JPS62164825A - Method for controlling combustion of heating furnace - Google Patents

Method for controlling combustion of heating furnace

Info

Publication number
JPS62164825A
JPS62164825A JP473586A JP473586A JPS62164825A JP S62164825 A JPS62164825 A JP S62164825A JP 473586 A JP473586 A JP 473586A JP 473586 A JP473586 A JP 473586A JP S62164825 A JPS62164825 A JP S62164825A
Authority
JP
Japan
Prior art keywords
representative
billet
pattern
temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP473586A
Other languages
Japanese (ja)
Inventor
Noboru Takahashi
暢 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP473586A priority Critical patent/JPS62164825A/en
Publication of JPS62164825A publication Critical patent/JPS62164825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To easily and stably control a furnace temp. and to minimize fuel consumption by determining the target heating up pattern of a non- representiative billet in accordance with the target heating up pattern of the representative billet of each billet group in the furnace and controlling the combustion in the heating furnace. CONSTITUTION:The billets in the multi-zone heating furnace are divided to continuous groups and the representative billet is set by each group. The present temps. of the above-mentioned representative billet and non-representative billet are designated as theta0, theta1, the intended time for extraction as t0, t1 and the target extraction temp. as thetaEXT. Further the coefft. alpha of temp. direction conversion is set at alpha=(thetaEXT-theta1)/(thetaEXT-theta0) and the coefft. beta of time direction conversion at beta=t1/t0. The target temp. pattern f0(t) set with the above-mentioned representative billet is converted to the time direction and g0(t)=f0(t/beta) is determined; further the time direction is converted to the temp. direction and f1(t)=(1-alpha).thetaEXT+alphaf0(t/beta) is determined. The combustion is controlled by determining the above-mentioned f1(t) as the target heating up pattern of the non- representative billet.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は加熱炉の燃焼制御方法に係り、詳しくは、安定
した炉温制御が行なわれ、かつ省エネルギーに寄与する
加熱炉の燃焼制御方法に係る。
[Detailed Description of the Invention] <Object of the Invention> Industrial Field of Application The present invention relates to a combustion control method for a heating furnace, and more particularly, the present invention relates to a combustion control method for a heating furnace that achieves stable furnace temperature control and contributes to energy saving. It concerns the control method.

従  来  の  技  術 多帯式加熱炉において、炉内鋼片を鋼種や加熱規制条件
などを基に、複数個の鋼片からなるグループに分け、各
々のグループ内の代表鋼片について予測した炉内移動ス
ケジュール、加熱規制などがらオンラインで目標となる
昇温パターンを計算し、その昇温パターンに鋼片温度が
追従するように炉温制御を行なう方法が特開昭58−2
10121号等により知られている。
In conventional multi-zone heating furnaces, the slabs in the furnace are divided into groups consisting of multiple slabs based on the steel type, heating regulation conditions, etc., and the furnace is calculated based on predictions for the representative slabs in each group. JP-A-58-2 discloses a method in which a target temperature increase pattern is calculated online based on internal movement schedules, heating regulations, etc., and the furnace temperature is controlled so that the billet temperature follows the temperature increase pattern.
It is known from No. 10121 and the like.

ところが、これらの方法において、オンラインで昇温パ
ターンを計算するためには、燃料消費量を最小化する最
適化問題を解くことになるが、オンラインで多量の計算
を行なう必要があり、炉内の鋼片全てについてn iF
Aパターンを計算する口とは不可能である。これに対し
、従来、とられてきた方法は、同一グループ内での各鋼
片の温度差がそれほど大きくないという仮定のちとに、
代表鋼片についてδl算した昇温パターンを、代表鋼片
以外のグループ内鋼片に、代表鋼片とそれ以外のグルー
プ内鋼片の残在短時間の差を考慮して、時間方向を変換
する方式、また、各燃焼帯毎に独立に鋼片を搬送可能な
連続加熱炉に対しては、代表鋼片の昇温パターンを基に
、その他の鋼片の昇温パターンを代表鋼片とその他の鋼
片との現在温度比および残在炉時間比より求めるという
方式が特開昭59−14573(3号により知られてい
る。
However, in order to calculate the temperature increase pattern online with these methods, an optimization problem that minimizes fuel consumption is solved, but a large amount of calculations must be performed online, and the n iF for all slabs
It is impossible to calculate the A pattern. On the other hand, the conventional method is to assume that the temperature difference between each piece of steel in the same group is not that large.
The temperature increase pattern calculated by δl for the representative slab is converted to the steel slabs in the group other than the representative slab, taking into account the difference in the remaining time between the representative slab and other slabs in the group, and converts the time direction. In addition, for continuous heating furnaces that can transport billets independently for each combustion zone, the temperature increase pattern of other billets is determined based on the temperature increase pattern of the representative billet. A method of determining the temperature from the current temperature ratio and remaining furnace time ratio with respect to other steel slabs is known from JP-A-59-14573 (No. 3).

ところが、前述の時間軸の変換のみを行なう方法では、
各鋼片の温度差が考慮されず、昇温パターンを決定した
時点ですでに代表鋼片以外の鋼片については昇温パター
ンに対して焼は過ぎ、焼は不足が生じることとなり、安
定した炉温設定や抽出目標温度の精度は期待できない。
However, with the method described above that only converts the time axis,
The temperature difference between each billet is not taken into account, and by the time the temperature increase pattern is determined, steel billets other than the representative billet will have been overheated and underheated compared to the temperature increase pattern, resulting in a stable condition. Accuracy of furnace temperature setting and extraction target temperature cannot be expected.

現に実際の操業では同一チャージ内の鋼片でも数10度
以上の差が生じる場合がある。また、特開昭59−14
573G号に示される方法においては、代表鋼片と非代
表鋼片の現在温度比の値と代表鋼片の抽出時点での胃湛
パターンの傾きの関係によっては、代表鋼片の昇温パタ
ーンを基に求めた非代表鋼片の昇温パターンが楊値を持
つことが容易に証明される。すなわち、非代表鋼片の目
標昇温パターンが抽出以前に一旦、抽出目標温度より高
い温度を経由し、その後、抽出目標温度に達するという
燃料消費最小化の思想と全く相反するものとなる場合が
ある。
In actual operation, even steel pieces within the same charge may differ by several tens of degrees or more. Also, JP-A-59-14
In the method shown in No. 573G, the temperature increase pattern of the representative steel piece is determined depending on the relationship between the current temperature ratio of the representative steel piece and the non-representative steel piece and the slope of the stomach pattern at the time of extraction of the representative steel piece. It is easily proven that the temperature rise pattern of the non-representative steel piece obtained based on this has the Yang value. In other words, there are cases where the target temperature increase pattern of a non-representative steel piece goes through a temperature higher than the extraction target temperature before extraction, and then reaches the extraction target temperature, which is completely contrary to the idea of minimizing fuel consumption. be.

発明が解決しようとする問題点 本発明はこれらの問題点を解決することを目的とし、具
体的には、簡単に計算ができ、安定した炉温制御が可能
で、また、燃料消費低減に寄与できる加熱炉の燃焼制御
方法を提供することを目的とする。
Problems to be Solved by the Invention The present invention aims to solve these problems.Specifically, it is possible to perform calculations easily, achieve stable furnace temperature control, and contribute to reducing fuel consumption. The purpose of the present invention is to provide a method for controlling combustion of a heating furnace.

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 本発明は、多帯式加熱炉において、炉内の鋼片を連続し
た少数個の鋼片のグループに分け、各グループ毎に代表
鋼片を設定し、該代表鋼片について求めた目標昇温パタ
ーンを基に、該代表鋼片が所属するグループ内のその他
の鋼片の目標昇温パターンを、前記代表鋼片とその他の
鋼片の抽出目標;8度と現在温度との差の比、および現
在から抽出予定時刻までの残在炉時間比より求め、カ1
1熱炉の燃焼を制御することを特徴とする。
<Structure of the Invention> Means for Solving the Problems and Their Effects The present invention provides a multi-zone heating furnace in which the steel slabs in the furnace are divided into a small number of successive steel slab groups, and each group is divided into a representative group. A steel billet is set, and based on the target temperature increase pattern obtained for the representative steel billet, the target temperature increase pattern of other steel billets in the group to which the representative billet belongs is determined by Target for extracting pieces: Calculated from the ratio of the difference between 8 degrees and the current temperature and the ratio of remaining furnace time from the current time to the scheduled extraction time.
It is characterized by controlling combustion in a one-heat furnace.

以下、本発明の構成ならびに作用を図面を用いて説明覆
ると、次の通りである。
The structure and operation of the present invention will be explained below using the drawings.

第1図は代表鋼片の昇温パターンを示すグラフであり、
第2図は代表鋼片の昇温パターンと、その昇温パターン
を時間方向に変換した非代表鋼片の昇温パターンを示す
グラフであり、第3図は時間方向と温度方向とで変換し
た非代表鋼片の昇温パターンを示すグラフであり、第4
図は代表鋼片と非代表鋼片との昇温パターンを示すグラ
フである。
Figure 1 is a graph showing the temperature increase pattern of a representative steel billet.
Figure 2 is a graph showing the temperature increase pattern of a representative steel billet and the temperature increase pattern of a non-representative steel billet converted from that temperature increase pattern in the time direction, and Figure 3 is a graph showing the temperature increase pattern of a non-representative steel billet converted in the time direction and temperature direction. 4 is a graph showing a temperature increase pattern of a non-representative steel piece;
The figure is a graph showing the temperature increase pattern of representative steel pieces and non-representative steel pieces.

以下、本発明における代表鋼片の昇温パターンより非代
表鋼片の昇温パターンの計算方法について述べる。
Hereinafter, a method of calculating the temperature increase pattern of a non-representative steel billet from the temperature increase pattern of a representative steel billet in the present invention will be described.

第1図に代表鋼片の昇温パターンを示す。Figure 1 shows the temperature increase pattern of a representative steel billet.

θEXTは抽出口4!!温度、θ0は現在の代表鋼片温
度、toは代表鋼片の現在時刻をOとした時の抽出予定
時刻である。それに対し、非代表鋼片の現在温度を(7
jx抽出予定時刻をt、とする。
θEXT is extraction port 4! ! The temperature, θ0, is the current representative billet temperature, and to is the scheduled extraction time when the current time of the representative billet is O. In contrast, the current temperature of the non-representative steel piece is (7
Let t be the scheduled extraction time of jx.

まず、代表鋼片と非代表鋼片の現在温度と抽出目標温度
の差の比より決まる温度方向変換係数αおよび残在短時
間の比から決まる時間方向変換係数βを以下のように定
義する。
First, the temperature direction conversion coefficient α, which is determined by the ratio of the difference between the current temperature and the extraction target temperature of the representative steel piece and the non-representative steel piece, and the time direction conversion coefficient β, which is determined from the ratio of the remaining short time, are defined as follows.

α=(OF:×T−θ、l/(OE×T−θQ)−・”
(11β=t、/L、、   ・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・(2)
代表鋼片の昇温パターンをf、 (t’lとすると、非
代表鋼片の昇温パターンは以下の手順により求められる
α=(OF:×T-θ, l/(OE×T-θQ)-・”
(11β=t, /L,...
・・・・・・・・・・・・・・・・・・・・・・・・(2)
If the temperature increase pattern of the representative steel piece is f, (t'l), the temperature increase pattern of the non-representative steel piece is determined by the following procedure.

(A)まず、代表鋼片の昇温パターンを時間方向に変換
し、非代表鋼片の残在短時間と等しい残在短時間を持つ
昇温パターンリ□(tlをつくる。
(A) First, the temperature increase pattern of the representative steel piece is converted in the time direction, and a temperature increase pattern □(tl) having a residual time equal to the residual time of the non-representative steel piece is created.

第2図にf、(tlとg。([)の Do (tl=r、(j/β) ・・・・・・・・・・
・・・・・・・・・・・・・・(3)関係を示す。
Figure 2 shows f, (tl and g. Do of ([)) (tl=r, (j/β)...
・・・・・・・・・・・・・・・(3) Show the relationship.

+81次に、9゜([)を以下のように温度方向に変換
し、現在温度を非代表鋼片の温度と一致させる。すなわ
ち、以下で求められるf、 (t)が非代表鋼片の昇温
パターンとなる。
+81 Next, convert 9° ([) into the temperature direction as shown below to make the current temperature match the temperature of the non-representative steel piece. That is, f, (t) found below becomes the temperature increase pattern of the non-representative steel piece.

f、 (t)=(1−α)・0EXT+α(IQ (N
=(1−α)・θEXT+αfoft/β)・・・・・
・・・・(4)昇温パターンgo (tlと非代表鋼片
の昇温パターンf、 (t)の関係を第3図に示す。ま
た、代表鋼片の昇温パターンrr+ (t)と非代表鋼
片の昇温パターンr、 (tlを第4図に示す。(4)
式に示す非代表鋼片の昇温パターンf、 (t)は代表
鋼片の昇温パターンとの残在短時間差を時間方向に線形
変換して補間し、温度差を抽出目標温度からの差の比が
一定となるように補間したものである。
f, (t)=(1-α)・0EXT+α(IQ (N
=(1-α)・θEXT+αfoft/β)・・・・・・
...(4) The relationship between the temperature increase pattern go (tl and the temperature increase pattern f, (t) of the non-representative steel piece is shown in Fig. 3. Also, the temperature increase pattern rr+ (t) of the representative steel piece and The temperature increase pattern r, (tl) of the non-representative steel piece is shown in Figure 4. (4)
The temperature increase pattern f, (t) of the non-representative steel piece shown in the formula is obtained by linearly converting the remaining short time difference from the temperature rise pattern of the representative steel piece in the time direction and interpolating it, and extracting the temperature difference from the target temperature. It is interpolated so that the ratio of is constant.

以上のように、本発明によるとグループ内で代表鋼片1
個のみについて昇温パターンを求めることにより同一グ
ループ内の鋼片の昇温パターンが代表鋼片の昇温パター
ンより容易に計弾できる。また、求められた昇温パター
ンは、現在の各鋼片の温度から抽出目標温度までを滑ら
かに結び、かつ極値を持つことはなく、安定した炉温制
御を可能とし、燃料消費串を最小化とするパターンに十
分に近いパターンとなっている。これにより、安定して
炉温制御が行なわれ、かつ省エネルギーに寄与する燃焼
制御方式を提供することかできた。なお、(Al、(B
lの時間方向、温度方向の変換はどちらを先に行なって
も良い。
As described above, according to the present invention, one representative steel piece within a group
By determining the temperature increase pattern for only individual steel pieces, the temperature increase pattern of steel pieces within the same group can be more easily measured than the temperature increase pattern of representative steel pieces. In addition, the determined temperature increase pattern smoothly connects the current temperature of each billet to the extraction target temperature and has no extreme values, enabling stable furnace temperature control and minimizing fuel consumption. The pattern is sufficiently close to that of the previous model. As a result, it was possible to provide a combustion control method that stably controls the furnace temperature and contributes to energy savings. In addition, (Al, (B
The conversion of l in the time direction or the temperature direction may be performed first.

〈発明の効果〉 以上説明したように、本発明は、多帯式加熱炉において
、炉内の鋼片を連続した複数個の鋼片のグループに分け
、各グループ毎に代表鋼片を設定し、該代表鋼片につい
て求めた目標昇温パターンを基に、該代表鋼片が所属す
るグループ内のその他の鋼片の目標昇温パターンを、前
記代表鋼片とその他の鋼片の抽出目標温度と現在温度と
の差の比、および現在から抽出予定時刻までの残在炉時
間比より求め、加熱炉の燃焼を制御することを特徴とす
る加熱炉の燃焼制御方法であって、本発明方法は安定し
た炉温制御を可能とし、燃料消費団を最小化とするパタ
ーンが得られ、口れによって省エネルギーに寄与する燃
焼制御方式を提供することができた。
<Effects of the Invention> As explained above, the present invention divides the steel slabs in the furnace into a plurality of consecutive steel slab groups in a multi-zone heating furnace, and sets a representative steel slab for each group. , based on the target temperature increase pattern obtained for the representative steel billet, the target temperature increase pattern of other steel billets in the group to which the representative billet belongs is extracted as the target temperature of the representative steel billet and other steel billets. A combustion control method for a heating furnace, characterized in that the combustion in the heating furnace is controlled by determining from the ratio of the difference between This enabled stable furnace temperature control, provided a pattern that minimized fuel consumption, and provided a combustion control method that contributes to energy savings through smooth combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は代表鋼片の昇温パターンを示すグラフ、第2図
は代表鋼片の昇温パターンと、その昇温パターンを時間
方向に変換した非代表鋼片の昇温パターンを示すグラフ
、第3図は時間方向と温度方向とで変換した非代表鋼片
の昇温パターンを示すグラフ、第4図は代表鋼片と非代
表鋼片との昇温パターンを示すグラフである。
Fig. 1 is a graph showing the temperature increase pattern of a representative steel piece, Fig. 2 is a graph showing the temperature rise pattern of a representative steel piece and a temperature rise pattern of a non-representative steel piece obtained by converting the temperature rise pattern in the time direction. FIG. 3 is a graph showing a temperature increase pattern of a non-representative steel piece converted in the time direction and temperature direction, and FIG. 4 is a graph showing a temperature rise pattern of a representative steel piece and a non-representative steel piece.

Claims (1)

【特許請求の範囲】[Claims] 多帯式加熱炉において、炉内の鋼片を連続した複数個の
鋼片のグループに分け、各グループ毎に代表鋼片を設定
し、該代表鋼片について求めた目標昇温パターンを基に
、該代表鋼片が所属するグループ内のその他の鋼片の目
標昇温パターンを、前記代表鋼片とその他の鋼片の抽出
目標温度と現在温度との差の比、および現在から抽出予
定時刻までの残在炉時間比より求め、加熱炉の燃焼を制
御することを特徴とする加熱炉の燃焼制御方法。
In a multi-zone heating furnace, the steel slabs in the furnace are divided into groups of continuous steel slabs, a representative slab is set for each group, and the target temperature increase pattern is determined for the representative slab. , the target temperature increase pattern of other steel slabs in the group to which the representative steel slab belongs is determined by the ratio of the difference between the extraction target temperature and the current temperature of the representative steel slab and other steel slabs, and the scheduled extraction time from the current temperature. A combustion control method for a heating furnace, characterized in that the combustion in the heating furnace is controlled by determining from the ratio of remaining furnace time up to the remaining furnace time.
JP473586A 1986-01-13 1986-01-13 Method for controlling combustion of heating furnace Pending JPS62164825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP473586A JPS62164825A (en) 1986-01-13 1986-01-13 Method for controlling combustion of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP473586A JPS62164825A (en) 1986-01-13 1986-01-13 Method for controlling combustion of heating furnace

Publications (1)

Publication Number Publication Date
JPS62164825A true JPS62164825A (en) 1987-07-21

Family

ID=11592161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP473586A Pending JPS62164825A (en) 1986-01-13 1986-01-13 Method for controlling combustion of heating furnace

Country Status (1)

Country Link
JP (1) JPS62164825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240620A (en) * 1988-03-16 1989-09-26 Miyamoto Kogyosho:Kk Method and furnace for heat-treating billet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240620A (en) * 1988-03-16 1989-09-26 Miyamoto Kogyosho:Kk Method and furnace for heat-treating billet

Similar Documents

Publication Publication Date Title
JPS62164825A (en) Method for controlling combustion of heating furnace
US6183246B1 (en) Method of heating a continuously charged furnace particularly for steel-making products, and continuously charged heating furnace
CN110059940B (en) Steelmaking-continuous casting interface connection energy-saving method and system
JPS572843A (en) Control method for heating in continuous type heating furnace
JPS6051535B2 (en) Optimal control device for billet heating furnace
JPS6125771B2 (en)
JP3297741B2 (en) Furnace temperature control method for continuous heating furnace
JPH0232329B2 (en) KANETSUROSEIGYOHOHO
CN209458977U (en) A kind of batch-type furnace oxygen-enriched combustion system
JPH0711157Y2 (en) Walking beam type heating furnace
JPH0532448B2 (en)
JPS582247B2 (en) Continuous heating furnace control method
Dercyke et al. Automation of Hot Stove Operation at Sidmar: Control and Optimisation of Energy Consumption
SU1187883A1 (en) Automatic control system for grinding and drying in ball mill
JPS61199013A (en) Method for controlling continuous heating furnace
JPH0123527B2 (en)
JPH06271947A (en) Method for controlling heating in preheating furnace
JPS609087B2 (en) Heating control method for continuous heating furnace
JPH03260024A (en) Optimum controller for heating furnace
JPS6213519A (en) Method for preventing surface cracking of steel slab during hot rolling
JPS60200319A (en) Controller for furnace temperature
JPH08246057A (en) Automatic combustion control method in continuous type heating furnace
Bataille et al. Laying of Ceramic Fibres in Heating Zone of the Reheating Furnace at the Ugifos Wire Rod Mill
JPS61279625A (en) Method for controlling slab heating furnace
JPS61199019A (en) Method for controlling continuous heating furnace