JPS62162676A - Mulite-compounded enhanced calcium phosphate base sintered body - Google Patents

Mulite-compounded enhanced calcium phosphate base sintered body

Info

Publication number
JPS62162676A
JPS62162676A JP61003880A JP388086A JPS62162676A JP S62162676 A JPS62162676 A JP S62162676A JP 61003880 A JP61003880 A JP 61003880A JP 388086 A JP388086 A JP 388086A JP S62162676 A JPS62162676 A JP S62162676A
Authority
JP
Japan
Prior art keywords
calcium phosphate
powder
sintered body
mulite
compounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61003880A
Other languages
Japanese (ja)
Other versions
JPH037630B2 (en
Inventor
鳥山 素弘
川村 資三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61003880A priority Critical patent/JPS62162676A/en
Priority to US07/000,069 priority patent/US4772573A/en
Publication of JPS62162676A publication Critical patent/JPS62162676A/en
Publication of JPH037630B2 publication Critical patent/JPH037630B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)  産業上の利用分野 水酸アパタイトやリン酸三カルシウムなどのリン酸カル
シウム系化合物は、生体に対する無毒性、骨との結合性
、新生骨との置換性などすぐれた生体親和性を有してお
シ、生体硬組織代替材料(人工骨、人工歯根、人工関節
など)として大きな期待がもたれている。しかし、水酸
アパタイトあるいはリン酸三カルシウムなどのリン酸カ
ルシウム系化合物を主成分とし、かつ人工骨などに利用
し得るに十分な強度及び靭性を有するリン酸カルシウム
系材料は、提供されていない。
[Detailed Description of the Invention] (1) Field of Industrial Application Calcium phosphate compounds such as hydroxyapatite and tricalcium phosphate have excellent properties such as non-toxicity to living organisms, ability to bond with bones, and ability to replace new bone. Due to its biocompatibility, it has high expectations as a substitute material for biological hard tissues (artificial bones, artificial tooth roots, artificial joints, etc.). However, no calcium phosphate material has been provided which has a calcium phosphate compound such as hydroxyapatite or tricalcium phosphate as a main component and has sufficient strength and toughness to be used for artificial bones.

本発明は、リン酸力ルンウム系化合物(リン酸三カルシ
ウム、水酸アパタイトなど)とシリカ及びアルミナの混
合粉末を成形後、焼成することによって得られる高強度
のムライト複合強化リン酸カルシウム系焼結体及びその
製造方法に関するものである。
The present invention relates to a high-strength mullite composite reinforced calcium phosphate sintered body obtained by molding and firing a mixed powder of a phosphoric acid compound (tricalcium phosphate, hydroxyapatite, etc.), silica, and alumina. The present invention relates to a manufacturing method thereof.

(2)従来の技術 従来、高強度のリン酸カルシウム系の複合強化材料は提
供されていない。わずかに、熱間静水圧焼結法により、
水酸アパタイトと炭素繊維あるいは各種のウィスカーと
の複合化が試みられたが、良好なる効果は得られておら
ず、繊維状あるいは針状物質トリン酸カルシウム系化合
物の複合化は成功していない。
(2) Prior Art Hitherto, no high-strength calcium phosphate-based composite reinforcing materials have been provided. Slightly, by hot isostatic sintering,
Attempts have been made to composite hydroxyapatite with carbon fibers or various whiskers, but good effects have not been obtained, and composites with fibrous or needle-like calcium phosphate compounds have not been successful.

(3)発明が解決しようとする問題点 前述したように、リン酸カルシウム系焼結体の複合強化
は、極めて困難である。
(3) Problems to be Solved by the Invention As mentioned above, composite reinforcement of calcium phosphate-based sintered bodies is extremely difficult.

本発明の目的は、この困難を克服した高強度のムライト
複合強化リン酸カルシウム系焼結体を提供することにあ
る。
An object of the present invention is to provide a high-strength mullite composite reinforced calcium phosphate sintered body that overcomes this difficulty.

(4)問題を解決するための手段 本発明者らは、前記目的を達成すべく鋭意研究を重ねた
結果、所定の割合でリン酸三カルシウムあるいは水酸ア
パタイト粉末と、シリカ粉末及びアルミナ粉末を混合し
、常法の成形方法(プレス成形法、スリツプキャステン
グ法など)で成形した後、焼成すると、リン酸カルシウ
ム系焼結体中にムライトの針状結晶が生成することを見
い出した。この知見に基づいて本発明を完成するに至っ
た。
(4) Means for solving the problem As a result of intensive research to achieve the above object, the inventors of the present invention have found that tricalcium phosphate or hydroxyapatite powder, silica powder and alumina powder are mixed in a predetermined ratio. It has been found that when the materials are mixed, molded using a conventional molding method (press molding method, slip casting method, etc.) and then fired, acicular crystals of mullite are formed in the calcium phosphate-based sintered body. Based on this knowledge, we have completed the present invention.

すなわち本発明は、リン酸カルシウム系化合物粉末(リ
ン酸三カルシウム、水酸アパタイトなど)に、シリカ粉
末及びアルミナ粉末をそれぞれ1〜lO重量%、2〜l
O重1%の割合で混合した混合粉末を、常法の成形方法
(プレス成形法、スリップキャスティング法など)で所
望の形状に成形した後、1100°C−1’500°C
で焼成することにより得られるムライト複合強化リン酸
カルシウム系焼結体及びその製造方法を提供するもので
ある。
That is, in the present invention, silica powder and alumina powder are added to calcium phosphate compound powder (tricalcium phosphate, hydroxyapatite, etc.) in an amount of 1 to 10% by weight and 2 to 10% by weight, respectively.
A mixed powder mixed at a ratio of 1% by weight of O was molded into a desired shape by a conventional molding method (press molding method, slip casting method, etc.), and then heated at 1100°C-1'500°C.
The present invention provides a mullite composite-reinforced calcium phosphate-based sintered body obtained by firing the same, and a method for producing the same.

本発明方法において、ムライトは、ムライト結晶を添加
するのではなく、シリカとアルミナから焼結過程で生成
せしめる方法をとった。その結果、原料粉末の成形性の
向上、針状ムライト結晶とリン酸カルシウム系焼結組織
との密着力の増大がなされた。
In the method of the present invention, mullite is produced from silica and alumina in the sintering process, rather than by adding mullite crystals. As a result, the moldability of the raw material powder was improved and the adhesion between the acicular mullite crystals and the calcium phosphate sintered structure was increased.

(5)発明の効果 本発明材料は、きわめて高強度、高靭性のリン酸カルシ
ウム系焼結体で、生体親和性に優れた人工骨、人工歯根
、人工関節用の生体セラミックスとして好適に用いられ
る。
(5) Effects of the Invention The material of the present invention is a calcium phosphate-based sintered body with extremely high strength and toughness, and is suitably used as bioceramics for artificial bones, artificial tooth roots, and artificial joints, which have excellent biocompatibility.

また、本発明方法は、ムライトによる複合強化組織が簡
便な方法でリン酸カルシウム系焼結体中に形成でき、さ
らに常法の成形方法(プレス成形法、スリップキャステ
ング法など)で成形できるうえに常圧焼結法で、高強度
、高靭性リン酸カルシウム系焼結体を製造する方法で、
従来のセラミックス製造設備により実施できるので、工
業的に極めて価値の高い方法である。
In addition, the method of the present invention enables the formation of a composite reinforced structure by mullite in a calcium phosphate sintered body in a simple manner, and furthermore, it can be formed by conventional forming methods (press forming method, slip casting method, etc.) and can be formed under normal pressure. A method of producing high-strength, high-toughness calcium phosphate-based sintered bodies using a sintering method.
This method is industrially extremely valuable because it can be carried out using conventional ceramic manufacturing equipment.

実施例 次に実施例により本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 リン酸三カルシウム粉末に、2.5重ft%のシリカ粉
末と4重量%のアルミナ粉末を混合し、スリップキャス
ティング法で成形した。成形体を乾燥後、1300°C
で1時間焼成した。
Example 1 Tricalcium phosphate powder was mixed with 2.5% by weight of silica powder and 4% by weight of alumina powder, and molded by slip casting. After drying the molded body, 1300°C
Baked for 1 hour.

このものは、ムライトの針状結晶により複合強化された
リン酸三カルシウム焼結体で、ソノ曲ケ強度は1900
Kfr屓であった。
This is a tricalcium phosphate sintered body reinforced with acicular mullite crystals, and its solenoid strength is 1900.
It was Kfr.

実施例2 実施例1において、アルミナ添加量を5重量%に変え、
焼成温度を1850°Cに変えて行なった以外は、実施
例1と全く同様にした。
Example 2 In Example 1, the amount of alumina added was changed to 5% by weight,
The same procedure as in Example 1 was carried out except that the firing temperature was changed to 1850°C.

このものは、ムライト複合強化リン酸三カルシウム焼結
体で、その曲げ強度はl 800 Kf Vcdであっ
た。
This product was a mullite composite reinforced tricalcium phosphate sintered body, and its bending strength was 1 800 Kf Vcd.

実施例3 実施例1において、リン酸三カルシウム粉末ヲった。Example 3 In Example 1, tricalcium phosphate powder was used.

参考例1 リン酸三カルシウム粉末に、4重量%のアルミナ粉末を
混合し、スリップキャスティング法で成形した。成形体
を乾燥後、1050°Cから1400℃の温度で焼成し
た。
Reference Example 1 4% by weight of alumina powder was mixed with tricalcium phosphate powder and molded by slip casting. After drying the molded body, it was fired at a temperature of 1050°C to 1400°C.

これらのものは、いずれの温度で焼成したものも、リン
酸三カルシウムとアルミナの混合相を有する焼結体であ
った。これらのものの曲げ強度は、いずれも700Kf
「/、j以下であった。
These sintered bodies, which were fired at any temperature, had a mixed phase of tricalcium phosphate and alumina. The bending strength of these items is 700Kf.
``It was less than /, j.

参考例2 実施例3において、アルミナ粉末を添加しない原料粉末
を使用した以外は、実施例3と全く同様にした。
Reference Example 2 Example 3 was carried out in exactly the same manner as in Example 3, except that raw material powder to which no alumina powder was added was used.

このものは、水酸アパタイトとシリカの混合相からなる
焼結体で、その曲げ強度は950Krf/、4であった
This was a sintered body consisting of a mixed phase of hydroxyapatite and silica, and its bending strength was 950Krf/.4.

Claims (3)

【特許請求の範囲】[Claims] (1)針状ムライト結晶によつて複合強化されたリン酸
三カルシウムあるいは水酸アパタイトなどのリン酸カル
シウム系焼結体材料。
(1) Calcium phosphate-based sintered material such as tricalcium phosphate or hydroxyapatite compound reinforced by acicular mullite crystals.
(2)特許請求の範囲第1項記載の材料を得るための、
リン酸三カルシウム粉末あるいは水酸アパタイト粉末に
、シリカ粉末とアルミナ粉末をそれぞれ1〜10重量%
、2〜10重量%の割合で混合した原料粉末。
(2) To obtain the material described in claim 1,
Add 1 to 10% by weight of silica powder and alumina powder to tricalcium phosphate powder or hydroxyapatite powder, respectively.
, raw material powder mixed at a ratio of 2 to 10% by weight.
(3)特許請求の範囲第2項記載の原料粉末を常法の成
形方法(プレス成形法、スリップキャスティング法など
)で所定の形状に成形後、1100℃〜1500℃の温
度で焼成することにより、ムライト複合強化リン酸カル
シウム系焼結体を製造する方法。
(3) By molding the raw material powder according to claim 2 into a predetermined shape by a conventional molding method (press molding method, slip casting method, etc.) and then firing it at a temperature of 1100°C to 1500°C. , a method for producing a mullite composite reinforced calcium phosphate-based sintered body.
JP61003880A 1986-01-10 1986-01-10 Mulite-compounded enhanced calcium phosphate base sintered body Granted JPS62162676A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61003880A JPS62162676A (en) 1986-01-10 1986-01-10 Mulite-compounded enhanced calcium phosphate base sintered body
US07/000,069 US4772573A (en) 1986-01-10 1987-01-02 High-strength sintered article of calcium phosphate compound, raw material for production of said sintered article, and method for production of said sintered article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61003880A JPS62162676A (en) 1986-01-10 1986-01-10 Mulite-compounded enhanced calcium phosphate base sintered body

Publications (2)

Publication Number Publication Date
JPS62162676A true JPS62162676A (en) 1987-07-18
JPH037630B2 JPH037630B2 (en) 1991-02-04

Family

ID=11569496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61003880A Granted JPS62162676A (en) 1986-01-10 1986-01-10 Mulite-compounded enhanced calcium phosphate base sintered body

Country Status (1)

Country Link
JP (1) JPS62162676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770943A (en) * 1986-11-25 1988-09-13 Olympus Optical Co., Ltd. Method of forming rigid film of calcium phosphate compound
JPS6466040A (en) * 1987-09-07 1989-03-13 Yamahito Kogure Mold for casting high-activity metal
JPH01282144A (en) * 1988-05-06 1989-11-14 Olympus Optical Co Ltd Tricalcium phosphate sintered body and production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149895A (en) * 1976-06-07 1977-12-13 Asahi Optical Co Ltd Method of producing denture and artificial bone
JPS5957971A (en) * 1982-10-30 1984-04-03 株式会社イナックス Mineral fiber-apatite baked composite body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149895A (en) * 1976-06-07 1977-12-13 Asahi Optical Co Ltd Method of producing denture and artificial bone
JPS5957971A (en) * 1982-10-30 1984-04-03 株式会社イナックス Mineral fiber-apatite baked composite body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770943A (en) * 1986-11-25 1988-09-13 Olympus Optical Co., Ltd. Method of forming rigid film of calcium phosphate compound
JPS6466040A (en) * 1987-09-07 1989-03-13 Yamahito Kogure Mold for casting high-activity metal
JPH01282144A (en) * 1988-05-06 1989-11-14 Olympus Optical Co Ltd Tricalcium phosphate sintered body and production thereof

Also Published As

Publication number Publication date
JPH037630B2 (en) 1991-02-04

Similar Documents

Publication Publication Date Title
US4149893A (en) Orthopedic and dental implant ceramic composition and process for preparing same
US4988362A (en) Composition for coating bioceramics, method for coating bioceramics therewith, and composite bioceramics produced therewith
US5032552A (en) Biomedical material
US5679294A (en) α-tricalcium phosphate ceramic and production method thereof
JPH0328197A (en) Manufacture of octocalcium phosphate mono crystal and polycrystal structures as well as compound containing these structures
DE69024647D1 (en) COMPOSITE-CERAMIC MATERIAL AND METHOD FOR PRODUCTION
JPS63282171A (en) Production of material based on calcium phosphate
JPS62162676A (en) Mulite-compounded enhanced calcium phosphate base sintered body
JPH0214866A (en) Solution of calcium phosphate compound ceramic precursor and production thereof
JPH0511060B2 (en)
JPS5957971A (en) Mineral fiber-apatite baked composite body
JP2638619B2 (en) Self-curing high-strength composite biomaterial and its manufacturing method
JP3215892B2 (en) Method for producing hydroxyapatite whiskers
WO1993013030A1 (en) Fiber-reinforced calcium phosphate compound ceramics and process for their production
JPS63143071A (en) Artificial bone cured and formed by mixing calcium triphosphate, acid, polysaccharide and water
KR100563714B1 (en) Inorganic bone cement with high strength
JPH0337171A (en) Production of composite ceramic
JP3464096B2 (en) Calcium phosphate bioprosthesis
JPH01308888A (en) Production of porous ceramic material
JPS63201054A (en) Manufacture of apatite formed sintered body
FI68217C (en) STARKT ISOTROPT SINTRAT TVAOFASIGT KERAMISKT MATERIAL
JPH0761861A (en) Production of sintered apatite carbonate
JPH0337071A (en) High strength artificial bone and its manufacture
JPH0251475A (en) Fiber-reinforced calcium phosphate-based compound ceramic and its production
JPH01278447A (en) Production of apatite calcined form

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term