JPS5825606A - Manufacture of optical fiber cable with aluminum sheath - Google Patents

Manufacture of optical fiber cable with aluminum sheath

Info

Publication number
JPS5825606A
JPS5825606A JP56124456A JP12445681A JPS5825606A JP S5825606 A JPS5825606 A JP S5825606A JP 56124456 A JP56124456 A JP 56124456A JP 12445681 A JP12445681 A JP 12445681A JP S5825606 A JPS5825606 A JP S5825606A
Authority
JP
Japan
Prior art keywords
aluminum
optical fiber
steel wire
sheath
aluminum pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56124456A
Other languages
Japanese (ja)
Other versions
JPS6243164B2 (en
Inventor
Shigeaki Yoshida
吉田 重彰
Masanori Hiuga
日向 正範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56124456A priority Critical patent/JPS5825606A/en
Publication of JPS5825606A publication Critical patent/JPS5825606A/en
Publication of JPS6243164B2 publication Critical patent/JPS6243164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering
    • G02B6/4488Protective covering using metallic tubes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal Extraction Processes (AREA)
  • Communication Cables (AREA)

Abstract

PURPOSE:To improve the strength of an aluminum sheath by reducing the diameter of an aluminum pipe which has the steel wire inserted and a greater external diameter than final product side by using a floating plug and thus increasing the strength of the aluminum sheath, and then replacing the internal steel wire with an optical fiber cable core by drawing. CONSTITUTION:In the figure, 5 is die and 6 is a floating plug which has a throughhole 7 where a steel wire 8 runs in the center. Using the floating plug 6 adjusts the thickness of an aluminum pipe 9 as well as reduction in external diameter, obtaining the aluminum sheath which has a prescribed external diameter and prescribed thickness. One terminal of an optical fiber calbe core is connected to one terminal of the steel wire in the aluminum pipe reduced in diameter to final aluminum sheath size by an adequate method, e.g. sleeve connection, etc., and the other terminal of the steel wire is drawn out of the aluminum pipe to insert the optical fiber core into the aluminum pipe, obtaining an aluminum-sheathed optical fiber cable.

Description

【発明の詳細な説明】 本発明は、光通信ケーブル、特に架空地線に用いられる
アルミシース光フアイバーケーブルの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical communication cable, particularly an aluminum sheathed optical fiber cable used for an overhead ground wire.

従来、発送電系統の情報伝達は別個に布設した通信ケー
ブルに頼って来たが、近年電波障害を受けず、多重回線
がとれる光フアイバーケーブル(以下、光ケーブルと称
す)が開発され、実用化されるようになった。この光ケ
ーブルによると、別個にケーブルを布設する必要がなく
、電線、ケーブル内に封入して光フアイバー複合電線と
することが可能である。
Traditionally, information transmission in power distribution systems has relied on separately installed communication cables, but in recent years, optical fiber cables (hereinafter referred to as optical cables), which are free from radio wave interference and can provide multiple lines, have been developed and put into practical use. It became so. According to this optical cable, there is no need to install a separate cable, and it is possible to encapsulate it in an electric wire or cable to form an optical fiber composite electric wire.

これに使用する光ケーブルとしては、光ファイバー(例
、ガラスファイバー)が強度的に弱いので、第1図に例
を示すように光ファイバーをアルミシースで保護したア
ルミシース光フアイバーケーブルが用いられる。
The optical cable used for this purpose is an aluminum sheathed optical fiber cable in which the optical fiber is protected by an aluminum sheath, as shown in FIG. 1, since the strength of the optical fiber (eg, glass fiber) is weak.

第1図において、Iは光フアイバー線で、2はアルミシ
ースである。(イ)図は単芯の場合を示し、(0)図a
j:2本の光フアイバー線1に2本のテンションメンバ
ー3が縦添え又は撚合わされ、その周り全アルミシース
2で被覆している。(ハ)図では溝付き線条体4の4本
の溝に光フアイバー線1が収納され、その周りをアルミ
シース2で被覆している。以下、アルミシース2を除い
た芯を光フアイバーケーブル芯と称する。
In FIG. 1, I is an optical fiber wire and 2 is an aluminum sheath. (A) Figure shows the case of single core, (0) Figure a
j: Two tension members 3 are vertically attached or twisted together on two optical fiber lines 1, and the entire circumference is covered with an aluminum sheath 2. (c) In the figure, the optical fiber wire 1 is housed in the four grooves of the grooved filament body 4, and the periphery thereof is covered with an aluminum sheath 2. Hereinafter, the core excluding the aluminum sheath 2 will be referred to as an optical fiber cable core.

本説明において、光フアイバー線とは、1本もしくに複
数本の光通信用ファイバーより成る線芯、又はこれらに
合成樹脂等全被覆した線を意味する。
In this description, an optical fiber line means a core made of one or more optical communication fibers, or a line entirely coated with synthetic resin or the like.

従来これらのアルミシース光ケーブル全製造するには、
光フアイバー線の周囲にアルミシースを縦添えし、パイ
プ状に成形し、継ぎ目をシーム溶接する、所謂テープ成
形−溶接法によるか、又は予め準備されたアルミパイプ
中に光ファイバー線全挿入する、所謂パイプ挿入法によ
っていた。
Conventionally, these aluminum sheathed optical cables are manufactured entirely by
Either by the so-called tape forming-welding method, in which an aluminum sheath is attached vertically around the optical fiber wire, formed into a pipe shape, and the joints are seam welded, or by the so-called tape forming-welding method, in which the optical fiber wire is fully inserted into a pre-prepared aluminum pipe. It was done by the pipe insertion method.

しかしテープ成形−溶接法では、硬質のアルミテープは
伸び特性が悪いため、パイプ状に底形することが難しく
、又アルミシースの材質が軟質に近いため、破断強度、
振動疲労強度が弱い欠点があった。
However, in the tape forming and welding method, hard aluminum tape has poor elongation properties, making it difficult to form a pipe-like bottom shape, and the aluminum sheath material is almost soft, so the breaking strength and
It had the disadvantage of low vibration fatigue strength.

又パイプ挿入法では、単長に制約があり、長尺のアルミ
シース光ケーブルを製造できない欠点があった。
In addition, the pipe insertion method has the disadvantage that it is not possible to manufacture long aluminum sheathed optical cables due to restrictions on the length of the cable.

本発明は、上述の欠点を解消するため成されたもので、
鋼線全挿入した最終製品サイズより大きな外径のアルミ
パイプをフロティングプラグを用いて縮径加工してアル
ミシースの強度を高くした後、中の鋼線を光フアイバー
ケーブル芯に引き替えることにより、アルミシースの強
度を著しく向上した長尺のアルミシース光フアイバーケ
ーブルを製造する方法を提供せんとするものである。
The present invention was made to solve the above-mentioned drawbacks, and
After increasing the strength of the aluminum sheath by reducing the diameter of the aluminum pipe, which has an outer diameter larger than the final product size with all the steel wires inserted, using a floating plug, the inner steel wire is replaced with an optical fiber cable core. The present invention aims to provide a method for manufacturing a long aluminum sheathed optical fiber cable in which the strength of the aluminum sheath is significantly improved.

本発明は、最終のアルミシース光フアイバーケーブルの
アルミシースの外径より大きな外径のアルミパイプ中に
最終のアルミシースの内径より小さな外径の鋼線全挿入
した鋼線入りアルミパイプを製造した後、これに最終の
アルミンースサイズまでダイス又はロールにより縮径加
工全施し、かつそのうち少くとも1回の縮径加工を前記
鋼線が通過する貫通孔を有するフローティングプラグを
用いて行ない、しかる後前記鋼線の一方の端末に光フア
イバーケーブル芯を接続し、前記鋼線の他端を前記アル
ミパイプより引き出すことにより、前記アルミパイプ中
に前記光フアイバーケーブル芯を挿入することを特徴と
するアルミシース光フアイバーケーブルの製造方法であ
る。
The present invention manufactures a steel wire-containing aluminum pipe in which a steel wire with an outer diameter smaller than the inner diameter of the final aluminum sheath is fully inserted into an aluminum pipe with an outer diameter larger than the outer diameter of the aluminum sheath of the final aluminum sheath optical fiber cable. After that, this is subjected to all diameter reduction processing using dies or rolls until it reaches the final aluminous size, and at least one of the diameter reduction processing is performed using a floating plug having a through hole through which the steel wire passes, and then Then, the optical fiber cable core is inserted into the aluminum pipe by connecting an optical fiber cable core to one end of the steel wire and pulling out the other end of the steel wire from the aluminum pipe. This is a method for manufacturing an aluminum sheathed fiber optic cable.

本発明方法は、先ず鋼線入りアルミパイプを製造する。In the method of the present invention, first, an aluminum pipe containing steel wire is manufactured.

この場合のアルミパイプは、アルミニウム又はアルミ合
金より成るパイプで、最終のアルミシース光フアイバー
ケーブルのアルミシースの外径より大きな外径を有する
ものである。又鋼線は最終のアルミシースの内径より小
さな外径のもので、その後のアルミパイプの縮径加工に
よる長さの増大を考慮してアルミパイプより長くする。
The aluminum pipe in this case is a pipe made of aluminum or an aluminum alloy, and has an outer diameter larger than the outer diameter of the aluminum sheath of the final aluminum sheathed optical fiber cable. Also, the steel wire has an outer diameter smaller than the inner diameter of the final aluminum sheath, and is made longer than the aluminum pipe in consideration of the increase in length due to the subsequent diameter reduction process of the aluminum pipe.

このアルミパイプは、テープ成形−シーム溶接法、押出
法等のいずれの方法によって製造しても良く、これへの
鋼線挿入は、上記製造時パイプ内に挿入しておくか、又
はパイプ製造後挿入する。
This aluminum pipe may be manufactured by any method such as tape forming-seam welding or extrusion, and the steel wire may be inserted into the pipe during the above-mentioned manufacturing, or it may be inserted after the pipe is manufactured. insert.

この鋼線入υアルミパイプをダイス又はロールヶ用いて
順次最終のアルミシースのサイズまで縮径加工を施す。
This steel wire-filled υ aluminum pipe is successively reduced in diameter using a die or roll to the size of the final aluminum sheath.

この場合、通常のダイス又はロー5− ルのみによる方法では縮径に伴ってパイプの肉厚が増訓
し、減面率は余り大きくならず、効率的な加工硬化が難
しいと共に、アルミシースの内厚の精度が悪くなるので
、こnf防止するため、そのうち少なくとも1回の縮径
加工にはフローティングプラグを用いて行なうことが重
要である。
In this case, with the method using only a normal die or roll, the wall thickness of the pipe increases as the diameter decreases, the area reduction rate does not become very large, and efficient work hardening is difficult, and the aluminum sheath Since the accuracy of the inner thickness deteriorates, it is important to perform at least one diameter reduction process using a floating plug in order to prevent this.

第2図は本発明の実施例に用いるダイスおよびフローテ
ィングプラグの例を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an example of a die and a floating plug used in an embodiment of the present invention.

図において、5はダイスで、6はフローティングプラグ
で、その中心に鋼線8が通過する貫通孔7を有している
In the figure, 5 is a die, 6 is a floating plug, and has a through hole 7 in the center through which a steel wire 8 passes.

このようなフローティングプラグ6全用いると、アルミ
パイプ9は外径の縮少と同時に肉厚が調整さ扛、所定の
外径、肉厚のアルミシースが得られ、目標の減面率が達
成できて所望の加工硬化ができ、強度を向上する。なお
このフローティングプラグ601更用は、寸法精度上製
品サイズに近い所で行なう方が好捷しい。
When all of the floating plugs 6 are used, the outer diameter of the aluminum pipe 9 is reduced and the wall thickness is adjusted at the same time. An aluminum sheath with a predetermined outer diameter and wall thickness is obtained, and the target area reduction ratio can be achieved. This enables desired work hardening and improves strength. Note that it is better to replace the floating plug 601 at a location close to the product size in terms of dimensional accuracy.

次いで最終のアルミンースサイズまで縮径した鋼線入り
アルミパイプの中の鋼線の一方の端末に6一 光フアイバケーブル芯の一方の端末全適当な方法、例え
ばスリーブ接続等により接続し、鋼線の他端をアルミパ
イプより引き出すと、鋼線の代りに光フアイバー芯がア
ルミパイプ中に引きこまれて挿入され、アルミシース光
フアイバーケーブルができ上る。この際、アルミパイプ
の内径は鋼線および光フアイバーケーブル芯の外径より
充分大きいので、上述の引き出し、引きこみは容易に行
なわれ、長尺のケーブルでも可能である。
Next, one end of the 6-1 optical fiber cable core is connected to one end of the steel wire in the steel wire-filled aluminum pipe whose diameter has been reduced to the final aluminous size, by a suitable method such as a sleeve connection, and the steel wire is When the other end of the wire is pulled out of the aluminum pipe, an optical fiber core is drawn into the aluminum pipe instead of the steel wire and inserted, creating an aluminum sheathed optical fiber cable. At this time, since the inner diameter of the aluminum pipe is sufficiently larger than the outer diameter of the steel wire and optical fiber cable core, the above-mentioned pulling out and pulling in can be easily performed, and even a long cable can be used.

以上述べたように、本発明方法は、先ず前述のように、
大きな外径のアルミパイプの中に小さな外径の鋼線全挿
入した鋼線入りアルミパイプ全製造して材料に用いるた
め、このパイプ全長尺にすることは可能で、かつ長尺の
鋼線挿入も容易であり、しかる後このアルミパイプに最
終のアルミシースサイズまでダイス又はロールにより縮
径加工W=し、かつそのうち少くとも1回の縮径加工を
前記鋼線が通過する貫通孔を有する70−ティングプラ
グを用いて行なうため、フローティングプラグにより所
定の外径、肉厚のアルミシースが得られ、目標の減面率
が達成できて所望のアルミシースの加工硬化ができ、強
度を向上することができ、最後にアルミパイプ中の前記
鋼線の一方の端末に光フアイバーケーブル芯全接続し、
前記鋼線の他端全前記アルミパイプより引き出すことに
より、前記アルミパイプ中に光フアイバーケーブル芯全
挿入するため、アルミパイプの内径に比べ鋼線および光
フアイバーケーブル芯の外径は充分小さいので、鋼線と
光フアイバー芯の入れ替えけ長尺でもきわめて容易であ
り、従ってアルミシースの強度が高い長尺のアルミシー
ス光ケーブルヲ容易に製造し得る利点がある。
As described above, the method of the present invention first includes, as described above,
Since the entire aluminum pipe with steel wire is manufactured and used as a material, it is possible to make the entire length of this pipe, and it is possible to insert a long steel wire into an aluminum pipe with a large outside diameter. After that, the aluminum pipe is subjected to a diameter reduction process W= with a die or roll to the final aluminum sheath size, and the steel wire has a through hole through which the steel wire passes through at least one of the diameter reduction processes. - Since the process is carried out using a floating plug, an aluminum sheath with a predetermined outer diameter and wall thickness can be obtained by the floating plug, the target area reduction rate can be achieved, the desired aluminum sheath can be work hardened, and the strength can be improved. Finally, connect the optical fiber cable core to one end of the steel wire in the aluminum pipe,
By pulling out the entire other end of the steel wire from the aluminum pipe, the entire fiber optic cable core is inserted into the aluminum pipe, so the outer diameters of the steel wire and the fiber optic cable core are sufficiently smaller than the inner diameter of the aluminum pipe. It is very easy to replace the steel wire and the optical fiber core even in long lengths, and therefore there is an advantage that long aluminum sheathed optical cables with high strength aluminum sheaths can be easily manufactured.

又本発明方法は、前述のようにフローティングプラグを
用いて縮径加工するため、アルミシースの外径、肉厚の
精度が良く、全長に亘って均一な強度および光ファイバ
ーの保護効果を有するアルミシース光ケーブル全製造し
得る利点がある。
In addition, the method of the present invention uses a floating plug to reduce the diameter of the aluminum sheath, so the outer diameter and wall thickness of the aluminum sheath have good accuracy, and the aluminum sheath has uniform strength over its entire length and a protective effect for the optical fiber. It has the advantage of being able to manufacture all optical cables.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)、(ハ)はそnぞれアルミシース
光フアイバーケーブルの例を示す横断面図である。 第2図は本発明方法の実施例において用いるダイスおよ
びフローティングプラグの例を示す縦断面図である。 1・・・光フアイバー線、2・・・アルミシース、3・
・・テンションメンバー、4・・・溝付き線状体、5・
・・ダイス、6・・・フローティングプラグ、7・・・
貫通孔、8・・・鋼線、9・・・アルミパイプ。 9−
FIGS. 1A, 1B, and 1C are cross-sectional views showing examples of aluminum sheathed optical fiber cables. FIG. 2 is a longitudinal sectional view showing an example of a die and a floating plug used in an embodiment of the method of the present invention. 1... Optical fiber wire, 2... Aluminum sheath, 3...
... Tension member, 4... Grooved linear body, 5.
...Dice, 6...Floating plug, 7...
Through hole, 8... steel wire, 9... aluminum pipe. 9-

Claims (1)

【特許請求の範囲】[Claims] (1)  最終のアルミシース光フアイバーケーブルの
アルミシースの外径より大きな外径のアルミパイプ中に
最終のアルミシースの内径より小さな外径の鋼線を挿入
した鋼線入りアルミパイプを製造した後、これに最終の
アルミシースサイズまでダイス又はロールにより縮径加
工を施し、かつそのうち少くとも1回の縮径加工を前記
鋼線が通過する貫通孔を有するフローティングプラグを
用いて行ない、しかる後前記鋼線の一方の端末に光フア
イバーケーブル芯を接続し、前記鋼線の他端を前記アル
ミパイプより引き出すことにより、前記アルミパイプ中
に前記光フアイバーケーブル芯を挿入することを特徴と
するアルミシース光フアイバーケーブルの製造方法。
(1) After manufacturing a steel wire-filled aluminum pipe in which a steel wire with an outer diameter smaller than the inner diameter of the final aluminum sheath is inserted into an aluminum pipe with an outer diameter larger than the outer diameter of the aluminum sheath of the final aluminum sheath optical fiber cable. This is subjected to diameter reduction processing using a die or roll to the final aluminum sheath size, and at least one of the diameter reduction processing is performed using a floating plug having a through hole through which the steel wire passes, and then the above-mentioned An aluminum sheath characterized in that the optical fiber cable core is inserted into the aluminum pipe by connecting the optical fiber cable core to one end of the steel wire and pulling out the other end of the steel wire from the aluminum pipe. Method of manufacturing optical fiber cable.
JP56124456A 1981-08-07 1981-08-07 Manufacture of optical fiber cable with aluminum sheath Granted JPS5825606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124456A JPS5825606A (en) 1981-08-07 1981-08-07 Manufacture of optical fiber cable with aluminum sheath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124456A JPS5825606A (en) 1981-08-07 1981-08-07 Manufacture of optical fiber cable with aluminum sheath

Publications (2)

Publication Number Publication Date
JPS5825606A true JPS5825606A (en) 1983-02-15
JPS6243164B2 JPS6243164B2 (en) 1987-09-11

Family

ID=14885964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124456A Granted JPS5825606A (en) 1981-08-07 1981-08-07 Manufacture of optical fiber cable with aluminum sheath

Country Status (1)

Country Link
JP (1) JPS5825606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793048A (en) * 1987-02-18 1988-12-27 Nippon Steel Corporation Method for passing optical fibers through tubular products by vibrating the tubular products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536046A (en) * 1976-07-07 1978-01-20 Sumitomo Electric Ind Ltd Optical transmission cable
JPS561003A (en) * 1979-06-15 1981-01-08 Sumitomo Electric Ind Ltd Production of reinforced optical cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536046A (en) * 1976-07-07 1978-01-20 Sumitomo Electric Ind Ltd Optical transmission cable
JPS561003A (en) * 1979-06-15 1981-01-08 Sumitomo Electric Ind Ltd Production of reinforced optical cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793048A (en) * 1987-02-18 1988-12-27 Nippon Steel Corporation Method for passing optical fibers through tubular products by vibrating the tubular products

Also Published As

Publication number Publication date
JPS6243164B2 (en) 1987-09-11

Similar Documents

Publication Publication Date Title
US10784023B2 (en) Downhole cables with both fiber and copper elements
EP1760505B1 (en) Connection cable
US12002600B1 (en) Electrical cables with non-metallic jackets and methods of fabricating the same
EP0117943A1 (en) Method of manufacturing a communication cable
CA2413187A1 (en) Stranded cable and method of making
JPS6366516A (en) Optical fiber cable and manufacture thereof
US20020001441A1 (en) Hybrid cable having both an optical fiber and a multifilament twisted and drawn element
JPH02216710A (en) Steel wire armored cable
GB2101505A (en) Cable manufacture
CN116978611A (en) Submarine cable and method for manufacturing submarine cable
US6411760B1 (en) Multifilament twisted and drawn tubular element and co-axial cable including the same
EP0108510A1 (en) Telecommunication cable manufacture
JPS5825606A (en) Manufacture of optical fiber cable with aluminum sheath
EP0109149A1 (en) Telecommunications cables manufacture
JP3296595B2 (en) Manufacturing method of optical fiber composite overhead ground wire
JP2868068B2 (en) Method for manufacturing self-supporting optical cable
JP3109406B2 (en) Fiber optic cable
JP2988270B2 (en) Winding method of pipe composite power cable
JPS5833206A (en) Optical communicating wire for composite power line
JPH0143923B2 (en)
JPH09141324A (en) Manufacture of aluminum steel composite wire
US4513500A (en) Method of forming a wire splice
JPH0428119A (en) Coaxial cable
JPH0412411A (en) Power cable
JP2000059937A (en) Take-up method of pipe-compounded power cable