JPS62164810A - Method for operating top and bottom blown converter - Google Patents

Method for operating top and bottom blown converter

Info

Publication number
JPS62164810A
JPS62164810A JP512986A JP512986A JPS62164810A JP S62164810 A JPS62164810 A JP S62164810A JP 512986 A JP512986 A JP 512986A JP 512986 A JP512986 A JP 512986A JP S62164810 A JPS62164810 A JP S62164810A
Authority
JP
Japan
Prior art keywords
blowing
slag forming
converter
height
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP512986A
Other languages
Japanese (ja)
Inventor
Norio Kawasaki
川崎 規生
Hideo Take
武 英雄
Haruyuki Okuda
治志 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP512986A priority Critical patent/JPS62164810A/en
Publication of JPS62164810A publication Critical patent/JPS62164810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To advantageously recover a converter gas enriched with CO by executing flux injection with bottom blowing in the initial and end periods of blowing and controlling slag forming in the middle period thereby adjusting the height of slag forming. CONSTITUTION:The flux injection from a bottom blowing tuyere is executed in the initial and end periods of blowing when the concn. of CO is low to suppress the slag forming. The converter gas is recovered in the middle period of blowing when the concn. of CO is high. The control of the slag forming including the stopping and restarting of the flux injection, continuous throwing of iron ore, temporary stopping thereof, etc. is executed during this time so that the height of the slag forming is maintained in the 50-80% range of the furnace throat height. The converter gas having a high concn. of CO is generated by such slag forming control, by which the energy from the converter is recovered with high efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 上吹きランスを備える上底吹き転炉の操業に関してこの
明細書では、COガス濃度の高い転炉ガスの回収を目指
した操業方法についての開発研究の成果を述べる。
[Detailed Description of the Invention] (Industrial Application Field) Regarding the operation of a top-bottom blowing converter equipped with a top-blowing lance, this specification describes the development of an operating method aimed at recovering converter gas with a high concentration of CO gas. Describe the results of the research.

上底吹き転炉による溶鋼の吹錬ては上吹きランスからの
0゜ガスジェットによって炉内2次燃焼が生じ熱源の向
上を図れるため、例えばスクラップを使用する低溶銑操
業において有利である。
Blowing of molten steel in a top-bottom blowing converter is advantageous, for example, in low-hot metal operations using scrap, because secondary combustion occurs in the furnace due to the 0° gas jet from the top-blowing lance, and the heat source can be improved.

しかし転炉ガスの回収を行う場合には、炉内2次燃焼を
起こすと回収ガス中のCD濃度が低下するため、回収ガ
スのカロリー原単位で大きな不利となっている。
However, when converter gas is recovered, secondary combustion in the furnace reduces the CD concentration in the recovered gas, which is a major disadvantage in terms of the calorie consumption of the recovered gas.

(従来の技術) 転炉のCOガスの回収に関しては、特開昭54−126
610号公報が参照できるが、回収ガス中のCOa度を
高めることについての開示はない。
(Prior art) Regarding the recovery of CO gas from a converter, Japanese Patent Laid-Open No. 54-126
No. 610 can be referred to, but there is no disclosure about increasing the COa content in the recovered gas.

(発明が解決しようとする問題点) CDに富んだ転炉ガスの回収に有利な上底吹き転炉の操
業を造滓制御によって達成することがこの発明の目的で
ある。
(Problems to be Solved by the Invention) It is an object of the present invention to achieve operation of a top-bottom blowing converter that is advantageous for recovery of CD-rich converter gas by slag control.

(問題点を解決するための手段) この発明は、上底吹き転炉による溶鋼の吹錬に際し、吹
錬初期および末期のCOガス発生の少ない期間に底吹き
羽口からスラグフォーミングを抑制するフラックスイン
ジェクションを行うこと、吹錬中期のCOガス発生の多
い期間にスラグフォーミング高さが炉口高さの50〜8
0%の範囲となる造滓制御を行うこと、の結合からなる
上底吹き転炉の操業方法である。
(Means for Solving the Problems) This invention provides a flux that suppresses slag forming from the bottom blowing tuyere during a period of low CO gas generation at the beginning and end of blowing when blowing molten steel in a top and bottom blowing converter. Injection should be carried out, and the slag forming height should be 50 to 8 m
This is a method of operating a top-bottom blowing converter that combines the following: controlling the slag to within a range of 0%.

さて第1図に示す吹錬パターンについて説明する。Now, the blowing pattern shown in FIG. 1 will be explained.

まず吹錬の初期と末期は炉内で発生するガスのCD濃度
が低いためガス回収には不適当な期間で、この期間に底
吹き羽口からフラックスインジェクションを実施してス
ラグフォーミングの抑制を図る。フラックスとしてはC
aOを用い、Canを0゜ガスとともに溶鋼中に吹き込
む。
First, the initial and final stages of blowing are inappropriate periods for gas recovery because the CD concentration of the gas generated in the furnace is low, and flux injection is performed from the bottom blowing tuyere during this period to suppress slag forming. . C as a flux
Using aO, blow Can into molten steel along with 0° gas.

また吹錬の中期では転炉ガス中のCD濃度が十分に高く
なるので、転炉ガスの回収を行う。このとき転炉ガス中
のCD濃度を高くするため、スラグフォーミング高さを
炉口高さの50〜80%の範囲に保持する造滓制御を行
う。ここでスラグフォーミング高さおよび炉口高さは第
2図に示す如く、それぞれ静止鋼浴面Aからの高さであ
り、炉口高さに対する百分率としてスラグフォーミング
高さを示す。
Further, in the middle stage of blowing, the CD concentration in the converter gas becomes sufficiently high, so the converter gas is recovered. At this time, in order to increase the CD concentration in the converter gas, slag forming control is performed to maintain the slag forming height within a range of 50 to 80% of the furnace mouth height. As shown in FIG. 2, the slag forming height and furnace mouth height are the heights from the stationary steel bath surface A, respectively, and the slag forming height is expressed as a percentage of the furnace mouth height.

スラグフォーミング高さを炉口高さの50〜80%に制
御するには、次の(1)および(2)の操作を行う。
In order to control the slag forming height to 50 to 80% of the furnace mouth height, the following operations (1) and (2) are performed.

(1)  スラグフォーミング高さく50%まずフラッ
クスインジェクションを停止し、鉄鉱石の連続投入を開
始し、その後もスラグフォーミング高さが依然として低
い場合はほたる石のような副原料を炉口から投入する。
(1) Slag forming height 50% First, stop the flux injection, start continuous injection of iron ore, and if the slag forming height is still low after that, add auxiliary materials such as fluorite from the furnace mouth.

(2)  スラグフォーミング高さ〉80%スラグフォ
ーミング高さが80%をこえてスロッピングのおそれが
でてきたならば、フラックスインジェクションを開始し
鉄鉱石の投入を一時停止する。また不活性ガスを底吹き
する方式(LD−KGC)の如き上吹きランスが攪拌力
に大きく寄与している上底吹き転炉では、上吹きランス
を下げることによってもスラグフォーミング高さの低下
を図り得る。
(2) Slag forming height > 80% If the slag forming height exceeds 80% and there is a risk of slopping, start flux injection and temporarily stop the introduction of iron ore. In addition, in top-bottom blowing converters such as the bottom-blowing inert gas type (LD-KGC) where the top-blowing lance greatly contributes to the stirring force, lowering the top-blowing lance can also reduce the slag forming height. It is possible.

なおスラグフォーミング高さは特開昭55−12521
7号公報に開示の如く、上吹きランスに取付けた加速度
検出体により炉内反応で生成したスラグの運動に基づく
加速度を検出し、この加速度とスラグ中における検出体
の浸漬法さならびに送酸流量との間の関数関係を用いて
推定する。
The slag forming height is JP-A-55-12521.
As disclosed in Publication No. 7, the acceleration based on the movement of the slag generated by the reaction in the furnace is detected by an acceleration detector attached to the top blowing lance, and this acceleration, the method of immersing the detector in the slag, and the acid flow rate are measured. Estimate using the functional relationship between

(作 用) 転炉内の脱炭反応は上吹きランスおよび底吹き羽口付近
の火点での1次燃焼(C+1/202→CO)により行
われ、この時点でのC02含有率(CO7/ (CO+
CD□)  X100)は5〜10%である。しかし上
底吹き転炉ではさらに上吹きガスによる2次燃焼(CO
+1/20□→CO□)が生じ、CD2含有率は15〜
20%まで上昇する。
(Function) The decarburization reaction in the converter takes place through primary combustion (C+1/202→CO) at the top blowing lance and the fire point near the bottom blowing tuyere, and the CO2 content (CO7/ (CO+
CD□)X100) is 5 to 10%. However, in top-bottom blown converters, secondary combustion (CO
+1/20□→CO□) occurs, and the CD2 content is 15~
Increases to 20%.

ところでCD□は高温領域において強い酸化剤であり、
Fe+CD□=F’e[]+CD (a Fe= a 
P@o”1)の反応におけるco□−co含有量は第3
図(鉄と鋼vol、 51. (19651194頁参
照)に示されているように、炉内雰囲気温度が1500
℃のとき15容積%C02・85容積%COでCD含有
率が高い。またスラグフォーミング中には5〜10wt
%の粒鉄が含有されているため、この粒鉄によって排ガ
ス中のCOzはCDに還元され、排ガス中のcod度が
上昇する。
By the way, CD□ is a strong oxidizing agent in the high temperature range,
Fe+CD□=F'e[]+CD (a Fe= a
The co□-co content in the reaction of P@o”1) is the third
As shown in the figure (Tetsu to Hagane vol. 51. (see page 19651194)), the furnace atmosphere temperature is 1500
℃, the CD content is high at 15 vol% CO2 and 85 vol% CO. Also, during slag forming, 5 to 10 wt.
% of granulated iron is contained, the COz in the exhaust gas is reduced to CD by the granulated iron, and the cod degree in the exhaust gas increases.

さらに上吹きガスジェットと1次燃焼ガスとの接触面積
がスラグフォーミング高さの上昇により減少し2次燃焼
率が低下することも、CD濃度が上昇する要因である。
Furthermore, the contact area between the top-blown gas jet and the primary combustion gas decreases due to the increase in the slag forming height, and the secondary combustion rate decreases, which is also a factor in increasing the CD concentration.

したがってスラグフォーミング高さを増せば、転炉ガス
のCD濃度の上昇を図り得るわけで、これにはスラグフ
ォーミング高さが炉口高さの50%以上は必要で、また
スロッピング防止の点から高さの上限は80%とする。
Therefore, by increasing the slag forming height, it is possible to increase the CD concentration in the converter gas.For this purpose, the slag forming height needs to be at least 50% of the furnace mouth height, and from the viewpoint of preventing slopping. The upper limit of height is 80%.

(実施例) 250ton上底吹き転炉において、下記の条件で第1
図に示した吹錬パターンによる操業を行い、吹錬中期で
のスラグフォーミング高さを炉口高さの+a:38%、
bニア5%、C:49%にそれぞれ制御した。これらa
 −Cの3タイプの吹錬で発生後回収した転炉ガスのC
D濃度を、第4図に示す。
(Example) In a 250 ton top-bottom blowing converter, the first
The operation was carried out according to the blowing pattern shown in the figure, and the slag forming height in the middle stage of blowing was +a: 38% of the furnace mouth height.
B: 5% and C: 49%, respectively. These a
- C of converter gas recovered after generation in three types of C blowing
The D concentration is shown in FIG.

記 上底吹き送酸流量 2.3Nm37min ・t 〜3
.4Nm37min ・底吹き送酸流量  0.6〜0
.7Nm’/m1ntCaO吹込み量(Tot) 13
〜27kg/を初期Can吹込み量 6〜8kg/l 末期CaO吹込み量 10〜18kg/lはたる石量(
分割投入)〜3 kg/l(0,7kg/を回)中期鉄
鉱石(連続投入)17〜23kg/を第4図から、スラ
グフォーミング高さを高くするとCOa度が上昇するこ
とがわかり、bタイプではCD濃度が83%程度にまで
達している。
Upper bottom blowing oxygen flow rate 2.3Nm37min・t ~3
.. 4Nm37min ・Bottom blowing oxygen flow rate 0.6~0
.. 7Nm'/m1ntCaO injection amount (Tot) 13
~27kg/l is the initial amount of CaO injection 6~8kg/l, and the final amount of CaO injection is 10~18kg/l.
From Figure 4, it can be seen that as the slag forming height is increased, the COa degree increases, and b In the type, the CD concentration reaches about 83%.

(発明の効果) この発明は炉内の造滓制御によってCD濃度の高い転炉
ガスを発生させることができ、転炉からのエネルギー回
収を高効率で行い得る。
(Effects of the Invention) The present invention can generate converter gas with a high CD concentration by controlling the slag in the furnace, and can recover energy from the converter with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吹錬パターンを示すグラフ、 第2図は上底吹き転炉の説明図、 第3図はCD。−CO含有量を示すグラフ、第4図はC
D濃度と吹錬時間の関係を示すグラフである。 第1図 第2図
Figure 1 is a graph showing the blowing pattern, Figure 2 is an explanatory diagram of a top-bottom blowing converter, and Figure 3 is a CD. -Graph showing CO content, Figure 4 is C
It is a graph showing the relationship between D concentration and blowing time. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、上底吹き転炉による溶鋼の吹錬に際し、吹錬初期お
よび末期のCOガス発生の少ない期間に底吹き羽口から
スラグフォーミングを抑制するフラックスインジェクシ
ョンを行うこと、 吹錬中期のCOガス発生の多い期間にスラグフォーミン
グ高さが炉口高さの50〜80%の範囲となる造滓制御
を行うこと、 の結合からなる上底吹き転炉の操業方法。
[Claims] 1. When blowing molten steel in a top-bottom blowing converter, flux injection is performed to suppress slag forming from the bottom blowing tuyeres during periods when CO gas is generated at the beginning and end of blowing. A method for operating a top-bottom blowing converter comprising: performing slag-forming control such that the slag forming height is in the range of 50 to 80% of the furnace mouth height during the middle stage of refining, when a large amount of CO gas is generated.
JP512986A 1986-01-16 1986-01-16 Method for operating top and bottom blown converter Pending JPS62164810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP512986A JPS62164810A (en) 1986-01-16 1986-01-16 Method for operating top and bottom blown converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP512986A JPS62164810A (en) 1986-01-16 1986-01-16 Method for operating top and bottom blown converter

Publications (1)

Publication Number Publication Date
JPS62164810A true JPS62164810A (en) 1987-07-21

Family

ID=11602703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP512986A Pending JPS62164810A (en) 1986-01-16 1986-01-16 Method for operating top and bottom blown converter

Country Status (1)

Country Link
JP (1) JPS62164810A (en)

Similar Documents

Publication Publication Date Title
CA2010356C (en) Method for manufacturing molten metal containing ni and cr
US7641713B2 (en) Method for reducing Cr in metallurgical slags containing Cr
JP4022266B2 (en) Stainless steel melting method
JPS62164810A (en) Method for operating top and bottom blown converter
CN111455126A (en) Vanadium extraction process of vanadium-containing molten iron converter
JP2002047508A (en) Blowing method in converter
JPS627807A (en) Dephosphorizing method for molten iron
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2587286B2 (en) Steelmaking method
JPH1017917A (en) Method for effectively utilizing chromium oxide-containing dust
JPS5847450B2 (en) Method for promoting dephosphorization in oxygen top-blown steelmaking process
SU1330168A1 (en) Method of melting steel in oxygen converter
JPH0477045B2 (en)
JPS63157809A (en) Blowing method for converter
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JPH02294420A (en) Steelmaking method with top-bottom combined blowing converter
JPS6250543B2 (en)
JPH0517810A (en) Refining method for high-mn steel
JP3511685B2 (en) Bottom blow converter steelmaking
JPH01195209A (en) Operation of iron bath type melting and reducing furnace
JP2000008113A (en) Production of medium and high carbon steel
JPH01168806A (en) Production of chromium-contained molten iron
JPH02138409A (en) Method for refining stainless steel
JPS61139614A (en) Manufacture of steel