はニッケル、チタン、亜鉛またはこれらを組合せた元
素状金属である。
The metal catalyst used in the present invention is an elemental metal selected from the group consisting of nickel, chromium, titanium, zinc, manganese, copper, tin, tungsten, lead and combinations thereof:
oxides of these metals; halides such as chlorides: sulfates; and nitrates. Preferred metal catalysts are the elemental metals nickel, titanium, or zinc, their chlorides, sulfates, or nitrates. The most preferred metal catalysts are elemental metals such as nickel, titanium, zinc or combinations thereof.

金属触媒それ自身を電極として用いる場合は、前記した
元素状金属を金属触媒とする。前記したハロゲン化物、
TiAwi塩、あるいは硝酸塩を用いる場合は、導電性
支持体電極にこれら金属触媒を担持させて金属触媒電極
とする。導電性支持体電極として例えばグラフフィトを
用いることができる。
When the metal catalyst itself is used as an electrode, the above-mentioned elemental metal is used as the metal catalyst. The above-mentioned halides,
When using TiAwi salt or nitrate, these metal catalysts are supported on a conductive support electrode to form a metal catalyst electrode. For example, graphite can be used as the conductive support electrode.

グラファイトに前記金属化合物を担持させるには、浸漬
法を好適に用いることができる。例えばバインダーを含
む硝酸ニッケル水溶液にグラファイトを浸漬し、次いで
得られるグラファイトを乾燥し、所望により還元雰囲気
中でさらに熱処理して金属触媒電極を得る。
A dipping method can be preferably used to support the metal compound on graphite. For example, graphite is immersed in a nickel nitrate aqueous solution containing a binder, then the obtained graphite is dried and optionally further heat-treated in a reducing atmosphere to obtain a metal catalyst electrode.

本発明の一態様においては一方の電極を従来の電極とし
、他方の電極を金属触媒電極とする。電極間距離は特に
限定されないが例えば5ないし15履程度である。両電
極に直流あるいは交流の高電圧、例えば数千ないし致方
ボルトを印加して放電を行う。直流高電圧を印加する場
合、好ましくは金属触媒電極を負極とし、あるいは金属
触媒電極を接地し他方の電極に正電圧を印加する。この
ような構成を採用するとアセチレンの収率が向上する。
In one embodiment of the invention, one electrode is a conventional electrode and the other electrode is a metal catalyst electrode. The distance between the electrodes is not particularly limited, but is, for example, about 5 to 15 pairs. A high voltage of direct current or alternating current, for example, several thousand or more volts, is applied to both electrodes to generate a discharge. When applying a direct current high voltage, preferably the metal catalyst electrode is used as a negative electrode, or the metal catalyst electrode is grounded and a positive voltage is applied to the other electrode. When such a configuration is adopted, the yield of acetylene is improved.

供給ガスは電極に対し並行にあるいは直交に流すことが
できるが、好ましくは直交させる。この場合、供給ガス
の流れに対し下流側を金属触媒電極とすることが好まし
い。
The feed gas can flow parallel or perpendicular to the electrodes, but preferably perpendicularly. In this case, it is preferable to use a metal catalyst electrode on the downstream side with respect to the flow of the supply gas.

供給ガスの組成はガス状炭化水素、特に炭素原子数3以
下の飽和あるいは不飽和の炭化水素を含むガスである。
The composition of the feed gas is a gas containing gaseous hydrocarbons, particularly saturated or unsaturated hydrocarbons having up to 3 carbon atoms.

好ましくはメタンを含むガスである。酸素などの酸化性
ガスを含む場合は、好ましくは本発明の実施に先立ち除
去するのが好ましい。
Preferably it is a gas containing methane. If it contains an oxidizing gas such as oxygen, it is preferably removed prior to carrying out the present invention.

副反応を防ぐためである。供給ガスの好ましい例は天然
ガスおよび汚泥の消化ガスである。
This is to prevent side reactions. Preferred examples of feed gases are natural gas and sludge digestion gas.

本発明の方法は常温、常圧下で実施できるが、所望によ
り昇温、昇圧下で行ってもよい。
The method of the present invention can be carried out at normal temperature and pressure, but may also be carried out at elevated temperature and pressure if desired.

放電形式としては、従来のアーク放電のほかコロナ放電
、グロー放電あるいは火花放電が適用可能である。しか
しながらエネルギー収率の面からグロー放電またはコロ
ナ放電が本発明の好ましい放電形式である。
As the discharge type, in addition to conventional arc discharge, corona discharge, glow discharge, or spark discharge can be applied. However, from the viewpoint of energy yield, glow discharge or corona discharge is the preferred discharge form of the present invention.

図は本発明の方法を示す説明図である。上流側に従来の
針状電極1を、上流側に本発明に係る金属触媒電極2を
配置する。電極1に正電圧をそして電極2に負電圧を印
加する。供給ガス3を流して電極間に放電を形成させる
と、供給ガス中のメタンは以下の反応式: %式% に従い金属触媒電極2の表面でプラズマ反応するととも
に触媒作用を受けてアセチレンと水素が得られる。nI
生する水素は工業的に価値ある物質であるから、生成ガ
スから水素吸蔵合金などを用いて分離し別途利用に供す
る。また生成ガスをアセトンと接触させてアセチレンを
アセトンに吸収させてもよい。
The figure is an explanatory diagram showing the method of the present invention. A conventional needle-shaped electrode 1 is arranged on the upstream side, and a metal catalyst electrode 2 according to the present invention is arranged on the upstream side. A positive voltage is applied to electrode 1 and a negative voltage is applied to electrode 2. When the supply gas 3 is caused to flow and a discharge is formed between the electrodes, the methane in the supply gas undergoes a plasma reaction on the surface of the metal catalyst electrode 2 according to the following reaction formula: % Formula % At the same time, acetylene and hydrogen undergo a catalytic action. can get. nI
Since the produced hydrogen is an industrially valuable substance, it is separated from the produced gas using a hydrogen storage alloy and made available for separate use. Alternatively, the generated gas may be brought into contact with acetone to absorb acetylene into the acetone.

l旦立班ヌ 本発明によればメタンなどの炭化水素ガスから放電によ
りアセチレンを製造する方法において、前記した金属触
媒電極の使用により転化率および選択性を従来よりも飛
躍的に向上させることができる。
According to the present invention, in a method for producing acetylene from hydrocarbon gas such as methane by electric discharge, the conversion rate and selectivity can be dramatically improved compared to the conventional method by using the metal catalyst electrode described above. can.

本発明に用いる金属触媒は白金あるいはパラジウムなど
の高価な貴金属を使用しないため、経済的な方法といえ
る。さらに本発明では常温かつ常圧下で行なえるという
特徴を有する。従来の電弧法ではアークの形成により供
給ガスの温度が数百℃程度まで上昇させるため熱エネル
ギー損失が多く、このため単位電力当りのアセチレン収
率は低い。これに対し本発明の方法でグロー放電あるい
はコロナ放電を形成させると、供給ガスの温度上昇を伴
うことなく所望の反応を起すことができる。
Since the metal catalyst used in the present invention does not use expensive noble metals such as platinum or palladium, it can be said to be an economical method. Furthermore, the present invention is characterized in that it can be carried out at room temperature and under normal pressure. In the conventional electric arc method, the temperature of the supplied gas rises to several hundreds of degrees Celsius due to the formation of the arc, resulting in a large loss of thermal energy, and therefore the acetylene yield per unit electric power is low. On the other hand, when a glow discharge or a corona discharge is formed using the method of the present invention, the desired reaction can occur without increasing the temperature of the supplied gas.

また、本発明の方法ではカーボンブラックの生成がほと
んどないため、生成ガスの気固分離をする必要がないと
いう利点もある。
Furthermore, since the method of the present invention hardly generates carbon black, there is also the advantage that there is no need to perform gas-solid separation of the generated gas.

50s+X50am’X 100姻りの反応器内に針状
電極(3sφ)とこれに平行に網状電極を10.の間隔
で設け、針状電極の側から網状電極に直交して純メタン
ガスを流ffi 0.25 N /分、S V 480
0hr−1(ただし、実施例7および8では1.OJl
 /分、S V = 24,000)で常温かつ常圧下
で流してアセチレンの製造を行った。両電極には直流高
電圧を印加した(網状電極を負極とした)。針状電極の
材料はしんちゅうである。実験条件および実験結果を以
下の第1表に示す。
50s+50am' pure methane gas was flowed perpendicularly to the mesh electrode from the needle electrode side at ffi 0.25 N/min, S V 480
0hr-1 (However, in Examples 7 and 8, 1.OJl
/min, S V = 24,000) at room temperature and pressure to produce acetylene. A high DC voltage was applied to both electrodes (the mesh electrode was used as the negative electrode). The material of the needle electrode is brass. The experimental conditions and experimental results are shown in Table 1 below.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の方法を示す説明図である。 1・・・針状電極     2・・・金属触媒電極特許
出願人  新菱冷熱工業株式会社 (公つγ」]
The figure is an explanatory diagram showing the method of the present invention. 1... Needle-shaped electrode 2... Metal catalyst electrode Patent applicant Shinryo Corporation (Kotsu γ)]

Claims (1)

【特許請求の範囲】 1)少なくとも一方の電極が金属触媒電極である対向す
る電極の間で、炭化水素ガスを含む供給ガスを放電励起
させることからなる、アセチレンの製造方法。 2)前記供給ガスはメタン含有ガスである、特許請求の
範囲第1項記載の方法。 3)前記供給ガスは天然ガスあるいは汚泥の消化ガスで
ある、特許請求の範囲第2項記載の方法。 4)前記金属触媒電極はニッケル、クロム、チタン、亜
鉛、マンガン、銅、錫、タングステン、鉛およびこれら
の組合せからなる群から選ばれる元素状金属材料でもっ
て作られる、特許請求の範囲第1項記載の方法。 5)前記金属触媒電極はニッケル、クロム、チタン、亜
鉛、マンガン、銅、錫、タングステン、および鉛からな
る元素状金属、これらの金属の酸化物、ハロゲン化物、
硫酸塩、または硝酸塩あるいはこれらの組合せからなる
触媒を導電性支持体電極の表面に担持させたものである
、特許請求の範囲第1項記載の方法。 6)前記支持体電極はグラファイトである、特許請求の
範囲第5項記載の方法。 7)前記放電がコロナ放電である、特許請求の範囲第1
項記載の方法。
Claims: 1) A method for producing acetylene, comprising discharging and exciting a feed gas containing a hydrocarbon gas between opposing electrodes, at least one of which is a metal catalyst electrode. 2) The method of claim 1, wherein the feed gas is a methane-containing gas. 3) The method according to claim 2, wherein the feed gas is natural gas or sludge digestion gas. 4) The metal catalyst electrode is made of an elemental metal material selected from the group consisting of nickel, chromium, titanium, zinc, manganese, copper, tin, tungsten, lead, and combinations thereof. Method described. 5) The metal catalyst electrode is made of elemental metals consisting of nickel, chromium, titanium, zinc, manganese, copper, tin, tungsten, and lead, oxides and halides of these metals,
2. The method according to claim 1, wherein a catalyst consisting of sulfate, nitrate, or a combination thereof is supported on the surface of a conductive support electrode. 6) The method of claim 5, wherein the support electrode is graphite. 7) Claim 1, wherein the discharge is a corona discharge.
The method described in section.
JP61004781A 1986-01-13 1986-01-13 Production of acetylene Pending JPS62164886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61004781A JPS62164886A (en) 1986-01-13 1986-01-13 Production of acetylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61004781A JPS62164886A (en) 1986-01-13 1986-01-13 Production of acetylene

Publications (1)

Publication Number Publication Date
JPS62164886A true JPS62164886A (en) 1987-07-21

Family

ID=11593356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61004781A Pending JPS62164886A (en) 1986-01-13 1986-01-13 Production of acetylene

Country Status (1)

Country Link
JP (1) JPS62164886A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128936A (en) * 1987-11-14 1989-05-22 Tatsuaki Yamaguchi Production of hydrocarbon having two carbon atoms
JPH0977690A (en) * 1995-09-12 1997-03-25 Tatsuaki Yamaguchi Production of acetylene
JPH10139693A (en) * 1996-11-08 1998-05-26 Tatsuaki Yamaguchi Production of acetylene
JP2015218583A (en) * 2014-05-14 2015-12-07 本田技研工業株式会社 Internal combustion engine fuel control unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973382A (en) * 1972-10-06 1974-07-16
JPS6077112A (en) * 1983-10-01 1985-05-01 Otsuka Chem Co Ltd Direct synthesis of hydrazine and/or ammonia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973382A (en) * 1972-10-06 1974-07-16
JPS6077112A (en) * 1983-10-01 1985-05-01 Otsuka Chem Co Ltd Direct synthesis of hydrazine and/or ammonia

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128936A (en) * 1987-11-14 1989-05-22 Tatsuaki Yamaguchi Production of hydrocarbon having two carbon atoms
JPH0977690A (en) * 1995-09-12 1997-03-25 Tatsuaki Yamaguchi Production of acetylene
JPH10139693A (en) * 1996-11-08 1998-05-26 Tatsuaki Yamaguchi Production of acetylene
JP2015218583A (en) * 2014-05-14 2015-12-07 本田技研工業株式会社 Internal combustion engine fuel control unit

Similar Documents

Publication Publication Date Title
JP5219188B2 (en) Hydrogen production
CN109200969B (en) Method for low-temperature plasma double-electric-field auxiliary treatment of carbon dioxide and/or carbon monoxide-containing gas synthetic compound
CN102408095A (en) Method of decomposing hydrogen sulfide for preparation of hydrogen and elemental sulfur
US6136278A (en) Discharge reactor and uses thereof
Zhu et al. Enhanced CO 2 electroreduction on armchair graphene nanoribbons edge-decorated with copper
CN111278766A (en) Low-temperature plasma reaction equipment and method for decomposing hydrogen sulfide
US3361535A (en) Method for production of high purity hydrogen
WO2020121287A1 (en) Catalytic methane decomposition and catalyst regeneration, methods and uses thereof
US20220073345A1 (en) Catalytic methane decomposition and catalyst regeneration, methods and uses thereof
US4242103A (en) Cyclic two step process for production of methane from carbon monoxide
Ma et al. N-doped graphene for electrocatalytic O 2 and CO 2 reduction
JPS62164886A (en) Production of acetylene
US4242105A (en) Process for producing methane from gas streams containing carbon monoxide and hydrogen
CN110127623B (en) Method for decomposing hydrogen sulfide by plasma
US11981632B2 (en) Process for producing hydrogen, carbon, and ethylene from methane-containing feedstock
AU4883800A (en) Hydrocarbon synthesis
JP4255201B2 (en) Chain hydrocarbon steam reforming method and apparatus therefor
US1826974A (en) Process of producing hydrogen
CN110124653B (en) Catalyst for decomposing hydrogen sulfide and preparation method and application thereof
US3859373A (en) Manufacture of hydrogen
WO2019037725A1 (en) Method and device for synthesizing compound by low temperature plasma double electric field assisted gas phase reaction
JPS6045939B2 (en) Methanol decomposition catalyst for hydrogen and carbon monoxide production
JPH0261410B2 (en)
WO2016074111A1 (en) Temperature-controlled apparatus for hydrogen production by continuous decomposition of hydrogen sulfide
CN111377410A (en) Low-temperature plasma equipment and method for decomposing hydrogen sulfide