JPS6216476B2 - - Google Patents

Info

Publication number
JPS6216476B2
JPS6216476B2 JP56038490A JP3849081A JPS6216476B2 JP S6216476 B2 JPS6216476 B2 JP S6216476B2 JP 56038490 A JP56038490 A JP 56038490A JP 3849081 A JP3849081 A JP 3849081A JP S6216476 B2 JPS6216476 B2 JP S6216476B2
Authority
JP
Japan
Prior art keywords
inverter
circuit
power
potential
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56038490A
Other languages
Japanese (ja)
Other versions
JPS57152593A (en
Inventor
Takashi Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56038490A priority Critical patent/JPS57152593A/en
Publication of JPS57152593A publication Critical patent/JPS57152593A/en
Publication of JPS6216476B2 publication Critical patent/JPS6216476B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory

Description

【発明の詳細な説明】 この発明は絶縁ゲート電界効果素子を用いた記
憶回路装置に係り、特に安定した動作をするパワ
ー・オン・リセツト回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a memory circuit device using an insulated gate field effect device, and particularly to a power-on reset circuit that operates stably.

従来集積回路装置では、電源を入れた場合、内
部状態を初期状態に設定するパワー・オン・リセ
ツト型記憶回路が多用されている。
Conventional integrated circuit devices often use power-on reset type memory circuits that set the internal state to an initial state when the power is turned on.

以下従来の回路の動作を第1図の回路図に従い
説明する。
The operation of the conventional circuit will be explained below with reference to the circuit diagram of FIG.

第1のインバータにおいてデプリーシヨン型の
第1の負荷トランジスタQ1はドレインを電源D
側に、ゲート及びソースを出力1に接続してあ
る。第2のインバータのエンハンスメント型負荷
トランジスタQ2はドレイン及びゲートを電源D
側に、ソースを出力2に接続してある。増幅用ト
ランジスタQ3のドレイン、ゲート、ソースはそ
れぞれ1,2、接地3に、同じく増幅トランジス
タQ4のドレイン、ゲート、ソースはそれぞれ
2,1,3に接続され、全体として2種類のイン
バータが正帰還する様に構成されている。又、出
力端子1,2と接地3間には配線容量等の浮遊容
量及びMOS容量で成るC1,C2が存在してい
る。又、出力1(あるいは2)と接地3間に書込
み用トランジスタQ5(あるいはQ6)が接続さ
れている。
In the first inverter, a depletion type first load transistor Q1 has a drain connected to a power source D.
On the side, the gate and source are connected to output 1. The enhancement type load transistor Q2 of the second inverter has its drain and gate connected to the power supply D.
On the side, the source is connected to output 2. The drain, gate, and source of the amplification transistor Q3 are connected to 1, 2, and ground 3, respectively, and the drain, gate, and source of the amplification transistor Q4 are connected to 2, 1, and 3, respectively, so that two types of inverters as a whole are connected to positive feedback. It is configured to do so. Further, between the output terminals 1 and 2 and the ground 3, there exist C1 and C2 consisting of stray capacitance such as wiring capacitance and MOS capacitance. Further, a write transistor Q5 (or Q6) is connected between output 1 (or 2) and ground 3.

電源が切れて接地点電位の場合、平衡状態では
すべての接点は接地点3の電位と同じであるた
め、電源が入つた瞬間、Q3,Q4は非導通とな
つている(Q5,Q6も非導通状態とする。)。こ
のため、Q1,Q2の導通時抵抗R1,R2及びC
1,C2によつて決定されるR1C1、R2C2の時定
数に従い、出力端1,2はQ4あるいはQ3のし
きい値電圧VT1に達するまで充電される。R1C1
≪R2C2と設計されている場合、出力端1は先に
T1に達するためQ4は導通し始める。一般に増
幅用トランジスタの導通抵抗は負荷トランジスタ
の導通抵抗より十分小さいため、出力端2の電位
上昇は小さくなる。一方、Q3は非導通のままな
ので出力1は更に充電されQ4の導通抵抗を更に
下げ出力端2の電位を下降させる様に働く。
When the power is turned off and the potential is at the ground point, all contacts are at the same potential as the ground point 3 in an equilibrium state, so the moment the power is turned on, Q3 and Q4 are non-conducting (Q5 and Q6 are also non-conducting). conductive state). Therefore, when Q1 and Q2 are conductive, the resistances R 1 , R 2 and C
According to the time constants R 1 C 1 and R 2 C 2 determined by C 1 and C2, the outputs 1 and 2 are charged until they reach the threshold voltage V T1 of Q4 or Q3. R 1 C 1
If it is designed as <<R 2 C 2 , output terminal 1 reaches V T1 first, so Q4 starts to conduct. Generally, the conduction resistance of the amplification transistor is sufficiently smaller than the conduction resistance of the load transistor, so that the potential rise at the output terminal 2 is small. On the other hand, since Q3 remains non-conductive, the output 1 is further charged, further lowering the conduction resistance of Q4 and lowering the potential at the output terminal 2.

以上の如く、R1C1≪R2C2となる様に設計され
た回路では平衡状態で電源を入れた場合、出力端
1は目的とする初期状態である電源電位VD側に
必ず引上げられる。
As mentioned above, in a circuit designed so that R 1 C 1 ≪ R 2 C 2 , when the power is turned on in a balanced state, the output terminal 1 will always be pulled up to the power supply potential V D side, which is the desired initial state. It will be done.

ところで、上記初期状態に設定された後、上記
書込み用トランジスタQ5を導通させてC1の電
荷を放電し出力端1を接地電位側に下げると、出
力端2はQ2により充電され、十分時間が経過し
た後は出力端2の電位はVD−VT1となり、Q5
を非導通にしてもこの状態(第2の安定状態)を
保つ。さて、上記第2の安定状態の後電源Dを接
地電位に落とすとQ2,Q4は非導通となつてい
るため、出力端2の電位は保持される事になる。
保持時間は、漏洩電流ILとC2により決まるがI
Lは通常十分小さく、かつC2は大きく設定してい
るため十分長くなる。従つて保持された状態で再
び電源が入ると本回路は第2の安定状態のままと
なり、目的とする初期状態に設定されない。
By the way, after the above initial state is set, when the write transistor Q5 is made conductive to discharge the charge of C1 and lower the output terminal 1 to the ground potential side, the output terminal 2 is charged by Q2, and it takes a sufficient time. After the elapsed time, the potential of output terminal 2 becomes V D -V T1 , and Q5
This state (second stable state) is maintained even if it is made non-conductive. Now, when the power source D is dropped to the ground potential after the second stable state, Q2 and Q4 are non-conductive, so the potential of the output terminal 2 is held.
The holding time is determined by the leakage current I L and C2 , but I
Since L is usually sufficiently small and C 2 is set large, it is sufficiently long. Therefore, if the power is turned on again in the maintained state, the circuit remains in the second stable state and is not set to the intended initial state.

以上の如く、従来回路では電源の開閉間隔が短
い場合、目的とするパワー・オン・リセツト機能
が働かない欠点があつた。
As described above, the conventional circuit has the disadvantage that the intended power-on reset function does not work when the power supply opening/closing interval is short.

本発明は上記従来回路の欠点を改善し、パワ
ー・オン・リセツト機能の確実な動作を可能とす
る絶縁ゲート型記憶回路を提供するものである。
The present invention improves the drawbacks of the conventional circuit and provides an insulated gate type memory circuit which enables reliable operation of the power-on reset function.

本発明は第1のインバータおよび第2のインバ
ータを有するフリツプ・フロツプ回路と、電源投
入に応答して前記第1のインバータの出力点を前
記第2のインバータの出力点よりも先に充電する
回路とを有する絶縁ゲート型記憶回路において、
電源遮断に応答して前記第2のインバータの出力
点電位を強制的に放電する回路を設けたことを特
徴とするものである。また前記放電回路は一端を
前記第2のインバータの出力点に、他端を電源の
一端に接続した電界効果トランジスタを含むこと
を特徴とする。
The present invention provides a flip-flop circuit having a first inverter and a second inverter, and a circuit for charging the output point of the first inverter before the output point of the second inverter in response to power-on. In an insulated gate type memory circuit having
The present invention is characterized in that a circuit is provided for forcibly discharging the potential at the output point of the second inverter in response to power cutoff. Further, the discharge circuit is characterized in that it includes a field effect transistor having one end connected to the output point of the second inverter and the other end connected to one end of the power supply.

次に、本発明をその実施例に従い、図面を参照
して説明する。
Next, the present invention will be described according to embodiments thereof and with reference to the drawings.

第2図は本発明の一実施例を示す回路接続図で
あり、エンハンスメント型絶縁ゲート電界効果ト
ランジスタQ7を、トランジスタQ2と並列に、ゲ
ートが出力端2になるように接続して挿入されて
いることを除いて第1図の従来例と同じである。
電源が切れている場合、平衡状態ではすべての接
点は接地点3電位と同じである。
FIG. 2 is a circuit connection diagram showing an embodiment of the present invention, in which an enhancement type insulated gate field effect transistor Q 7 is connected and inserted in parallel with a transistor Q 2 so that its gate becomes the output terminal 2. This is the same as the conventional example shown in FIG. 1, except that
When the power is off, in equilibrium all contacts are at the same potential as ground point 3.

電源が入つた場合、Q3,Q4及びQ7はオフ
しているため、上記従来回路と同じ動作で出力端
1は電源電位VD側に引上げられる。上記初期状
態が定まつた後、トランジスタQ5を導通させる
事により第2の安定状態(出力1を接地電位側に
下げ、出力2をVD−VT1に引き上げる)に反転
させた後、トランジスタQ5を非導通にさせる。
この後電源を切る(接地点電位に落とす)と、ト
ランジスタQ2,Q4は非導通となつているが、
Q7は電源Dの電位がVD−2VT1まで落ちた時、
導通し、出力端2に充電された電荷を放電する。
このため出力端2電位はVT1まで急速に回復す
る。従つて再び電源が入つた場合、前記時定数が
R1C1≪R2C2であり、更に上記第2のインバータ
はエンハンスメント型負荷であるため出力端2の
電位はVD−VT付近では極めて上昇しにくく、前
記第1のインバータの論理しきい値が高ければQ
4の導通により出力2の電位は下げられ初期状態
に設定される。
When the power is turned on, since Q3, Q4, and Q7 are off, the output terminal 1 is pulled up to the power supply potential V D in the same operation as the conventional circuit described above. After the above initial state is established, the transistor Q5 is turned on to invert to the second stable state (output 1 is lowered to the ground potential side and output 2 is raised to V D -V T1 ), and then the transistor Q5 is turned on. becomes non-conductive.
After this, when the power is turned off (dropped to the ground potential), transistors Q2 and Q4 are non-conductive.
Q7 is when the potential of power supply D drops to V D -2V T1 ,
It becomes conductive and discharges the charge stored in the output terminal 2.
Therefore, the output terminal 2 potential quickly recovers to V T1 . Therefore, when the power is turned on again, the above time constant is
R 1 C 1 ≪ R 2 C 2 , and since the second inverter is an enhancement type load, the potential at the output terminal 2 is extremely difficult to rise near V D −V T , and the logic of the first inverter is If the threshold is high, Q
4 becomes conductive, the potential of output 2 is lowered and set to the initial state.

なお、トランジスタQ7のしきい値電圧VT0
絶対値を他のエンハンスメント型トランジスタよ
り低く設定した場合、前記第2の安定状態が保た
れた後、電源線の電位がVD−VT1−VT0まで落
ちるとQ7は導通し、出力2の電位はVT0まで急
速に下がる。従つて再び電源が入つた場合、出力
2はVT1まで充電されにくく、その結果更に確実
に目的とする初期状態が得られる。
Note that when the absolute value of the threshold voltage V T0 of the transistor Q7 is set lower than that of other enhancement type transistors, the potential of the power supply line becomes V D -V T1 -V after the second stable state is maintained. When the voltage drops to T0 , Q7 becomes conductive and the potential of output 2 rapidly drops to V T0 . Therefore, when the power is turned on again, the output 2 is unlikely to be charged up to V T1 , and as a result, the desired initial state can be obtained more reliably.

以上に述べた如く、本発明により、従来技術で
は得られなかつたパワー・オン・リセツト機能の
確実な動作を達成する事が出来る。
As described above, the present invention makes it possible to achieve reliable operation of the power-on reset function, which was not possible with the prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁ゲート型記憶回路の回路接
続図、第2図は本発明の一実施例を示す回路接続
図である。 図において、Q1……デプリケーシヨン型トラ
ンジスタ、Q2,Q3,Q4,Q5,Q6……エ
ンハンスメント型トランジスタ、Q7……Q2
Q6のしきい値電圧と同じあるいは絶対値の低い
エンハンスメント型トランジスタ、D……電源
線、1,2……出力端、3……接地点、C1,C2
……浮遊容量あるいはゲート容量である。
FIG. 1 is a circuit connection diagram of a conventional insulated gate type memory circuit, and FIG. 2 is a circuit connection diagram showing an embodiment of the present invention. In the figure, Q1...deplication type transistor, Q2, Q3, Q4, Q5, Q6...enhancement type transistor, Q7...Q2 ~
Enhancement type transistor with the same or lower absolute value than the threshold voltage of Q 6 , D...power line, 1, 2...output terminal, 3...ground point, C 1 , C 2
...This is floating capacitance or gate capacitance.

Claims (1)

【特許請求の範囲】 1 第1のインバータおよび第2のインバータを
有するフリツプ・フロツプ回路と、電源投入に応
答して前記第1のインバータの出力点を前記第2
のインバータの出力点よりも先に充電する回路と
を有する絶縁ゲート型記憶回路において、電源遮
断に応答して前記第2のインバータの出力点電位
を強制的に放電する回路を設けたことを特徴とす
る絶縁ゲート型記憶回路。 2 前記放電回路は一端を前記第2のインバータ
の出力点に、他端を電源の一端に接続した電界効
果トランジスタを含むことを特徴とする特許請求
の範囲第1項記載の絶縁ゲート型記憶回路。
[Scope of Claims] 1. A flip-flop circuit having a first inverter and a second inverter;
The insulated gate memory circuit has a circuit that charges the output point of the second inverter before the output point of the second inverter, and is characterized by being provided with a circuit that forcibly discharges the potential of the output point of the second inverter in response to power cutoff. An insulated gate type memory circuit. 2. The insulated gate type memory circuit according to claim 1, wherein the discharge circuit includes a field effect transistor having one end connected to the output point of the second inverter and the other end connected to one end of the power supply. .
JP56038490A 1981-03-17 1981-03-17 Insulated gate type storing circuit Granted JPS57152593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56038490A JPS57152593A (en) 1981-03-17 1981-03-17 Insulated gate type storing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56038490A JPS57152593A (en) 1981-03-17 1981-03-17 Insulated gate type storing circuit

Publications (2)

Publication Number Publication Date
JPS57152593A JPS57152593A (en) 1982-09-20
JPS6216476B2 true JPS6216476B2 (en) 1987-04-13

Family

ID=12526698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56038490A Granted JPS57152593A (en) 1981-03-17 1981-03-17 Insulated gate type storing circuit

Country Status (1)

Country Link
JP (1) JPS57152593A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845695A (en) * 1981-09-10 1983-03-16 Nec Corp Insulation gate type storage circuit
JPS59152597A (en) * 1983-02-18 1984-08-31 Nec Corp Memory circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE JOURNAL OF SOLID-STATE CIRCUITS=1977M10 *

Also Published As

Publication number Publication date
JPS57152593A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
US4176289A (en) Driving circuit for integrated circuit semiconductor memory
US3676717A (en) Nonvolatile flip-flop memory cell
GB1589414A (en) Fet driver circuits
US4725981A (en) Random access memory cell resistant to inadvertant change of state due to charged particles
US4400799A (en) Non-volatile memory cell
EP0055601A2 (en) Buffer circuit
US4129794A (en) Electrical integrated circuit chips
US4150311A (en) Differential amplifier circuit
JPS6323417A (en) Cmos power-on resetting circuit
US4112296A (en) Data latch
US4336465A (en) Reset circuit
EP0032017B1 (en) Bootstrap circuit
JPH0210517B2 (en)
JPS6333734B2 (en)
US3976895A (en) Low power detector circuit
JPS61277227A (en) High voltage insulation circuit
JPS6216476B2 (en)
JPH0612869B2 (en) Time delay circuit for CMOS dynamic RAM
JPS6143896B2 (en)
CA1265850A (en) Complementary input circuit with nonlinear front end
US4525640A (en) High performance and gate having an &#34;natural&#34; or zero threshold transistor for providing a faster rise time for the output
JPS5839117A (en) Mos transistor driving circuit
JPH0715796B2 (en) Non-volatile RAM memory cell
JPS5854875A (en) Inverter circuit
JPH0410159B2 (en)