JPS62162926A - Continuous level gage - Google Patents

Continuous level gage

Info

Publication number
JPS62162926A
JPS62162926A JP454286A JP454286A JPS62162926A JP S62162926 A JPS62162926 A JP S62162926A JP 454286 A JP454286 A JP 454286A JP 454286 A JP454286 A JP 454286A JP S62162926 A JPS62162926 A JP S62162926A
Authority
JP
Japan
Prior art keywords
sensing element
liquid
liquid level
temperature
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP454286A
Other languages
Japanese (ja)
Inventor
Etsuro Habata
悦朗 幅田
Mamoru Miyamoto
守 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP454286A priority Critical patent/JPS62162926A/en
Publication of JPS62162926A publication Critical patent/JPS62162926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To prevent overheating in a liquid and to reduce consumption electric power by using a long-sized positive characteristic thermistor as a detecting element and covering the circumference with a heat insulator leaving a part and making it possible to indicate a continuous change of a liquid level with simple constitution. CONSTITUTION:The detecting element 6 consisting of the long-sized positive characteristic thermistor is covered by the heat insulator 8 such as insulating resin leaving only the surface of an electrode 7 of one side. In this way, when the element 6 is dipped in the liquid such as gasoline, a surface area of the element 6 which comes in direct contact with the liquid is reduced and heat radiation in the liquid is reduced, by which the resistance is made high and the consumption electric power is reduced. Further, an electric current value of the element 6 is changed in a straight line as the element 6 is dipped in the liquid and the change of the liquid level can be continuously indicated by reading the electric current change.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車などの燃料の量を、正特性サーミスタの
自己発熱の程度が液中と空中とで異なることを利用して
検知し表示するもので、液面の変化を連続的に表示でき
る連続式液位計に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention detects and displays the amount of fuel in automobiles, etc. by utilizing the fact that the degree of self-heating of a positive temperature coefficient thermistor differs between in liquid and in air. , relates to a continuous liquid level gauge that can continuously display changes in liquid level.

従来の技術 正特性サーミスタは、温度が上昇するとある温度(キュ
リ一温度)以上になると急激に抵抗値が上昇する性質を
持った感温抵抗体で、半導体セラミクスや高分子材料か
らなっている。これに電圧を印加して自己発熱させた場
合、その素子が空中にある時と、ガソリンなどの液中に
ある時とでは温度が異なり、ひいてはその抵抗値が異な
ることを利用して液面センサとして用いることができる
Conventional technology A positive temperature coefficient thermistor is a temperature-sensitive resistor that has the property of rapidly increasing its resistance when the temperature rises above a certain temperature (Currie temperature), and is made of semiconductor ceramics or polymer materials. When a voltage is applied to this element to generate self-heating, the temperature is different when the element is in the air and when it is in a liquid such as gasoline, and the resistance value is different. It can be used as

従来のこの種の液位針は、負特性サーミスタを用いたも
のが実用化されている。第8図でその構成を示す。第8
図において、1はロッド状の負特性サーミスタによる検
知素子で、2はそれに固着されているニッケルなどのリ
ード線である。3は絶縁板、4は金属筒で、これらでケ
ースを構成し、この中央部に前記検知素子1がリード線
2を介して固定されている。5はランプであり、これに
検知素子1と電源とを直列に接続しである。
Conventional liquid level needles of this type that use a negative characteristic thermistor have been put into practical use. FIG. 8 shows its configuration. 8th
In the figure, numeral 1 is a sensing element made of a rod-shaped negative characteristic thermistor, and numeral 2 is a lead wire made of nickel or the like fixed thereto. Reference numeral 3 indicates an insulating plate, and 4 indicates a metal tube, which together constitute a case, to the center of which the detection element 1 is fixed via a lead wire 2. 5 is a lamp, to which the detection element 1 and a power source are connected in series.

このような液位針において、検知素子1が空中にある時
は、検知素子1の熱放散係数が小さいため、発熱しやす
く温度が高くなる。そのため検知素子1の抵抗が小さく
なり、流れる電流が大きく、ランプ5が点灯する。また
、金属筒4が液中にある時は、透孔aから液が入り、検
知素子1が液に浸漬される。この時は検知素子1の熱が
液に奪われ、熱放散係数が太きくなるので、検知素子1
の抵抗が大きくなって回路に流れる電流が少なくなり、
ランプ6が消灯する0 第9図、第10図はさらに別の従来例で、第8図に示し
た負特性サーミスタを複数個用い、液面の変化を段階的
に表示できるものである。(実開昭57−105930
号公報) 発明が解決しようとする問題点 従来の液位針は、負特性サーミスタの自己発熱の量が液
中と空気中で大きく異なることを利用して、その抵抗値
が液中と空気中で異なり、流れる電流の大小により、ラ
ンプが点灯及び消灯するものである。そのため、非常に
簡単な回路で液の有無が表示できる。しかしながら、検
知素子が1ケであるため、表示できる液位は検知素子が
液中にあるか空中にあるかという、ただ一点のみであり
、液位の変化を連続的に表示することができなかった。
In such a liquid level needle, when the sensing element 1 is in the air, since the heat dissipation coefficient of the sensing element 1 is small, it is easy to generate heat and the temperature becomes high. Therefore, the resistance of the sensing element 1 becomes small, the current flowing becomes large, and the lamp 5 lights up. Further, when the metal cylinder 4 is in the liquid, the liquid enters through the through hole a, and the sensing element 1 is immersed in the liquid. At this time, the heat of the sensing element 1 is taken away by the liquid, and the heat dissipation coefficient increases, so the sensing element 1
The resistance increases and the current flowing through the circuit decreases,
9 and 10 show yet another conventional example in which a plurality of negative characteristic thermistors shown in FIG. 8 are used to display changes in the liquid level in stages. (Jitsukai Sho 57-105930
Problems to be Solved by the Invention Conventional liquid level needles take advantage of the fact that the amount of self-heating of a negative characteristic thermistor is significantly different between liquid and air, and the resistance value is different between liquid and air. The lamp is turned on and off depending on the magnitude of the current flowing through it. Therefore, the presence or absence of liquid can be displayed using a very simple circuit. However, since there is only one sensing element, the liquid level that can be displayed is only one point, whether the sensing element is in the liquid or in the air, and changes in the liquid level cannot be displayed continuously. Ta.

そのため、検知素子を複数個用いる構造も考案されてい
るが、これでも液位を段階的に表示するだけで、連続的
に液位の量を表示することはできなかった。
Therefore, a structure using a plurality of sensing elements has been devised, but even this can only display the liquid level in stages, but cannot continuously display the amount of liquid level.

また、検知素子に負特性サーミスタを用いているため、
周囲温度が上昇すると液中にある場合でも検知素子の温
度が上昇し、液温の上昇が犬きくなっていた。
In addition, since a negative characteristic thermistor is used as the detection element,
As the ambient temperature rises, the temperature of the sensing element rises even when it is submerged in liquid, making the rise in liquid temperature more difficult.

問題点を解決するための手段 この問題点を解決するために本発明は、液面の変化に伴
ない浸漬する長さが変化するように固定された正特性サ
ーミスタからなる長尺の検知素子と、その検知素子に直
列に接続された電源及びその直列回路に流れる電流の表
示装置からなり、前記検知素子の両電極を結ぶ線の方向
が液面に平行になるようにし、かつその検知素子は一部
を除いて断熱材で覆われているものである。
Means for Solving the Problem In order to solve this problem, the present invention uses a long sensing element consisting of a positive temperature coefficient thermistor fixed so that the immersion length changes as the liquid level changes. , consisting of a power supply connected in series to the sensing element and a display device for the current flowing through the series circuit, and the direction of the line connecting both electrodes of the sensing element is parallel to the liquid level, and the sensing element is All but one part is covered with insulation.

作用 この構成による作用を説明する。まず、正特性サーミス
タは温度が上昇すると、ある温度(キュリ一温度)以上
で急激に抵抗値が上昇する感温抵抗体で、チタン酸バリ
ウム系の半導体セラミクスや、高分子樹脂に導電粉を混
合したものなどで作成できる。この正特性サーミスタで
構成された長尺の検知素子に電圧を印加し、検知素子全
体が空中にある時、検知素子は自己発熱し、抵抗が大き
くなっである温度で熱平衡に達する。この時、回路に流
れる電流もある一定の電流で安定する。その電流値は電
流の表示装置で表示されている。そして、液位が増加し
て検知素子の端部から次第に浸漬されていくと、その浸
漬された部分の温度が低くなり、そこの部分の抵抗が小
さくなる。すると、検知素子の一部の抵抗が減少するの
で、電流はそれに応じて増大する。一方、検知素子全体
が液中に浸漬すると、電流は最も大きくなる。このよう
に液位に応じて電流が連続的に変化し、その値を電流表
示装置で読み取ることができる。また、検知素子の両電
極を結ぶ線を液面に垂直にした場合、検知素子の空中に
ある部分と、液中にある部分が直列に接続されたように
なり、空中にある部分の抵抗値が高くなり、そこに電圧
が集中し液中の部分に電圧が印加されなくなる。そのた
め、検知素子の両電極を結ぶ線は液面に平行である必要
がある。
Effect The effect of this configuration will be explained. First, a positive temperature coefficient thermistor is a temperature-sensitive resistor whose resistance value increases rapidly when the temperature rises above a certain temperature (Currie temperature), and is made of barium titanate-based semiconductor ceramics or a polymer resin mixed with conductive powder. It can be created using things like When a voltage is applied to a long sensing element made of this positive temperature coefficient thermistor and the entire sensing element is in the air, the sensing element self-heats, its resistance increases, and it reaches thermal equilibrium at a certain temperature. At this time, the current flowing through the circuit also stabilizes at a certain constant current. The current value is displayed on a current display device. Then, as the liquid level increases and the sensing element is gradually immersed from the end, the temperature of the immersed part becomes lower and the resistance of that part becomes smaller. Then, since the resistance of a portion of the sensing element decreases, the current increases accordingly. On the other hand, when the entire sensing element is immersed in the liquid, the current becomes the largest. In this way, the current changes continuously depending on the liquid level, and its value can be read on the current display device. Also, if the line connecting both electrodes of the sensing element is made perpendicular to the liquid level, the part of the sensing element in the air and the part in the liquid will be connected in series, and the resistance value of the part in the air will be becomes high, the voltage is concentrated there, and no voltage is applied to the part in the liquid. Therefore, the line connecting both electrodes of the sensing element needs to be parallel to the liquid level.

また、検知素子の周囲を一部を除いて断熱材で覆ってい
るため、実質の放熱面積は小さくなっているので、検知
素子の形状が大きくても発熱量が少なくなり、消費電力
が少なくなる。
In addition, since the area around the sensing element is covered with insulation material except for a part, the actual heat dissipation area is small, so even if the sensing element is large in shape, it generates less heat and consumes less power. .

実施例 第1図は本発明の一実施例による連続式液位針を示す概
略構成図であり、第2図は検知素子部の液面に平行な面
での断面図である。6は正特性サーミスタからなる検知
素子で、例えば常温抵抗値1oΩ、キュリ一温度60 
’C、形状は厚さ1ffffX幅2 Mill X長さ
10Qffffの長尺な板状である。この検知素子6は
液面の変化に伴ない浸漬する長さが変化するように取付
けられる。Tはその両生面に設けられた焼付銀などの電
極であり、この両面の電極子を結ぶ線の方向が液面と平
行となるように検知素子6は固定される。8は絶縁性樹
脂などに上る断熱材で、前記正特性サーミスタによる検
知素子6の一方の電極面だけを残して覆っている。
Embodiment FIG. 1 is a schematic configuration diagram showing a continuous liquid level needle according to an embodiment of the present invention, and FIG. 2 is a sectional view of a sensing element portion taken in a plane parallel to the liquid level. 6 is a sensing element consisting of a positive characteristic thermistor, for example, with a resistance value of 10Ω at room temperature and a Curie temperature of 60°C.
'C, the shape is a long plate with a thickness of 1ffff, a width of 2 Mill, and a length of 10Qffff. This sensing element 6 is mounted so that the length of immersion changes as the liquid level changes. T is an electrode made of baked silver or the like provided on both sides, and the sensing element 6 is fixed so that the direction of the line connecting the electrodes on both sides is parallel to the liquid level. Reference numeral 8 denotes a heat insulating material such as an insulating resin, which covers only one electrode surface of the detection element 6 made of the positive temperature coefficient thermistor.

9は検知素子6に直列に接続された電源で12v11o
は電流計で検知素子6に流れる電流を表示するものであ
る。
9 is a power supply connected in series to the detection element 6, 12v11o
is an ammeter that displays the current flowing through the sensing element 6.

今、検知素子全体が空中にある時は、熱放散係数が小さ
いので検知素子は自己発熱し、高い温度で熱平衡に達す
る。そのため検知素子の抵抗値は高くなって安定する。
Now, when the entire sensing element is in the air, the heat dissipation coefficient is small, so the sensing element self-heats and reaches thermal equilibrium at a high temperature. Therefore, the resistance value of the sensing element becomes high and stable.

この時の電流は100mムであった。逆に、検知素子全
体がガソリン中にある時は抵抗が低くなり、電流は40
0mAであった。
The current at this time was 100 mm. Conversely, when the entire sensing element is submerged in gasoline, the resistance is low and the current is 40
It was 0mA.

まだ、検知素子の端部から順次浸漬していくと、電流値
はそれに応じて100mAから400mムまでほぼ直線
的に変化する。
However, if the sensing element is immersed sequentially from the end, the current value changes approximately linearly from 100 mA to 400 mm.

このように特別な増幅回路を用いずに、非常に簡単な構
成で、電流の変化を読み取るだけで、液位の変化を連続
的に示すことができる。また、正特性サーミスタを用い
ているので、自己温度制御作用を有し、検知素子の表面
温度は周囲温度が上昇してもほぼ一定で過熱することは
ない。また、検知素子は一部を除いて断熱材で覆われて
いるため、液中にあっても液に直接触れる表面積は小さ
い。そのため、検知素子自身の形状が大きくても液中で
の放熱が少なくなるので、抵抗が高くなり、消費電力が
少なくなる。これらの様子を第3図に示しである。第3
図において、人は本発明の検知素子による電流の様子で
、Bは断熱材を用いないで同形状の正特性サーミスタに
よる検知素子を用いた時の電流の様子を示すものである
In this way, with a very simple configuration and without using a special amplification circuit, changes in liquid level can be continuously indicated simply by reading changes in current. Furthermore, since a positive temperature coefficient thermistor is used, it has a self-temperature control function, and the surface temperature of the sensing element remains almost constant even when the ambient temperature rises, and does not overheat. Furthermore, since the sensing element is covered with a heat insulating material except for a part, the surface area that comes into direct contact with the liquid is small even if it is submerged in the liquid. Therefore, even if the sensing element itself has a large shape, less heat is dissipated in the liquid, resulting in higher resistance and lower power consumption. These conditions are shown in FIG. Third
In the figure, "B" shows the state of current generated by the detection element of the present invention, and "B" shows the state of current when a detection element made of a positive temperature coefficient thermistor of the same shape is used without using a heat insulating material.

第4図及び第5図a、bは正特性サーミスタによる検知
素子の別の実施例で、第4図はこれに用いる正特性サー
ミスタの斜視図、第5図aはこの正特性サーミスタを複
数個用いて構成した検知素子の斜視図、第5図すはその
断面図である。11は正特性サーミスタで、12はそれ
の両主面忙つけられた焼付銀などの電極である。13は
黄銅板などの共通電極で、半田など(図示せず)によっ
て前記正特性サーミスタ11を並列に複数個はぼ密着さ
せて固着しである。14はフェノールなどの絶縁樹脂に
よる断熱材で、複数個の正特性サーミスタからなる検知
素子の一部を除いてそれを覆っている。なお、第5図へ
では図が複雑にならないように断熱材14は点線で示し
た。
4 and 5 a and 5 b show another embodiment of a detection element using a positive temperature coefficient thermistor. FIG. 5 is a perspective view of a sensing element constructed using the present invention, and FIG. 5 is a sectional view thereof. 11 is a positive temperature coefficient thermistor, and 12 is an electrode made of baked silver or the like attached to both main surfaces thereof. Reference numeral 13 denotes a common electrode such as a brass plate, to which a plurality of the positive temperature coefficient thermistors 11 are tightly attached in parallel with each other by soldering or the like (not shown). Reference numeral 14 denotes a heat insulating material made of insulating resin such as phenol, which covers all but a portion of the sensing element consisting of a plurality of positive temperature coefficient thermistors. In addition, in FIG. 5, the heat insulating material 14 is shown by a dotted line so as not to complicate the drawing.

一般に、正特性サーミスタなどのセラミ’7りはもろく
て、本発明に用いるような長尺な形状を作成するのが困
難であるが、第6図に示したような構成で検知素子を構
成すると、小さな形状の正特性サーミスタを用いること
ができ、歩留まりが良く、簡単に長尺な検知素子を作成
することができる0 第6図は、温度補償を簡単な構成で広い温度範囲で使用
可能にした本発明の別の実施例である。
Generally, ceramics such as positive temperature coefficient thermistors are brittle and it is difficult to create a long shape as used in the present invention, but if the sensing element is configured as shown in Figure 6, , a small-sized positive temperature coefficient thermistor can be used, yield is high, and long sensing elements can be easily produced.0 Figure 6 shows that temperature compensation can be used in a wide temperature range with a simple configuration. This is another embodiment of the present invention.

15は長尺の正特性サーミスタによる検知素子で、前述
したように液への浸漬長さに応じてその抵抗値は変化す
る。16は同様に正特性サーミスタによる温度補償用素
子で、常に液中にあるいは空中にあるか、または形状を
大きくして、液中と空中での発熱量の差をほとんどなく
し、その抵抗は周囲温度のみによってきまるようにした
ものである。
Reference numeral 15 denotes a sensing element consisting of a long positive temperature coefficient thermistor, and as described above, its resistance value changes depending on the length of immersion in the liquid. Similarly, numeral 16 is a temperature compensation element using a positive temperature coefficient thermistor, which is always in the liquid or in the air, or has a large shape to almost eliminate the difference in heat generation between the liquid and the air, and its resistance is proportional to the ambient temperature. It was decided only by

17は交叉コイル比率計である。この交叉コイル比率計
17は、交叉した2つのコイルを用いて、その2つのコ
イルに流れる電流の比を表示できるものである。そして
、一方のコイルC1には検知素子16に流れる電流を流
し、他方のコイルC2には温度補償用素子16に流れる
電流を流す。
17 is a crossed coil ratio meter. This crossed coil ratio meter 17 uses two crossed coils and can display the ratio of currents flowing through the two coils. A current flowing to the sensing element 16 is passed through one coil C1, and a current flowing to the temperature compensation element 16 is passed through the other coil C2.

ここで、温度補償用素子を用いない場合、検知素子に流
れる電流は液中と空中で大きく異なるが、さらに周囲温
度によっても異なり、広い温度範囲で電流値のみで液位
を表示することは困難であった。なお、第6図で18は
鉄などの磁性体、19は指針である。
Here, if a temperature compensation element is not used, the current flowing through the sensing element differs greatly between the liquid and the air, but it also varies depending on the ambient temperature, making it difficult to display the liquid level with only the current value over a wide temperature range. Met. In FIG. 6, 18 is a magnetic material such as iron, and 19 is a pointer.

第6図に示す実施例では、温度補償用素子を用い、検知
素子に流れる電流と温度補償用素子に流れる電流との比
が、液位が一定であれば周囲温度が変っても一定にし、
広い温度範囲で液位の表示を可能にしたものである。ま
だ、両者に流れる電流の比を表示するのに、交叉コイル
比率計を用いると、簡単で安価にその電流の比を表示で
きる。
In the embodiment shown in FIG. 6, a temperature compensation element is used, and the ratio of the current flowing through the sensing element and the current flowing through the temperature compensation element is kept constant even if the ambient temperature changes as long as the liquid level is constant.
This makes it possible to display the liquid level over a wide temperature range. However, if you use a crossed coil ratio meter to display the ratio of the currents flowing through both, you can easily and inexpensively display the ratio of the currents.

第7図aは温度補償用素子を用いない場合の検知素子に
流れる電流11の様子を示し、周囲温度によって特性が
大きく変化していることが解る。一方、第7図すは温度
補償用素子を用い、それに流れる電流12と11との比
i+ / i2の様子を示したものである。この場合、
12/i、は周囲温度によらず、液面の変化のみによっ
て決まっている。
FIG. 7a shows the state of the current 11 flowing through the sensing element when no temperature compensation element is used, and it can be seen that the characteristics change greatly depending on the ambient temperature. On the other hand, FIG. 7 shows the ratio i+/i2 of currents 12 and 11 flowing through a temperature compensating element. in this case,
12/i is determined only by changes in the liquid level, regardless of the ambient temperature.

なお、本実施例では検知素子の形状を板状のものと、半
田で接合したもののみを示したが、棒状あるいはフィル
ム状、薄膜状のものでも良い。また、直列回路の中に適
宜固定抵抗を挿入しても良いO 発明の効果 以上のように、本発明は検知素子として長尺な正特性サ
ーミスタを用い、その周囲は一部を残して断熱材で覆う
ことにより、特別な増幅回路などを用いることなく、簡
単な構成で、液位の連続した変化を表示でき、また液中
での過熱の恐れがなく、かつ消費電力の少ない実用的価
値大なるものである。
In this embodiment, only the plate-shaped sensing element and the one joined by solder are shown as the sensing element, but the sensing element may be rod-shaped, film-shaped, or thin-film shaped. In addition, a fixed resistor may be appropriately inserted into the series circuit. Effects of the Invention As described above, the present invention uses a long positive temperature coefficient thermistor as a sensing element, and the surrounding area is covered with heat insulating material except for a part. By covering it with a liquid, it is possible to display continuous changes in the liquid level with a simple configuration without using a special amplifier circuit, and there is no risk of overheating in the liquid, and it has great practical value with low power consumption. It is what it is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による連続式液位針を示す概
略構成図、第2図は同液位計の要部断面連続式液位針の
他の実施例を示す回路図、第7図a、bは本発明の動作
の様子を説明するグラフ、第8図、第9図及び第10図
はそれぞれ従来の液位針を示す概略構成図及び回路図で
ある。 6.15・・・・・・検知素子、7,12・・・・・・
電極、8゜14・・・・・・断熱材、9・−・・・・電
源、1o・・・・・・電流計、11・・・・・・正特性
サーミスタ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名6−
&タロ木う− 第1図        7−9梅 δ−−−JFZT憾材 /θ−1+九1↑ 第2図 第6図 第7図
FIG. 1 is a schematic configuration diagram showing a continuous liquid level needle according to an embodiment of the present invention, FIG. 7a and 7b are graphs for explaining the operation of the present invention, and FIGS. 8, 9, and 10 are a schematic configuration diagram and a circuit diagram showing a conventional liquid level needle, respectively. 6.15...Detection element, 7,12...
Electrode, 8゜14...Insulating material, 9...Power supply, 1o...Ammeter, 11...Positive characteristic thermistor. Name of agent: Patent attorney Toshio Nakao and 1 other person6-
& Taro wood - Fig. 1 7-9 Plum δ - - JFZT wood / θ-1 + 91↑ Fig. 2 Fig. 6 Fig. 7

Claims (2)

【特許請求の範囲】[Claims] (1)液面の変化に伴ない浸漬する長さが変化するよう
に固定された正特性サーミスタからなる長尺の検知素子
と、その検知素子に直列に接続された電源と、その検知
素子に流れる電流の表示装置とからなり、前記検知素子
の両電極を結ぶ線の方向が液面に平行であり、かつ検知
素子の液面方向による断面形状がほぼ一様で、しかもそ
の検知素子は一部を除いて周囲が断熱材で覆われている
連続式液位計。
(1) A long sensing element consisting of a positive temperature coefficient thermistor fixed so that the immersion length changes as the liquid level changes, a power supply connected in series to the sensing element, and a The direction of the line connecting both electrodes of the sensing element is parallel to the liquid level, and the cross-sectional shape of the sensing element in the liquid level direction is almost uniform, and the sensing element is uniform. A continuous liquid level gauge whose surroundings are covered with insulation material except for the upper part.
(2)並列に接続され、かつそれぞれがほぼ密着して固
着された複数の正特性サーミスタによる検知素子を用い
た特許請求の範囲第1項記載の連続式液位計。
(2) A continuous liquid level gauge according to claim 1, which uses detection elements consisting of a plurality of positive temperature coefficient thermistors connected in parallel and each of which is substantially closely fixed.
JP454286A 1986-01-13 1986-01-13 Continuous level gage Pending JPS62162926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP454286A JPS62162926A (en) 1986-01-13 1986-01-13 Continuous level gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP454286A JPS62162926A (en) 1986-01-13 1986-01-13 Continuous level gage

Publications (1)

Publication Number Publication Date
JPS62162926A true JPS62162926A (en) 1987-07-18

Family

ID=11586934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP454286A Pending JPS62162926A (en) 1986-01-13 1986-01-13 Continuous level gage

Country Status (1)

Country Link
JP (1) JPS62162926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010116A1 (en) * 1989-12-28 1991-07-11 Hope Bjoern R A method and a device for determining the positions of boundary layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010116A1 (en) * 1989-12-28 1991-07-11 Hope Bjoern R A method and a device for determining the positions of boundary layers

Similar Documents

Publication Publication Date Title
JPH0476412B2 (en)
US4246786A (en) Fast response temperature sensor and method of making
US4276536A (en) Self-heating thermistor probe for low temperature applications
CA2030064A1 (en) Glass-ceramic temperature sensor for heating ovens
US6062077A (en) Techniques for making and using a sensing assembly for a mass flow controller
US4246787A (en) Fast response temperature sensor and method of making
JPS62162926A (en) Continuous level gage
US3696294A (en) Rms voltage or current sensor
JPH0643915B2 (en) Continuous level gauge
US3280630A (en) Cold junction
US3569602A (en) Temperature programming apparatus with a heating sensing arrangement
US5148707A (en) Heat-sensitive flow sensor
JPS62162923A (en) Continuous level gage
JP2014190804A (en) Humidity sensor
JPH0643916B2 (en) Continuous level gauge
JPH083437B2 (en) Continuous level gauge
JPH075050A (en) Temperature sensor
US12033773B2 (en) Component and use of a component
JPS62251621A (en) Liquid level detector
WO2023037472A1 (en) Temperature sensor
JPH0548106Y2 (en)
JPH0620973Y2 (en) Thermal flow sensor
RU1795307C (en) Electronic thermometer
JPH05107099A (en) Liquid level meter
JPH0419844Y2 (en)