JPS6216408B2 - - Google Patents

Info

Publication number
JPS6216408B2
JPS6216408B2 JP55121870A JP12187080A JPS6216408B2 JP S6216408 B2 JPS6216408 B2 JP S6216408B2 JP 55121870 A JP55121870 A JP 55121870A JP 12187080 A JP12187080 A JP 12187080A JP S6216408 B2 JPS6216408 B2 JP S6216408B2
Authority
JP
Japan
Prior art keywords
tensile strength
optical fiber
self
die
nipple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55121870A
Other languages
Japanese (ja)
Other versions
JPS5745506A (en
Inventor
Yutaka Katsuyama
Satoshi Hatano
Tooru Yamanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55121870A priority Critical patent/JPS5745506A/en
Publication of JPS5745506A publication Critical patent/JPS5745506A/en
Publication of JPS6216408B2 publication Critical patent/JPS6216408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】 本発明は光伝送フアイバ(以下光フアイバと称
する)を用いた自己支持型光フアイバケーブルの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a self-supporting optical fiber cable using an optical transmission fiber (hereinafter referred to as optical fiber).

自己支持型光フアイバケーブルに要求される特
性の中で最も重要なものは、架渉時あるいは架渉
後に印荷される機械的応力に耐える十分な強度
と、光フアイバ本来の低損失、広帯域な伝送特性
を保持することである。
The most important characteristics required for self-supporting optical fiber cables are sufficient strength to withstand the mechanical stress applied during and after installation, and the inherent low loss and broadband characteristics of optical fibers. The goal is to maintain transmission characteristics.

従来の自己支持型ケーブルは第1図a,bに示
すような抗張力体である鋼線からなる抗張力線1
の部分と、信号媒体である銅線2の部分から成
り、それぞれを被覆材3で覆い一体化した構造
で、光フアイバを用いた場合もこの構造に基本的
な変更はない。
A conventional self-supporting cable has a tensile strength wire 1 made of a steel wire as a tensile strength member, as shown in Fig. 1a and b.
and a copper wire 2 which is a signal medium, each of which is covered with a covering material 3 and integrated. There is no fundamental change in this structure even when an optical fiber is used.

本発明者らは自己支持型光フアイバケーブルの
製造方法について検討した結果以下のことを知つ
た。
The inventors of the present invention have learned the following as a result of studying a method for manufacturing a self-supporting optical fiber cable.

第1に、第2図aに示す抗張力線1と光フアイ
バ2ともに密着被覆する充実型のダイス5およ
びニツプル4を用いた場合、第1図aの被覆材3
の円周方向および長さ方向への「しめつけ力」に
より、光フアイバが微少な周期で曲げられ、いわ
ゆるマイクロベンデイングによる伝送損失の増加
を生じる。第2に第2図bに示す抗張力線1と光
フアイバ2ともに被覆材3による「しめつけ
力」の働かない引落し型のダイス5およびニツプ
ル6を用いた場合、光フアイバ2への「しめつ
け力」は低減され、伝送損失の増加をふせぐ事が
できるが、第1図aの抗張力線1と被覆材3との
密着が悪いため、抗張力線1と被覆材3の間に滑
りが生じ抗張力線1が本来の役目を果さない。
First, when using the solid type die 5 and nipple 4 that tightly coat both the tensile strength wire 1 and the optical fiber 2 1 shown in FIG. 2a, the coating material 3 shown in FIG.
The "tightening force" in the circumferential and longitudinal directions causes the optical fiber to bend at minute intervals, resulting in an increase in transmission loss due to so-called microbending. Second, when the tensile strength wire 1 and the optical fiber 21 shown in FIG. Although the tightening force is reduced and an increase in transmission loss can be prevented, slippage occurs between the tensile strength wire 1 and the sheathing material 3 due to poor adhesion between the tensile strength wire 1 and the sheathing material 3 shown in Figure 1a. Tensile strength line 1 does not play its original role.

本発明はこのような欠点を改良するためになさ
れたものであり、抗張力線側は充実型のニツプル
を用い光フアイバ側は引落型のニツプルを用いる
ことを特徴とした自己支持型光フアイバケーブル
の製造方法である。
The present invention has been made to improve these drawbacks, and provides a self-supporting optical fiber cable characterized by using a solid type nipple on the tensile strength line side and a pull-down type nipple on the optical fiber side. This is the manufacturing method.

第3図に示すように光フアイバ2側はダイス
8の面とニツプル先端が同一面上にあるいわゆる
引落型のニツプル7を用い、抗張力線1側はニ
ツプル先端がダイス8の面から後退しているいわ
ゆる充実型のニツプル7を用いることにより、
被覆材3の光フアイバ2に対する「しめつけ
力」を最少限におさえ、抗張力線1と被覆材3と
の密着を強固にするものである。
As shown in FIG. 3, on the optical fiber 21 side, a so-called pull-down type nipple 72 is used, in which the face of the die 8 and the nipple tip are on the same plane, and on the tensile strength line 1 side, the nipple tip is retracted from the face of the die 8. By using the so-called solid type nipple 71 ,
This suppresses the "tightening force" of the coating material 3 to the optical fiber 21 to a minimum, and strengthens the adhesion between the tensile strength wire 1 and the coating material 3.

第3図に示すごとく、抗張力線1側と光フアイ
バ2側の仕上り外径を同一にする場合は、充実
型ニツプル7を用いている抗張力線1側のダイ
ス8の内径rを光フアイバ2側のダイス8の内
径Rに比較して小さくする必要がある。
As shown in FIG. 3, when the finished outer diameters of the tensile strength wire 1 side and the optical fiber 21 side are the same, the inner diameter r of the die 8 on the tensile strength wire 1 side using the solid nipple 71 is the same as that of the optical fiber. 2 It is necessary to make it smaller than the inner diameter R of the die 8 on the 1 side.

又第4図に示すごとく、第1図a,bの2の銅
線を光フアイバとして、一層以上のプラスチツク
被覆を既に施こした被覆光フアイバを用いてもよ
い。9はガラスフアイバ、10はシリコン樹脂な
どの熱硬化性樹脂による一次被覆、11はナイロ
ン、ポリエチレンなどの熱可塑性樹脂による二次
被覆である。更に第5図に示すごとく、光フアイ
バ12と被覆材3の間に抗張力繊維14を縦添え
又は編組してもよい。この場合、第6図に示すご
とき製造設備を用いて抗張力繊維の縦添え、抗張
力線の送出、被覆材の押出を一度に行なうことも
できる。
Alternatively, as shown in FIG. 4, the copper wires 2 shown in FIGS. 1a and 1b may be used as optical fibers, and coated optical fibers already coated with one or more layers of plastic may be used. 9 is a glass fiber, 10 is a primary coating made of a thermosetting resin such as silicone resin, and 11 is a secondary coating made of a thermoplastic resin such as nylon or polyethylene. Furthermore, as shown in FIG. 5, tensile strength fibers 14 may be longitudinally spliced or braided between the optical fiber 12 and the covering material 3. In this case, it is also possible to carry out the longitudinal application of the tensile strength fibers, the delivery of the tensile strength wires, and the extrusion of the coating material at the same time using manufacturing equipment as shown in FIG.

第6図を詳細に説明すると、光フアイバ12
は、抗張力繊維14を縦添えされた後、押出機の
クロスヘツド15に導かれ、これと並列して抗張
力線13がクロスヘツド15に導かれる。クロス
ヘツド15の樹脂吐出部は、第3図に例示したよ
うにダイス、ニツプルがセツトされており、抗張
力線13は充実型、光フアイバ12は引落し型で
被覆され、冷却装置16で冷却され、自己支持型
光フアイバケーブル17を製造し巻き取られるも
のである。
To explain FIG. 6 in detail, the optical fiber 12
After the tensile strength fibers 14 are longitudinally attached, the fibers are guided to the crosshead 15 of the extruder, and the tensile strength wires 13 are guided to the crosshead 15 in parallel therewith. The resin discharging part of the crosshead 15 is equipped with a die and a nipple as shown in FIG. A self-supporting optical fiber cable 17 is manufactured and wound.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の自己支持型ケーブルの断
面図の例、第2図a,bはそれぞれ抗張力線と光
フアイバともに密着被覆する充実型ダイスニツプ
ルの断面構造とダイス正面図および抗張力線と光
フアイバともに被覆樹脂によるしめつけ力の働か
ない引落し型ダイスニツプルの断面構造とダイス
正面図、第3図は本発明による抗張力線側が充実
型で光フアイバ側が引落し型のダイスニツプルの
断面構造とダイス正面図、第4図、第5図はそれ
ぞれ一層以上のプラスチツク被覆を施した被覆光
フアイバの断面図、第6図は製造工程の説明図を
示す。 1は抗張力線、2は銅線、2は光フアイバ、
3は被覆材、4は充実型のニツプル、5はダイ
ス、6は引落型のニツプル、7,7は本発明
によるニツプル、8は本発明によるダイス、9は
ガラスフアイバ、10はシリコン樹脂などの熱硬
化性樹脂による一次被覆、11はナイロン、ポリ
エチレンなどの熱可塑性樹脂による二次被覆、1
2は光フアイバ、13は抗張力線、14は抗張力
繊維、15はクロスヘツド、16は冷却装置、1
7は自己支持型光フアイバケーブル。
Figures 1a and b are examples of cross-sectional views of conventional self-supporting cables, and Figures 2a and b are the cross-sectional structure of a solid die nipple that tightly covers both the tensile strength wire and the optical fiber, the front view of the die, and the tensile strength wire. The cross-sectional structure and die front view of a draw-down type die nipple in which no tightening force is applied by the coating resin on both optical fibers, and Figure 3 shows the cross-sectional structure and die front view of a die nipple according to the present invention in which the tensile strength line side is a solid type and the optical fiber side is a pull-down type. 4 and 5 are cross-sectional views of a coated optical fiber having one or more layers of plastic coating, respectively, and FIG. 6 is an illustration of the manufacturing process. 1 is a tensile strength wire, 2 is a copper wire, 2 1 is an optical fiber,
3 is a covering material, 4 is a solid type nipple, 5 is a die, 6 is a retractable type nipple, 7 1 , 7 2 are nipples according to the present invention, 8 is a die according to the present invention, 9 is a glass fiber, and 10 is a silicone resin. Primary coating with thermosetting resin such as 11, secondary coating with thermoplastic resin such as nylon or polyethylene, 1
2 is an optical fiber, 13 is a tensile strength wire, 14 is a tensile strength fiber, 15 is a crosshead, 16 is a cooling device, 1
7 is a self-supporting optical fiber cable.

Claims (1)

【特許請求の範囲】 1 1本又は複数本の抗張力線と1本又は複数本
の光フアイバとに熱可塑性樹脂を一括押出し被覆
する自己支持型光フアイバケーブルの製造方法に
おいて、 前記一括押出し被覆するときに、 前記抗張力線への被覆は、溶融した前記熱可塑
性樹脂を押出機クロスヘツド内で、前記抗張力線
へ密着して被覆し、 前記光フアイバへの被覆は、溶融した前記熱可
塑性樹脂を最終仕上り径より大なる径のチユーブ
状に押出した後、仕上り径まで引き落して被覆す
る ことを特徴とする自己支持型光フアイバケーブル
の製造方法。
[Scope of Claims] 1. A method for manufacturing a self-supporting optical fiber cable in which one or more tensile strength wires and one or more optical fibers are coated with a thermoplastic resin by batch extrusion, comprising: the batch extrusion coating. Sometimes, the tensile strength wire is coated with the molten thermoplastic resin in close contact with the tensile strength wire in an extruder crosshead, and the optical fiber is coated with the molten thermoplastic resin in a final coat. A method for manufacturing a self-supporting optical fiber cable, which comprises extruding it into a tube shape with a diameter larger than the finished diameter, and then pulling it down to the finished diameter and covering it.
JP55121870A 1980-09-03 1980-09-03 Manufacture of self-maintaining type optical fiber Granted JPS5745506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55121870A JPS5745506A (en) 1980-09-03 1980-09-03 Manufacture of self-maintaining type optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55121870A JPS5745506A (en) 1980-09-03 1980-09-03 Manufacture of self-maintaining type optical fiber

Publications (2)

Publication Number Publication Date
JPS5745506A JPS5745506A (en) 1982-03-15
JPS6216408B2 true JPS6216408B2 (en) 1987-04-13

Family

ID=14821960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55121870A Granted JPS5745506A (en) 1980-09-03 1980-09-03 Manufacture of self-maintaining type optical fiber

Country Status (1)

Country Link
JP (1) JPS5745506A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54646A (en) * 1977-06-02 1979-01-06 Sumitomo Electric Ind Ltd Production of optical fiber chord
JPS5683704A (en) * 1979-12-13 1981-07-08 Nippon Telegr & Teleph Corp <Ntt> Self-supporting type optical fiber cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262372U (en) * 1975-10-31 1977-05-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54646A (en) * 1977-06-02 1979-01-06 Sumitomo Electric Ind Ltd Production of optical fiber chord
JPS5683704A (en) * 1979-12-13 1981-07-08 Nippon Telegr & Teleph Corp <Ntt> Self-supporting type optical fiber cable

Also Published As

Publication number Publication date
JPS5745506A (en) 1982-03-15

Similar Documents

Publication Publication Date Title
US7123801B2 (en) Optical fiber cable with fiber receiving jacket ducts
CA1049821A (en) Sheathed optical fiber element and cable and process for production thereof
US6101305A (en) Fiber optic cable
JPS6366516A (en) Optical fiber cable and manufacture thereof
EP0110507B1 (en) Optical fibre cables
US7742668B2 (en) Semi-tight optical fiber unit
US5830304A (en) Method for producing a tension-resistance core element for a cable
JP3058203B2 (en) Optical cable
KR100429537B1 (en) Premises optical cable with s-z stranded strength member
JPS6216408B2 (en)
CN116027505A (en) Optical cable and manufacturing equipment thereof
JPS5994703A (en) Communication cable and manufacture thereof
NZ504860A (en) Process for the manufacture of an optical core having a support coated with two polymeric layers with the optical fibres encapsulated between the two layers for a telecommunications cable
CN219302731U (en) Optical cable and manufacturing equipment thereof
JP2005091616A (en) Optical fiber cable and method for manufacturing the same
EP0926524A1 (en) Optical-fiber cable and manufacturing method thereof
EP0088264A1 (en) Cables with extruded dielectric
JPH11264924A (en) Optical fiber cable
JP3639111B2 (en) Optical composite cable for LAN
JPS58102908A (en) Optical cable
JPH01304408A (en) Optical fiber cable
JPH1123924A (en) Coated optical fiber and its manufacture
JPS63208010A (en) Production of introducing optical fiber
JPS6037567B2 (en) Composite power cable manufacturing equipment with optical fiber
JPS5825606A (en) Manufacture of optical fiber cable with aluminum sheath