JPS62163060A - Electrostatic charge generating layer and electrophotographic sensitive body containing said layer - Google Patents
Electrostatic charge generating layer and electrophotographic sensitive body containing said layerInfo
- Publication number
- JPS62163060A JPS62163060A JP361486A JP361486A JPS62163060A JP S62163060 A JPS62163060 A JP S62163060A JP 361486 A JP361486 A JP 361486A JP 361486 A JP361486 A JP 361486A JP S62163060 A JPS62163060 A JP S62163060A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrostatic charge
- charge generation
- charge generating
- generation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0696—Phthalocyanines
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、近赤外域の彼長域まで高い光感度を安定的に
有する。を子写真感光体の特定の結晶形態構造を持つ電
荷発生層およびそれを積層してなる積層形電子写真感光
体に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention stably has high photosensitivity up to the long range of the near-infrared region. This invention relates to a charge generating layer having a specific crystalline structure of a secondary photographic photoreceptor, and a laminated electrophotographic photoreceptor formed by laminating the same.
(従来の技術〕
従来、電子写真感光体として櫨々の物質が知られている
が、近年、近赤外域に発光波長を待つ半導体レーザー全
使用し窺レーザービームプリンターに使用できる電子写
真感光体が非常に強く望まれている。(Prior art) Traditionally, solid materials have been known as electrophotographic photoreceptors, but in recent years, electrophotographic photoreceptors that can be used in laser beam printers that use semiconductor lasers with emission wavelengths in the near-infrared region have been developed. It is highly desired.
そのため、近赤外域に感度を持つ感光体として。Therefore, it is used as a photoreceptor with sensitivity in the near-infrared region.
電荷発生層(CG層)と電荷輸送層(C77m)の二層
に機能を分離させ、その各々の層に最適な材料を選択で
きる機能分離型積層感光体が多く研究されている。特に
、近赤外での高感度化のポイントとなる電荷発生層に関
し5種々の材料および薄膜形成法が鋭意研究されている
。材料としてはフタロシアニン1ヒ金物が、−また、薄
膜形成法としては分散塗工膜法および蒸着膜法の二つが
主に研究されている。Many studies have been conducted on functionally separated laminated photoreceptors in which the functions are separated into two layers, a charge generation layer (CG layer) and a charge transport layer (C77m), and the optimal material can be selected for each layer. In particular, with regard to the charge generation layer, which is the key to high sensitivity in near-infrared light, five different materials and thin film formation methods are being intensively studied. The material used is phthalocyanine arsenic, and the thin film formation methods mainly studied include a dispersion coating method and a vapor deposition method.
分散塗工M法は、フタロンアニンを微粉砕化し、バイン
ダー樹脂中に微分散させ、浸漬塗工により、電荷発生層
としての薄膜を形成させるものであり、実際、工業的レ
ベルで行われている方法である。The dispersion coating M method involves pulverizing phthalonanine, finely dispersing it in a binder resin, and forming a thin film as a charge generation layer by dip coating, and is actually a method used on an industrial level. It is.
しかしながら1分散塗工膜による電荷発生層は、その構
成からもわかるように、電荷発生物質と樹脂という二つ
の物質の混合体であるため、両物質問に界面が発生し、
電気的には、そこが電荷のトラップとなり、心気性能上
問題を含むものである。However, as can be seen from its composition, the charge generation layer made of a single-dispersion coating film is a mixture of two substances, a charge generation substance and a resin, so an interface occurs between the two substances.
Electrically, this area becomes a charge trap and poses a problem in terms of hypochondriacal performance.
実際、長期くり返し使用中に電気性能が低下し、その感
光体の耐刷性を者しく低下させて力るという大きな問題
点を持つ。In fact, there is a major problem in that the electrical performance deteriorates during repeated use over a long period of time, significantly reducing the printing durability of the photoreceptor.
一方、そのような欠点を除去するために、電荷発生物質
を高X空中で蒸着させることにより、同一物質による均
一な薄膜よりなる電荷発生層の研究も行なわれてきた。On the other hand, in order to eliminate such drawbacks, research has been carried out on a charge generation layer made of a uniform thin film of the same material by vapor depositing the charge generation material in high-X air.
特に、蒸着可能な材料として、昇華性のフタロシアニン
化合物、中心金属として、At、Ti、In等が検討さ
れている。また、近赤外域に感度金持たせるためには、
蒸着膜そのままでは吸収が近赤外域にないため、有機溶
媒中に浸漬し、結晶変態により、吸収波長域を近赤外に
シフトさせる操作が行われる。しかしながら、フタロシ
アニン化合物が結晶多形の性質を持つこと。In particular, sublimable phthalocyanine compounds are being considered as materials that can be deposited, and At, Ti, In, and the like are being considered as central metals. In addition, in order to have sensitivity in the near-infrared region,
Since the vapor-deposited film as it is does not absorb in the near-infrared region, it is immersed in an organic solvent and undergoes crystal modification to shift the absorption wavelength region to the near-infrared region. However, phthalocyanine compounds have crystal polymorphic properties.
および蒸着や結晶変態とAう複雑なプロセスを経る友め
、その作成された薄膜状の電荷発生j−が種々の結晶形
態tとり、必ずしも理想的な結晶形態、およびその形態
への制御がなされていないのが現状であった。After going through a complicated process of vapor deposition and crystal transformation, the resulting thin film of charge generation takes on various crystal forms, and it is not always possible to obtain an ideal crystal form or to control the form. The current situation was that it was not.
(発明が解決しようとする問題点)
その次め、蒸着・有機溶媒結晶変態による電荷発生層が
、その構成から、電気性能的に高性能であることが期待
されていたにもかかわらず、実際は電気性能的に非常に
バラ付きが大きく、実用的。(Problems to be Solved by the Invention) Next, although the charge generation layer formed by vapor deposition and organic solvent crystal transformation was expected to have high performance in terms of electrical performance due to its structure, in reality it was not. Electrical performance varies widely, making it practical.
工業的に使用するのが非常に困難であった。It was very difficult to use industrially.
すなわち、!荷発生層上に電荷輸送層を形成し。In other words! A charge transport layer is formed on the charge generation layer.
感光体とし°〔評価すると、電気性能的には、無露光時
の表面電位V。、V−ブー露光時の表面電位v、(イメ
ージ電位)の各々が大きく変動する。コロナチャージ時
の電荷ののりが悪く、voが低いこと、および感度が非
常に悪<、V、が高すという問題があった。i′fc、
を荷輸送層と電荷発生層の接着強度が大きく変化し、悪
い場合には、電荷輸送層がドラムから簡単に剥離すると
いう問題もあった。[Evaluation: In terms of electrical performance, surface potential V when not exposed to light. , V-boo, the surface potential v, (image potential) during exposure varies greatly. There were problems such as poor charge transfer during corona charging, low vo, and very poor sensitivity and high V. i'fc,
There was also a problem that the adhesive strength between the charge transport layer and the charge generation layer varied greatly, and in bad cases, the charge transport layer easily peeled off from the drum.
(問題点を解決するための手段)
本発明者らは、上記の問題点を念頭におき、 [荷発生
材料として塩化アルミニウムフタロシア二)〔AtCL
xPCCty(塩g(ヒ度:x−1−y=1.0〜2.
0 ) ]を使用し、蒸着、有機溶媒結晶変態による電
荷発生層の予想される電気的高性能を目ざすと共に、実
用的、工業的使用が可能な再現性、性能安定性を目ざし
、電荷発生層としての最適な結晶形態を鋭意検討した結
果1本発明に到達したものである。(Means for Solving the Problems) With the above-mentioned problems in mind, the present inventors developed a method using [aluminum phthalocyanide chloride as a charge-generating material] [AtCL
xPCCty (salt g (degree of humidity: x-1-y=1.0-2.
0 )], aiming at the expected electrical performance of the charge generation layer by vapor deposition and organic solvent crystal transformation, as well as aiming at reproducibility and performance stability that can be used for practical and industrial purposes. The present invention has been arrived at as a result of extensive research into the optimal crystalline form.
すなわち1本発明は、電荷発生材料として塩素化アルミ
ニウムフタロシアニン〔AtCl、xPCCLy(塩素
rヒg:x+y=1.o 〜2,0.PC:フタロシア
ニン項)〕を使用し、蒸着により薄膜全形成した後、有
機溶媒により結晶変態を行わせ、特定の結晶形態を取ら
せることにより、電気性能的に高性能、9定で1機械的
接着強度の強い高性能の電荷発生層全提供すると共に、
該電荷発生層上に電荷輔送層を積層することてより得ら
れる近赤外域に感度を持つ電子写真感光Ij−を提供す
るものである。That is, in the present invention, chlorinated aluminum phthalocyanine [AtCl, xPCCLy (chlorine rhyg: x + y = 1.o ~ 2,0.PC: phthalocyanine term)] is used as a charge generating material, and a thin film is entirely formed by vapor deposition. After that, crystal transformation is carried out using an organic solvent to form a specific crystal form, thereby providing a high-performance charge generation layer with high electrical performance and high mechanical adhesion strength at 9 constant.
An electrophotographic photosensitive material Ij- having sensitivity in the near-infrared region obtained by laminating a charge transporting layer on the charge generating layer is provided.
本発明の電荷発生材料としては、塩素1ヒアルミニウム
フタロシアニンCAtCtxF’cCty(塩素化U:
x−4−y= 1.0〜2,0. Pc :フタロシ
アニン榎)〕を使用し、蒸着に先立ち%精製過程として
昇華精製を行うものである。The charge generating material of the present invention includes chlorine-1 hyaluminum phthalocyanine CAtCtxF'cCty (chlorinated U:
x-4-y=1.0~2,0. Pc: Phthalocyanine Enoki)], and sublimation purification is performed as a percent purification process prior to vapor deposition.
本発明におりては、上記フタロシアニンを1O−4To
rr〜10−’Torrの真空下で、導電性基板として
のAtシートまたはAtドラム上、さらには、797層
として樹脂薄膜がその上に形成されたAtシート、At
ドラム上に蒸着膜として形成される。In the present invention, the above phthalocyanine is
Under a vacuum of rr to 10-'Torr, an At sheet or an At drum as a conductive substrate, and an At sheet or an At drum on which a resin thin film was formed as a 797 layer
It is formed as a vapor deposited film on the drum.
上記蒸着膜を説明するに際し、−例としてのX線回折図
形および走査型反射電子顕微鏡(SgM)1象を示すと
、第1図および第2図のとおりである。In explaining the above deposited film, an example of an X-ray diffraction pattern and a scanning reflection electron microscope (SgM) image are shown in FIGS. 1 and 2.
ま次、蒸着膜の反射吸収スペクトルは第3図に示すとお
りである。Next, the reflection/absorption spectrum of the deposited film is as shown in FIG.
すなわち、X線回折図形は、実際に使用するこの膜厚領
域の7タロシアニン薄膜では、その膜厚および結晶配向
性から、プラツグ角度(2θ±0.2度) 26.5度
に小さなピークを示すのみである。筐た。SEM像は、
300〜500 X程度の径を持つ粒状構造を示す。蒸
着膜の反射吸収スペクトルは、明らかに半導体レーザー
の発光波長である780〜8 S Onm近辺に吸収を
持たないため、近赤外域に感Ifを持つ電荷発生ノーと
しては不適である。そのため、近赤外域に感度を持友せ
るため、有機溶媒中に浸漬することにより、結晶変態を
行う必要がある。変態に使用する有機溶媒としては、電
荷発生材料に対し、若干の酵解性を持つ溶媒が好ましく
、テトロヒドロフラン、トルエン、キシレン等が使用さ
れる。In other words, the X-ray diffraction pattern of the 7-thalocyanine thin film in this film thickness range that is actually used shows a small peak at the Plagg angle (2θ ± 0.2 degrees) of 26.5 degrees due to the film thickness and crystal orientation. Only. It was a cabinet. The SEM image is
It shows a granular structure with a diameter of about 300 to 500×. The reflection/absorption spectrum of the deposited film clearly does not have absorption in the vicinity of 780 to 8 S Onm, which is the emission wavelength of a semiconductor laser, and is therefore unsuitable for charge generation, which has sensitivity in the near-infrared region. Therefore, in order to maintain sensitivity in the near-infrared region, it is necessary to perform crystal modification by immersing it in an organic solvent. The organic solvent used for the transformation is preferably a solvent that has some fermentability with respect to the charge generating material, such as tetrahydrofuran, toluene, xylene, etc.
実際に一例として、トルエン圧より結晶変態を行つ友も
のの結果を、そのX線回折図形を第4図、SEM写真を
第5図、蒸着膜の反射吸収スペクトルを第6図に示す。As an actual example, the results of crystal transformation of a friend using toluene pressure are shown in FIG. 4 for its X-ray diffraction pattern, FIG. 5 for its SEM photograph, and FIG. 6 for its reflection/absorption spectrum of the deposited film.
X線回折図形は、結晶変態によシプラツグ角度(2θ±
0.2度) 25.5°に小さなピークを示し。The X-ray diffraction pattern is determined by the Shiprag angle (2θ±
0.2 degrees) showed a small peak at 25.5 degrees.
そのSEM写真は、蒸着後とは異なシ、特定の結晶形態
として、繊維状の結晶成長を示している。The SEM photograph shows fibrous crystal growth as a specific crystal morphology, which is different from that after deposition.
ま之、反射吸収スペクトルは近赤外域に吸収スペクトル
を示し、近赤外領域の電荷発生層としての性能を持つ。However, the reflection absorption spectrum shows an absorption spectrum in the near-infrared region, and has performance as a charge generation layer in the near-infrared region.
実際、CT層を表面に積層し、電子4真感光体を作成し
、@気性能を評価したところ。In fact, a CT layer was laminated on the surface to create a four-electron photoreceptor, and its performance was evaluated.
■はチャージがよく乗シ高<、V、は感度が高く、低い
という性能を示すとともに、電荷輸送層の剥れはなかっ
た。(2) indicates good charge, and V indicates high sensitivity and low sensitivity, and there was no peeling of the charge transport layer.
上記の知見に基き、上記操作を実際に、工業的レベルで
実用的な感光体ドラムを作成することにより検討したと
ころ、電気性能評価により、非常に大きなバラ付き、す
なわち1表面帯電位V。のバラ付き、特に暗所時の表面
電位の乗りが悪くて低く、暗減其も太きく、また、一定
露光時のイメージ電位Vi等のf動が発生すること、さ
らに、電荷輸送J−と電荷発生層の接層強度が大きく変
動することが判明した。そのため、電気性能1機械的接
着強度の弱い電荷発生1−と、性能的に問題のない電荷
発生層の特定rヒを鋭意検討したところ、1例として、
性能上問題のある電荷発生層のX線回折図形および反射
吸収スペクトルは、第7図および第8図に示すように、
プラツグ角1f(2θ±0.2度)−25,5度であり
1反射吸収スペクトルも第8図のように、はとんど性能
的に良いものと区別がつかない。′hL荷元生層の結晶
形態として最適な状態全時定化すること金、妊らに検層
したところ、性能的に問題のある′電荷発生層のSgM
渾は、第9図に示すように、繊維状の結晶成長が大きく
、シかも、その絡まり状態が非常に疎であること、また
、非晶質と思われる非常に薄刃薄膜が形成されているこ
とが判明した。Based on the above knowledge, when the above operation was actually investigated by creating a practical photoreceptor drum at an industrial level, it was found that there was a very large variation in electrical performance, that is, 1 surface charge potential V. There are variations in the surface potential, especially in the dark, the surface potential is poor and low, and the dark decrease is large, and f movements occur in the image potential Vi during constant exposure.Furthermore, the charge transport J- It was found that the contact strength of the charge generation layer varied greatly. For this reason, we have carefully considered the electrical performance (1) of charge generation with weak mechanical adhesive strength (1-) and the identification of a charge generation layer that does not have any performance problems.
The X-ray diffraction pattern and reflection absorption spectrum of the charge generation layer with performance problems are as shown in FIGS. 7 and 8.
The plug angle is 1f (2θ±0.2 degrees) -25.5 degrees, and the 1 reflection absorption spectrum is almost indistinguishable from those with good performance as shown in FIG. In order to establish the optimal state for the crystalline form of the ``hL charge generation layer'', Kim and Mae et al. conducted well logging and found that SgM in the ``charge generation layer'' had performance problems.
As shown in Figure 9, the fibrous crystal growth is large and the tangled state of the fibrous crystals is very sparse, and a very thin blade film that appears to be amorphous is formed. It has been found.
すなわち、!荷発生層としては、第5図に示すように、
繊維状に成長しm結晶(白い部分)が直径50〜5oo
lA、好1しくは100〜300人であり、その繊維間
隔が0.1μm以下で絡みあった形態全持ち、プラツグ
角度(2θ±0.2度)25.5度にピークを示すX線
回折図形を有する近赤外に吸収を持つ電荷発生層が、t
P!f異的に非常に良好な性能を示すことである。この
ように、繊維の絡まり密度が高いことにより、近赤外域
での光の吸収圧伴う電荷発生量子効率が高いばかりでな
く1機械的強度も高いことから、電荷輸送層を積層し友
感光体において、電気性能的に暗所時の表面電位V。が
高く、暗減衰が少なく、−また、一定レーザー露光時の
表面電位■1が低く、感度が高い。In other words! As shown in Figure 5, the load generation layer is
It grows like a fiber and the m crystal (white part) has a diameter of 50~50mm.
1A, preferably 100 to 300, the fiber spacing is 0.1 μm or less, the fibers are completely entangled, and the X-ray diffraction shows a peak at a plug angle (2θ ± 0.2 degrees) of 25.5 degrees. A charge generation layer having a shape and absorbing in the near infrared t
P! It exhibits exceptionally good performance. In this way, due to the high fiber entanglement density, not only the charge generation quantum efficiency with light absorption pressure in the near-infrared region is high, but also the mechanical strength is high. In terms of electrical performance, the surface potential V in the dark. - Also, the surface potential (1) at constant laser exposure is low, and sensitivity is high.
ま友、1を荷輸送層と電荷発生層との接着強度も非常に
強いものとなる。Friend, 1, the adhesive strength between the cargo transport layer and the charge generation layer is also very strong.
したがって、X線回折図形および吸収スベクトルの特定
では、′fIL荷発生層の良、悪の特定は不十分であり
、その繊維状構造の特定、実現化により始めて、良好な
性能が再現、安定性よ〈得られるわけである。Therefore, identifying the X-ray diffraction pattern and absorption spectrum is insufficient to identify whether the 'fIL load-generating layer is good or bad. Good performance can only be reproduced and stabilized by identifying and realizing its fibrous structure. Sex, that's what you get.
本発明の機械分#I型積層電子写真感光体の導電性基板
としては5通常使用されてbるものでよく、電極および
保持材としての機能を持つ本のである。The conductive substrate of the #I type laminated electrophotographic photoreceptor of the present invention may be any of those commonly used, and has the function of an electrode and a holding material.
すなわち、アルミニウムシートま友はドラム、およびプ
ラスチックシートまたはドラム上にアルミニウムを蒸着
で薄層形成し友ものが使用できる。次の層であるバリア
層は、必要に応じて設ければよく、特に、電極からのキ
ャリア圧入の阻止、および電荷発生層からの光発生キャ
リアの電極へのスムーズな輸送という整流的機能を持次
せるものである。一般的に使用されるポリアミド、ポリ
ビニルアルコール、ニトロセルロース等tD薄ftj−
12E使用できる。その上に1本発明の特徴である電荷
発生層を形成し、さらにその上に、電荷輸送層を形成し
、電子写真感光体とするわけであるが、この層としては
、電荷発生層から発生したキャリアがスムーズに注入さ
れ、さらに、表面に迅速に輸送されることが必要であり
、一般的に使用されている。That is, an aluminum sheet can be used as a drum, or a plastic sheet or drum can be formed with a thin layer of aluminum by vapor deposition. The next layer, a barrier layer, may be provided as necessary, and has a rectifying function, in particular, to prevent carrier injection from the electrode and to smoothly transport photogenerated carriers from the charge generation layer to the electrode. It is something that can be done next. Commonly used polyamide, polyvinyl alcohol, nitrocellulose, etc.
12E can be used. A charge generation layer, which is a feature of the present invention, is formed thereon, and a charge transport layer is further formed thereon to form an electrophotographic photoreceptor. It is commonly used because it is necessary for the carrier to be smoothly injected and further transported quickly to the surface.
ピラゾリン、とドラシン、トリフェニルメタン、エナミ
ン、オキサジアゾールおよびその誘導体のような低分子
電荷輸送剤を、ポリカーボネイト。Polycarbonate small molecule charge transport agents, such as pyrazoline, and dracin, triphenylmethane, enamine, oxadiazole and its derivatives.
ポリメチルメタクリV−)等のバインダ樹脂中に分散さ
せたもの%またはポリビニルカバゾール。% dispersed in a binder resin such as polymethyl methacrylic V-) or polyvinyl cabazole.
ポリビニルアントラセン。アントラセンを主鎖骨格に持
つ次ポリ(2,6−シメトキシー9.10−アントラセ
ニレンー1,10−デカンジカルボキシレート)、ポリ
(2−メトキシ−9,10−アンドラセニレンー1,1
0−デカンジカルボキシレート)等のポリマーのみから
なる電荷輸送剤よりなる層が使用できる。Polyvinylanthracene. Poly(2,6-simethoxy-9,10-anthracenylene-1,10-decanedicarboxylate), poly(2-methoxy-9,10-andracenylene-1,1) with anthracene as the main chain skeleton
A layer consisting of a charge transport agent consisting solely of a polymer such as (0-decanedicarboxylate) can be used.
性能良好な特定の繊維状構造を待つ電荷発生層の実現に
際し、その制御要因を鋭意検討したところ、蒸着から有
機溶媒変態プロセス時における水の管理が非常に重要で
あり、%に有機溶媒&態時の溶媒中の微量水分が非常に
重要であり1本発明のポイントであることが判明し1本
発明に達した。When realizing a charge generation layer that has a specific fibrous structure with good performance, we have carefully studied the controlling factors and found that water management from vapor deposition to organic solvent transformation process is extremely important. It was discovered that the trace amount of water in the solvent is very important and is the key point of the present invention, leading to the present invention.
すなわち、蒸着の真空破壊時のガスとしては、水分を全
く含まなり状態より、水分を含んだ状態の方が好ましく
、結晶変態時に使用する有機溶媒中に全く水を含まない
よりは、有機溶媒中に水が150〜500pn、好まし
くは250〜35011%含まれていることが必要であ
る。このような条件以外では、第9図に示すような繊維
の絡みが非常に粗め結晶形!/14を取り、良好な電荷
発生ノーとはならない。In other words, it is better for the gas to contain water when the vacuum is broken during vapor deposition than to contain no water at all, and it is better to use a gas that contains water in the organic solvent than to contain no water at all in the organic solvent used during crystal transformation. It is necessary that water be contained in the amount of 150 to 500 pn, preferably 250 to 35011%. Under conditions other than these, the fibers are intertwined in a very coarse crystalline form as shown in Figure 9! /14, which does not result in good charge generation.
(実施例)
次に、本発明を実施例により説明するが5本発明は、こ
れにより何ら限定さrLるものではない。(Examples) Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto in any way.
実施例1 41!性基板としてのアルミニウムドラム上に。Example 1 41! on an aluminum drum as a substrate.
バリヤ一層として、ポリアミド樹脂t−膜厚的5aOX
の薄層形成した上に、昇華椙製した塩素1ヒアルミニウ
ムフタロシアニンCAtCtxPcCty(塩素化度:
x+y=1.5)]を電荷発生材料として、真空度約I
X 10−’Torrの真空下におりて真空類7fを
行つ几。蒸着膜の厳密な意味での測定が不可能な次め、
蒸着膜付着量としては、サンプルとして1m×2crR
の面積を採取し、メタノール5−に浸し。As a barrier layer, polyamide resin T-film thickness 5aOX
A thin layer of chlorine-1 hyaluminum phthalocyanine CAtCtxPcCty (degree of chlorination:
x+y=1.5)] as the charge generating material, the degree of vacuum is about I
A vessel that performs vacuum type 7F under a vacuum of X 10-'Torr. Next, it is impossible to measure the deposited film in a strict sense.
The amount of deposited film is 1m x 2crR as a sample.
Collect the area and soak it in methanol 5-.
フタロシアニンを完全に溶出させ、光路長1crnの石
英セル中で溶液の吸収スペクトルを測定し、波長670
0mにおける吸光度を測定し、その吸光度により付着量
を決め几。この時の吸光度は1.31であった。The phthalocyanine was completely eluted and the absorption spectrum of the solution was measured in a quartz cell with an optical path length of 1 crn.
Measure the absorbance at 0 m and determine the amount of adhesion based on the absorbance. The absorbance at this time was 1.31.
真空ブシーク時のブレークガスとしては、25C1相対
湿度50チの空気を使用した。その時の族7M膜のX線
回折図形は第1図、SEM像は第2図1反対吸収スペク
トルは第5図のとおりであった。As a break gas during vacuum busheeking, 25C1 air with a relative humidity of 50 degrees was used. The X-ray diffraction pattern of the Group 7M film at that time was as shown in Figure 1, the SEM image was as shown in Figure 2, and the opposite absorption spectrum was as shown in Figure 5.
結晶変態用の有機溶媒としてトルエンを使用し、溶媒中
含有水分率を300p−とし、溶媒温度45C中、約1
0分間浸漬し、結晶変態を行った。結晶変態膜のX線回
折図形は、第4図に示すように。Toluene was used as an organic solvent for crystal transformation, the moisture content in the solvent was set to 300p-, and the solvent temperature was 45C, and about 1
It was immersed for 0 minutes to undergo crystal transformation. The X-ray diffraction pattern of the crystal modified film is as shown in FIG.
プラツグ角(2θ±0.2度) 25.5°に小さなピ
ーク、そのSEM写真は%第5図に示すように、繊維状
に成長した結晶が密に絡まりあった結晶形Fu4に示し
た。このよう圧して作成した電荷発生層を持つAtドラ
ムに% 2,5−ビス(4−ジエチルアミノフェニル)
−1,3,4−オキサジアゾール8M量部、バインダー
樹脂としてポリカーボネイト(常人社製、パンライト)
8重量部、および溶剤としてメチルエチルケトン200
重i部からなる浴液を塗布した後、100’Cで約5分
間乾燥して。A small peak was observed at a Plagg angle (2θ±0.2 degrees) of 25.5 degrees, and the SEM photograph thereof showed a crystal form Fu4 in which crystals grown in the form of fibers were tightly entangled, as shown in Figure 5. % 2,5-bis(4-diethylaminophenyl) on the At drum with the charge generation layer created by pressing in this way.
- 8M parts of 1,3,4-oxadiazole, polycarbonate as binder resin (manufactured by Jojinsha, Panlite)
8 parts by weight, and 200 parts of methyl ethyl ketone as a solvent.
After applying a bath solution consisting of heavy I parts, it was dried at 100'C for about 5 minutes.
約15μm厚の電荷移動層を作成し、電子写真感光体を
得た。電子写真感光体としての評価結果全表1にまとめ
て示す。電気性能、剥離強度とも良好な性能を示し友。A charge transfer layer having a thickness of about 15 μm was created to obtain an electrophotographic photoreceptor. The evaluation results as electrophotographic photoreceptors are summarized in Table 1. It shows good performance in both electrical performance and peel strength.
電気性能の測定は、以下のように行った。コロトロンチ
ャージャー電圧が−5,5kV、 ドラム流れ出し電
流−52μAの帝′亀条件、およびドラム回転速度は周
速8 crn/ seeで、レーザー露光のない時の表
面電位をV。とじて、レーザー露光量1.5μJ/dの
露光(発光波長790 nm )を行って、イメージ電
位viを測定した。表面電位はTREK社製表面電位計
を使用した。また、電荷輸送層と電荷発生ノーの接着強
度は、感光体状に安全カミソリで1α平方の#げた状傷
を付け、ガムテープを上記部分に接着し、剥離させるこ
とにより、該部分がドラムより剥離するかどうかで判定
した。プラツグ角度2θは通常のCuKα1線を用いて
測定した。The electrical performance was measured as follows. The conditions were that the corotron charger voltage was -5.5 kV, the drum outflow current was -52 μA, the drum rotation speed was 8 crn/see, and the surface potential without laser exposure was V. Then, exposure was performed at a laser exposure dose of 1.5 μJ/d (emission wavelength: 790 nm), and the image potential vi was measured. A surface potential meter manufactured by TREK was used to measure the surface potential. In addition, the adhesive strength between the charge transport layer and the charge generation layer can be determined by making a #1α square scratch on the photoconductor with a safety razor, adhering packing tape to the above area, and peeling it off. It was decided whether or not to do so. The plug angle 2θ was measured using ordinary CuKα1 radiation.
実施例2
電荷発生層の作成までは、実施例1と同様に行い、電荷
輸送層として、ポリ(2,6−シメトキシー9.10−
アントラセニレンー1.10−デカンジカルボキシレー
ト)15重量部とトリクロルプロパン100重量部よシ
なる溶液を塗工し、100Cで60分間乾燥し、膜厚1
5μmの電荷輸送層を持つ電子写真感光体を作成し友。Example 2 The preparation of the charge generation layer was carried out in the same manner as in Example 1, and the charge transport layer was made of poly(2,6-simethoxy9.10-
A solution of 15 parts by weight of anthracenylene (1.10-decanedicarboxylate) and 100 parts by weight of trichloropropane was coated, dried at 100C for 60 minutes, and the film thickness was 1.
Created an electrophotographic photoreceptor with a 5 μm charge transport layer.
評価結果は表1にまとめて示すとおりで6ff、電気性
能、剥離強度とも良好な性能を示した。The evaluation results are summarized in Table 1, and showed good performance in both 6ff, electrical performance, and peel strength.
実施例3
電荷発生層の作成までは、実施例1と同様に行す、電荷
輸送層として、ポリ(2−メトキシ−9゜10−アント
ラセニレンー1.10−デカンジカルボキシレート)1
4重量部とトリクロルプロパン100重量部よりなる溶
液を塗工し、100Cで60分間乾燥し、膜厚15μm
の電荷輸送層を持つ電子写真感光体を作成した。評価結
果は表1にまとめて示す。電気性能、剥離強度とも良好
な性能を示した。Example 3 The process up to the preparation of the charge generation layer was carried out in the same manner as in Example 1. As the charge transport layer, poly(2-methoxy-9°10-anthracenylene-1,10-decanedicarboxylate) 1 was used.
A solution consisting of 4 parts by weight and 100 parts by weight of trichloropropane was applied and dried at 100C for 60 minutes to form a film with a thickness of 15 μm.
An electrophotographic photoreceptor with a charge transport layer was created. The evaluation results are summarized in Table 1. It showed good electrical performance and peel strength.
比較例1,2.3
実施例1.2.3において、1!荷発生層を作成するに
際し、結晶変態用の有機浴媒として使用するトルエン中
の含水水分率を100−以下とする以外は、実施例1,
2.5と同様tic@荷発生層の作成および電荷輸送層
の形成を行い、実施例1゜2.3のそれぞれに対応する
電子写真感光体を比較例1.2.3として得た。比較例
1.2.5に示す電荷発生層のX線回折図形は、第7図
のように、プラツグ角度(2θ±0.2度) 25.5
度であるが、そのSEMI末は写真5に示すように、繊
維状の結晶成長が大きく、しかも、その絡まフ状態が非
常に疎であること、また、非晶質と思われる非常に薄い
薄膜が表面をおおっていた。電気性能および剥離性能は
1表1にまとめて示すように、実施例1.2.5に比べ
明らかに劣るものである。Comparative Example 1, 2.3 In Example 1.2.3, 1! Example 1, except that the water content in toluene used as an organic bath medium for crystal transformation was 100- or less when creating a charge generation layer.
A tic@ charge generation layer and a charge transport layer were formed in the same manner as in Example 2.5, and electrophotographic photoreceptors corresponding to Examples 1 and 2.3 were obtained as Comparative Examples 1 and 2.3. The X-ray diffraction pattern of the charge generation layer shown in Comparative Example 1.2.5 has a plug angle (2θ±0.2 degrees) of 25.5 as shown in FIG.
However, as shown in Photo 5, the SEMI powder has large fibrous crystal growth, and the entangled state is very sparse, and there is a very thin thin film that seems to be amorphous. covered the surface. As shown in Table 1, the electrical performance and peeling performance are clearly inferior to those of Example 1.2.5.
表 1 (発明の効果) 上記本発明の実施例と比較例かられかるように。Table 1 (Effect of the invention) As can be seen from the above examples of the present invention and comparative examples.
本発明によれば、1ft気性能および剥離強度の良好な
電荷発生層を有し、近赤外域に感度を持つ電子写真感光
体となる。According to the present invention, an electrophotographic photoreceptor is obtained which has a charge generation layer with good 1 ft air resistance and peel strength, and is sensitive in the near infrared region.
第1図は本発明における蒸着後の蒸着膜のX線回折図形
、第2図は同蒸着膜の走査型反射電子顕微鏡による表面
像、第3図は同蒸着膜の反射吸収スペクトル、第4図は
有機溶媒により結晶変怨を行った後の電荷発生層のX線
回折図形、第5図は同電荷発生層の走査型反射電子顕微
鏡による表面像、第6図は同電荷発生J−の反射吸収ス
ペクトル。
第7図は有機溶媒により結晶変態を行った後の性能上問
題のある電荷発生層のX線回折図、第8図は同電荷発生
層の反射吸収スペクトル、第9図は同電荷発生層の走査
型反射電子顕微鏡による表面像である。Fig. 1 is an X-ray diffraction pattern of the vapor deposited film after vapor deposition in the present invention, Fig. 2 is a surface image of the vapor deposited film taken by a scanning reflection electron microscope, Fig. 3 is a reflection absorption spectrum of the vapor deposited film, and Fig. 4 is an X-ray diffraction pattern of the charge generation layer after crystal modification with an organic solvent, Figure 5 is a surface image of the charge generation layer taken by a scanning reflection electron microscope, and Figure 6 is the reflection of the charge generation J-. Absorption spectrum. Figure 7 is an X-ray diffraction diagram of a charge generation layer with a performance problem after undergoing crystal modification with an organic solvent, Figure 8 is a reflection absorption spectrum of the same charge generation layer, and Figure 9 is an X-ray diffraction diagram of the same charge generation layer. This is a surface image taken using a scanning reflection electron microscope.
Claims (2)
xPcCl_y(塩素化度:x+y=1.0〜2.0、
Pc:フタロシアニン環)〕よりなる繊維網様状に成長
した結晶の繊維の太さが50〜500Åであり、その隣
接繊維間隔が0.1μm以下で絡みあつた形態を持ち、
プラツグ角度(2θ±0.2度)25.5度にピークを
示すX線回折図形を有し、近赤外域に吸収を持つ電子写
真感光体の電荷発生層。(1) Chlorinated aluminum phthalocyanine [AlCl_
xPcCl_y (degree of chlorination: x+y=1.0-2.0,
Pc: phthalocyanine ring)] The fibers of the crystals grown in a fiber network have a thickness of 50 to 500 Å, and the adjacent fibers have an entangled form with a spacing of 0.1 μm or less,
A charge generation layer of an electrophotographic photoreceptor having an X-ray diffraction pattern showing a peak at a Plagg angle (2θ±0.2 degrees) of 25.5 degrees and having absorption in the near-infrared region.
アー層上に、電荷発生層、電荷輸送層が積層された機能
分離型積層電子写真感光体において、電荷発生層が塩素
化アルミニウムフタロシアン〔AlCl_xPcCl_
y(塩素化度:x+y=1.0〜2.0、Pc:フタロ
シアニン環)〕よりなる繊維網様状に成長した結晶の繊
維の太さが50〜500Åであり、その隣接繊維間隔が
0.1μm以下で絡みあつた形態を持ち、プラツグ角度
(2θ±0.2度)25.5度にピークを示すX線回折
図形を有し、近赤外域に吸収を持つことを特徴とする機
能分離型積層電子写真感光体。(2) In a functionally separated laminated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated on a conductive substrate or a barrier layer provided on a conductive substrate, the charge generation layer is made of chlorinated aluminum phthalocyanide. [AlCl_xPcCl_
y (degree of chlorination: x + y = 1.0 to 2.0, Pc: phthalocyanine ring)] The thickness of the fibers of the crystal grown in a fiber network is 50 to 500 Å, and the distance between adjacent fibers is 0. .It has an entangled morphology with a diameter of 1 μm or less, has an X-ray diffraction pattern that shows a peak at a plug angle (2θ ± 0.2 degrees) of 25.5 degrees, and has absorption in the near-infrared region. Separate laminated electrophotographic photoreceptor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP361486A JPS62163060A (en) | 1986-01-13 | 1986-01-13 | Electrostatic charge generating layer and electrophotographic sensitive body containing said layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP361486A JPS62163060A (en) | 1986-01-13 | 1986-01-13 | Electrostatic charge generating layer and electrophotographic sensitive body containing said layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62163060A true JPS62163060A (en) | 1987-07-18 |
Family
ID=11562366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP361486A Pending JPS62163060A (en) | 1986-01-13 | 1986-01-13 | Electrostatic charge generating layer and electrophotographic sensitive body containing said layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62163060A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669644A (en) * | 1979-11-13 | 1981-06-11 | Konishiroku Photo Ind Co Ltd | Original plate for printing |
JPS57148745A (en) * | 1981-03-11 | 1982-09-14 | Nippon Telegr & Teleph Corp <Ntt> | Lamination type electrophotographic receptor |
JPS57211149A (en) * | 1981-06-23 | 1982-12-24 | Nippon Telegr & Teleph Corp <Ntt> | Laminated type electrophotographic receptor |
JPS58158649A (en) * | 1982-03-15 | 1983-09-20 | Nippon Telegr & Teleph Corp <Ntt> | Laminate type electrophotographic receptor |
JPS58209748A (en) * | 1982-06-01 | 1983-12-06 | Asahi Chem Ind Co Ltd | Organic electrophotographic receptor |
JPS6026947A (en) * | 1983-07-25 | 1985-02-09 | Asahi Chem Ind Co Ltd | Organic photosensitive body for electrophotography |
JPS6052853A (en) * | 1983-09-02 | 1985-03-26 | Asahi Chem Ind Co Ltd | Organic electrophotographic sensitive body |
-
1986
- 1986-01-13 JP JP361486A patent/JPS62163060A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669644A (en) * | 1979-11-13 | 1981-06-11 | Konishiroku Photo Ind Co Ltd | Original plate for printing |
JPS57148745A (en) * | 1981-03-11 | 1982-09-14 | Nippon Telegr & Teleph Corp <Ntt> | Lamination type electrophotographic receptor |
JPS57211149A (en) * | 1981-06-23 | 1982-12-24 | Nippon Telegr & Teleph Corp <Ntt> | Laminated type electrophotographic receptor |
JPS58158649A (en) * | 1982-03-15 | 1983-09-20 | Nippon Telegr & Teleph Corp <Ntt> | Laminate type electrophotographic receptor |
JPS58209748A (en) * | 1982-06-01 | 1983-12-06 | Asahi Chem Ind Co Ltd | Organic electrophotographic receptor |
JPS6026947A (en) * | 1983-07-25 | 1985-02-09 | Asahi Chem Ind Co Ltd | Organic photosensitive body for electrophotography |
JPS6052853A (en) * | 1983-09-02 | 1985-03-26 | Asahi Chem Ind Co Ltd | Organic electrophotographic sensitive body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2487535A1 (en) | ||
JPS59166959A (en) | Laminated type electrophotographic sensitive body | |
CA1042093A (en) | Method of fabricating composite trigonal selenium photoreceptor | |
US6383699B1 (en) | Photoreceptor with charge blocking layer containing quaternary ammonium salts | |
JPS59232348A (en) | Laminated photosensitive body and its production | |
JPS6059353A (en) | Electrophotographic sensitive body | |
JPS62163060A (en) | Electrostatic charge generating layer and electrophotographic sensitive body containing said layer | |
TWI802833B (en) | Electronic device and method for producing the same, image forming method, and image forming apparatus | |
JPH0330853B2 (en) | ||
JPH03230167A (en) | Electroconductive layer using charge- transfer complex | |
JP2891462B2 (en) | Charge holding medium exposure recording method | |
US20090226829A1 (en) | Photoreceptors comprising aligned nano-sized domains of charge transport components that have significant intermolecular pi-pi orbital overlap | |
JPS6383732A (en) | Electrophotographic sensitive body | |
JPS6126062A (en) | Electrophotographic sensitive body | |
JPS5846347A (en) | Electrophotographic receptor | |
JPH0331846A (en) | Photosensitive body superior in oxidation prevention and manufacture of the same | |
JPS5846346A (en) | Composite electrophotographic receptor | |
JPH01120564A (en) | Electrophotographic sensitive body | |
JPS6069655A (en) | Laminated type electrophotographic sensitive body | |
JPH075711A (en) | Electrophotographic photoreceptor | |
JPH0536785B2 (en) | ||
JPH1184692A (en) | Laminate type electrophotographic photoreceptor and its production | |
JPH02173655A (en) | Electrophotographic sensitive body | |
JPH0277764A (en) | Voltage applying and exposing method | |
JPS63223653A (en) | Electrophotographic sensitive body |