JPS62162632A - Working of glass pipe - Google Patents

Working of glass pipe

Info

Publication number
JPS62162632A
JPS62162632A JP433186A JP433186A JPS62162632A JP S62162632 A JPS62162632 A JP S62162632A JP 433186 A JP433186 A JP 433186A JP 433186 A JP433186 A JP 433186A JP S62162632 A JPS62162632 A JP S62162632A
Authority
JP
Japan
Prior art keywords
glass pipe
glass
outer diameter
processing
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP433186A
Other languages
Japanese (ja)
Other versions
JPH0475853B2 (en
Inventor
Akira Urano
章 浦野
Ryuji Tono
東野 隆二
Nagatsugu Fujiwara
藤原 永嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP433186A priority Critical patent/JPS62162632A/en
Publication of JPS62162632A publication Critical patent/JPS62162632A/en
Publication of JPH0475853B2 publication Critical patent/JPH0475853B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To obtain a glass pipe having prescribed outer diameter, inner diameter and cross-sectional area with simple process in high accuracy and efficiency, by simultaneously carrying out a drawing process and an expansion process under controlled condition. CONSTITUTION:A glass pipe is melted under rotation and worked to a desired size under simultaneous drawing and expanding operations in controlled manner. The above process can be carried out by heating the glass pipe while monitoring the outer diameter of the pipe with an outer diameter monitoring apparatus 8, transferring a heat-source 7 and an end of the glass pipe 1 at constant speeds v and V and, at the same time, controlling the pressure in the glass pipe 1 preferably by controlling the amount of pressurizing gas supplied from a pressurizing gas supplying tube 9. The material of starting glass tube is preferably pure quartz glass or quartz glass added with at least one kind of metal oxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はPjr望の外径・内径・断面81)を有するガ
ラスパイプを効率的にかつ、清浄な状態で精度工く製造
する新規な方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a novel method for efficiently and precisely manufacturing a glass pipe having a desired outer diameter, inner diameter, and cross section 81) in a clean state. It is related to.

〔従来の技術〕[Conventional technology]

従来エフガラスパイプのサイズをl、l!!整するため
の手段として該ガラスパイプの外径全調整する目的で行
う拡径法と、該ガラスパイプの断面積を1)!l!I!
する目的で行う延伸法が知られており、これら二つの方
法全分離して何(ロ)か繰り返し実施することに工っで
、所望のサイズを有するガラスパイプ金得ていた。
The size of the conventional F glass pipe is l, l! ! As a means of adjusting the outer diameter of the glass pipe, the diameter expansion method is used to adjust the entire outer diameter of the glass pipe, and the cross-sectional area of the glass pipe is 1)! l! I!
There is a known stretching method for the purpose of obtaining glass pipes of the desired size by completely separating these two methods and repeating them several times.

ここで拡径法と延伸法について詳述すると、いずれの方
法においてもまず、出発材となるガラスパイプを旋盤で
保持し、該ガラスパイプの周囲に熱源を配し、熱源にエ
フガラスパイプを部分的に加熱しつつ、該ガラスパイプ
をそれ自身の軸を中心として回転させることにエフ該ガ
ラスパイプの外周方向の温度分布を均一化させる。
To explain the diameter expansion method and stretching method in detail here, in both methods, first, a glass pipe as a starting material is held in a lathe, a heat source is placed around the glass pipe, and a part of the F-glass pipe is placed in the heat source. By rotating the glass pipe around its own axis while heating the glass pipe, the temperature distribution in the outer circumferential direction of the glass pipe is made uniform.

拡径法においては該ガラスパイプの内部の圧力をその外
部の圧力りり高くして、該ガラスパイプの加熱溶融部分
の断面積を一定に保ちながら外径を拡げ、その拡径部分
付近の外径をモニターしながら、制御され几速度で熱源
金該ガラスパイプの軸と平行な方向に移動させることに
1って、該ガラスパイプの長手方向に連続的に拡径操作
を行い、均一な拡大された外径と一定の断面積を有する
ガラスパイプを得る。
In the diameter expansion method, the pressure inside the glass pipe is increased to the pressure outside it, and the outside diameter is expanded while keeping the cross-sectional area of the heated and melted part of the glass pipe constant, and the outside diameter near the expanded diameter part is increased. By moving the heat source in a direction parallel to the axis of the glass pipe at a controlled rate while monitoring A glass pipe with a constant outer diameter and a constant cross-sectional area is obtained.

一方、延伸法においては、該ガラスパイプの一端t−該
ガラスパイプを伸ばす方向に制御され九速度で移動させ
る、この操作の前後で該ガラスパイプの加熱溶融部分の
体積は一定に保友れるが長さが伸びるため、その部分の
断面積は小さくなることになり、表面張力の効果が働い
て外径が収縮する。そして、その加熱溶融部分付近をモ
ニターしながら、制御された速度で熱源を該ガラスパイ
プの軸と平行な方向に移動させることに工って、該ガラ
スパイプの長手方向に連続的に延伸操作を行い、均一な
収縮し次外径と断面積を有するガラスパイプを得るもの
である。
On the other hand, in the stretching method, one end of the glass pipe is moved at a controlled speed in the stretching direction, and the volume of the heated and melted portion of the glass pipe remains constant before and after this operation. As the length increases, the cross-sectional area of that portion decreases, and the outer diameter contracts due to the effect of surface tension. Then, while monitoring the vicinity of the heated and molten part, the heat source is moved at a controlled speed in a direction parallel to the axis of the glass pipe, and a continuous stretching operation is performed in the longitudinal direction of the glass pipe. The purpose is to obtain a glass pipe with a uniformly shrunk outer diameter and cross-sectional area.

〔発明が解決しLうとする問題点〕[Problems that the invention attempts to solve]

しかしながら、従来の技術では、前述し次ように、拡径
法と延伸法を分離して何度か繰り返し実施することに工
って1.目的とするサイズを有するガラスバイ1を得る
ため、カロエに要する手間と時間は膨大であった。ま友
、工程の合間にガラスパイプが雰囲気に1って汚染され
たり、余熱と自重によると考えられる変形破損などの前
書も稀に発生した。特に重要な問題点としては、繰り返
し加工を行うことに1って各加工工程での誤差が積み重
って、最終目的であるガラスパイプの精度が悪くなると
いうことが挙げられる。
However, in the conventional technology, as described above, the diameter expansion method and the stretching method are separated and repeated several times. In order to obtain the glass byte 1 having the desired size, the amount of effort and time required for caroe processing was enormous. However, there have been rare cases where glass pipes have been contaminated by the atmosphere during the process, or deformed and broken due to residual heat and their own weight. A particularly important problem is that repeated machining causes errors in each machining step to accumulate, which deteriorates the precision of the glass pipe that is the final objective.

本発明は従来法の欠点を解消し、簡単な工程で精度良く
効率的に所定サイズのガラスパイプを得る加工法を意図
するものである。
The present invention aims at a processing method that eliminates the drawbacks of the conventional method and efficiently obtains a glass pipe of a predetermined size with a simple process and with high precision.

〔問題点を解決する友めの手段〕[Friendly means of solving problems]

本発明は以上列挙した如き問題に鑑み、所開廷伸法と拡
径法を制御しつつ同時進行的に実施することにエフ、所
望の外径・内径・断面積を有するガラスパイプを効率的
にかつ、清浄な状態で精度よく製造するものである。
In view of the problems listed above, the present invention aims to efficiently manufacture glass pipes having desired outer diameters, inner diameters, and cross-sectional areas by simultaneously carrying out the open stretching method and diameter expanding method in a controlled manner. Moreover, it is manufactured in a clean state with high precision.

すなわち本発明はガラスパイプを回転させつつ加熱溶融
し所定サイズに加工する方法において、延伸法および拡
径法を制御しつつ同時に行う、ことを特徴とするガラス
パイプの加工方法である。
That is, the present invention is a method of processing a glass pipe, in which a glass pipe is heated and melted while being rotated and processed into a predetermined size, which is characterized in that a drawing method and a diameter expanding method are carried out simultaneously while being controlled.

本発明に用いる出発材たるガラス管の材質としては、特
に好ましくは純粋石英ガラス又は石英ガラスに少なくと
%Ifi類以上の金属酸化物を添加したガラス等が挙げ
られるが、勿論これ以外のガラスも使用できる。
The material of the glass tube which is the starting material used in the present invention is particularly preferably pure quartz glass or glass in which a metal oxide of at least % Ifi is added to quartz glass, but of course other glasses may also be used. Can be used.

ま九本発明に用いる熱源として特に好ましくは、酸水素
火炎、熱プラズマま友は電気抵抗炉が挙げられるが、こ
れらのみに限定されるものではない。
Particularly preferred heat sources for use in the present invention include oxyhydrogen flame, thermal plasma, and electric resistance furnaces, but are not limited to these.

本発明におけるガラス管内部の圧力の制御は、窒素ガス
・不活性ガス等をガラス管内部に導入して、大気圧に対
しガラス管内を高圧にして拡径効果を得ても工いし、パ
イプを含有する外部閉空間を真空ポンプ等にエフ減圧し
て同様の効果を得ることによっても工い。
In the present invention, the pressure inside the glass tube can be controlled by introducing nitrogen gas, inert gas, etc. into the glass tube to increase the pressure inside the glass tube relative to atmospheric pressure and obtain a diameter expansion effect. A similar effect can also be obtained by depressurizing the external closed space containing the material using a vacuum pump or the like.

以下、図面を参照して本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to the drawings.

纂1図は本発明の実施態様を説明する図でらり、同図中
1は出発材となるガラスパイプ、2はガラス旋盤を示す
。ガラス旋盤2は固定された主軸台5とその主軸台3に
覗りつけられたチャック4、及び可動式の主軸台5とそ
の主軸台5に取りつけられたチャック6を備えており、
また、主軸台5と主軸台5の間に、熱源である酸水素バ
ーナ7と、ガラスパイプ1の外径を測定する外径モニタ
ー装置8を、主軸台3と主軸台50間で移動できる工う
に装備しである。また同図中9は例えば窒素ガス又は不
活性ガス等の加圧用ガス供給管である。
Figure 1 is a diagram illustrating an embodiment of the present invention, in which 1 indicates a glass pipe as a starting material, and 2 indicates a glass lathe. The glass lathe 2 includes a fixed headstock 5, a chuck 4 peering into the headstock 3, a movable headstock 5, and a chuck 6 attached to the headstock 5.
Further, between the headstock 5 and the headstock 5, an oxyhydrogen burner 7 as a heat source and an outer diameter monitor device 8 for measuring the outer diameter of the glass pipe 1 are provided with a construction that can be moved between the headstock 3 and the headstock 50. It is equipped with sea urchins. Further, numeral 9 in the figure is a pressurizing gas supply pipe such as nitrogen gas or inert gas.

ガラスパイプ1の一端を加圧用ガス供給t9に接続し、
他熾を密封してチャック4とチャック6に工って保持し
、該ガラスパイプ1の軸を中心に該チャック4とチャッ
ク6を同期して回転させる。それと同時に酸水素バーナ
7に水素及び酸素を導入し酸水素火炎を形成させ、これ
に工つてガラスパイプ1を部分的に加熱する。
Connect one end of the glass pipe 1 to the pressurizing gas supply t9,
The other glass is sealed and held by chucks 4 and 6, and the chucks 4 and 6 are rotated synchronously around the axis of the glass pipe 1. At the same time, hydrogen and oxygen are introduced into the oxyhydrogen burner 7 to form an oxyhydrogen flame, which partially heats the glass pipe 1.

チャック6および酸水素バーナ7をあらかじめ設定した
速度VおよびVで各々第1図中の矢印で示す方向に移動
させる。この操作に1って、延伸効果を得る。また、酸
水素バーナ7と同期して外径モニター装置8も移動させ
ながらガラスパイプ1の外径を連続的に測定する。外径
モニター装置8の出力信号は外径制御装置(図示せず]
に入力され、あらかじめ設定された外径との公差を最小
とするように、加圧用カス供給管9を経てガラスパイプ
1の内部に導入される例えば窒素ガス等の加圧用ガス量
を制御し、ガラスパイプ1の内圧をl!1)1iシ、こ
れにエフ極めて高精度の拡径効果を得る。
The chuck 6 and the oxyhydrogen burner 7 are moved at preset speeds V and V in the directions shown by the arrows in FIG. 1, respectively. This operation provides a stretching effect. Further, the outer diameter monitoring device 8 is also moved in synchronization with the oxyhydrogen burner 7 to continuously measure the outer diameter of the glass pipe 1. The output signal of the outer diameter monitor device 8 is transmitted to an outer diameter control device (not shown).
The amount of pressurizing gas, such as nitrogen gas, introduced into the glass pipe 1 via the pressurizing scum supply pipe 9 is controlled so as to minimize the tolerance with the input and preset outer diameter, The internal pressure of glass pipe 1 is l! 1) 1I and F obtain extremely high-precision diameter expansion effects.

これら一連の操作を行うにあたってろらかしめ設定すべ
き、V及びVは以下の工うにして決定する。まず、出発
材でめるガラスパイプ1の断面積を80.長さt−Lと
し、加工後のガラスパイプの断面積を81とすれば、下
記(1)式%式% なる関係がHD立つ。従って、下記(2)式s、/s1
= (1+v/V)    −so  (21と7!り
、Bo/B、からVとVの比が決定される。
V and V, which should be carefully set in performing these series of operations, are determined in the following manner. First, the cross-sectional area of the glass pipe 1 made of starting materials is 80. If the length is t-L and the cross-sectional area of the glass pipe after processing is 81, then the following relationship (1) (%) holds true. Therefore, the following formula (2) s, /s1
= (1+v/V) -so (21 and 7!, Bo/B, the ratio of V and V is determined.

次にV及びV各々の値については、ガラスパイプ1の断
面積及び材質、酸水素火炎の能力等を考慮し、該ガラス
パイプ1に過大な張力がかからず、かつ外径制御可能な
範囲から選択される。一般にV、及びVが大きい程、ガ
ラスパイプ1にかかる張力は大きくなり、v及びVが小
さい程、ガラスパイプの粘性が小さくなり、外径制御が
困難になる。本発明者らが鋭意検討した結果得た、これ
らV、及びVの最適条件の一例を下記の表1に示す。こ
のようにして、所望の外径、内径、断面8tt−有する
ガラスパイプを得る。
Next, regarding the values of V and V, consider the cross-sectional area and material of the glass pipe 1, the ability of the oxyhydrogen flame, etc., and set the value within a range that does not apply excessive tension to the glass pipe 1 and allows the outer diameter to be controlled. selected from. Generally, the larger V and V are, the greater the tension applied to the glass pipe 1 is, and the smaller v and V are, the lower the viscosity of the glass pipe is, making it difficult to control the outer diameter. Table 1 below shows an example of these V and the optimum conditions for V, which were obtained as a result of intensive studies by the present inventors. In this way, a glass pipe having the desired outer diameter, inner diameter, and cross section of 8tt is obtained.

表1 v及びVの最適条件の一例(出発材:ガス:18
t/分、の場合] 第2図は本発明の別の実施態様を示す図である。同図中
1は出発材となるガラスパイプを示し、10は架台を示
す。架台10は可動式の主軸台1)及び12とそれら主
軸台に取りつけられたチャック4及び6を備えており、
主軸台1)と12の間に、熱源である電気抵抗炉13と
ガラスパイプ1の外径を測定する外径モニタ装置8′t
−固定しである。また同図中9は例えば窒素ガス又は不
活性ガス等の加圧用ガス供給管である。ガラスパイプ1
の片端を加圧用ガス供給管9に接続し、他端全密封して
チャック4および6によって電気抵抗炉13と同心状に
保持し、電気抵抗炉13によってガラスパイプ1)に部
分的に加熱する。チャック4および6をあらかじめ設定
した速#V及びv(V(v)で第2図中の矢印で示す方
向に移動させ、これにエフ延伸効果を得る。この場合の
V及びマは次式(3)及び第1図の場合同様の最適条件
の検討から求める。
Table 1 An example of optimal conditions for v and V (starting material: gas: 18
t/min] FIG. 2 is a diagram showing another embodiment of the present invention. In the figure, 1 indicates a glass pipe as a starting material, and 10 indicates a frame. The mount 10 includes movable headstocks 1) and 12 and chucks 4 and 6 attached to these headstocks,
Between the headstock 1) and 12, there is an electric resistance furnace 13 that is a heat source and an outer diameter monitor device 8't that measures the outer diameter of the glass pipe 1.
- It is fixed. Further, numeral 9 in the figure is a pressurizing gas supply pipe such as nitrogen gas or inert gas. glass pipe 1
One end is connected to the pressurizing gas supply pipe 9, the other end is completely sealed and held concentrically with the electric resistance furnace 13 by the chucks 4 and 6, and the glass pipe 1) is partially heated by the electric resistance furnace 13. . The chucks 4 and 6 are moved in the direction shown by the arrow in Fig. 2 at preset speeds #V and v (V (v) to obtain the F stretching effect. In this case, V and M are expressed by the following formula ( 3) and Fig. 1 are determined from the same optimum conditions.

so7’sl= v/7     ””  (3)ただ
しSo:出発材パイプの断面積 S1:加工後のパイプ断面積 以下は前記第1図の場合と同様にして拡径効果を得るこ
とによって、所望の外径、内径、断面8tヲ有するガラ
スパイプを得ることができる。
so7'sl=v/7"" (3) However, So: cross-sectional area of the starting material pipe S1: cross-sectional area of the pipe after processing. A glass pipe having an outer diameter, an inner diameter, and a cross section of 8t can be obtained.

また、第2図において電気抵抗炉13にかえて、熱プラ
ズマを熱源として用いても、同様に操作して所望サイズ
のガラスパイプを得ることができる。
Further, even if thermal plasma is used as the heat source instead of the electric resistance furnace 13 in FIG. 2, a glass pipe of a desired size can be obtained by performing the same operation.

〔実施例〕〔Example〕

実施例1 第1図に示した構成・方法に従い、ガラスパイプ1とし
て、外径、内径、断面積が夫々2五9m、、  1 &
 9 tram、  224.5wm”C;hルMJ粋
! 合H石英管を用いた。加工時に識水素バーナ7に導
入し九水累ガス及び酸素ガスの流量はそれぞれ55t/
分及び18t/分であった。またチャック6及び酸水素
バーナ7の移動速度V及びVは各々45.01)m7分
及び59.5wa/分であつ九。この結果、加工後に得
たガラスパイプの外径、内径、断面積はそれぞれ27.
0m、25.8mm127、7wm”で、設計値と一致
する非常によい精度で所望の外径及び断面積を実現した
。また、加工後のガラスパイプの長手方向の外径変動も
±15鱈の範囲内であった。この加工に要し次時間は準
備作業の時間も含めて約30分であり、従来の方法でこ
のようなガラスパイプを得るための所要時間の1/2以
下であった。
Example 1 According to the structure and method shown in FIG. 1, a glass pipe 1 was prepared with an outer diameter, an inner diameter, and a cross-sectional area of 259 m, respectively.
9 tram, 224.5 wm"C; h Le MJ Iki! Combined H quartz tube was used. During processing, the flow rate of Kusui gas and oxygen gas were each 55 t /
min and 18 t/min. Furthermore, the moving speeds V and V of the chuck 6 and the oxyhydrogen burner 7 are 45.01) m7 min and 59.5 wa/min, respectively. As a result, the outer diameter, inner diameter, and cross-sectional area of the glass pipe obtained after processing were 27.
0m, 25.8mm, 127, 7wm", we achieved the desired outer diameter and cross-sectional area with very good accuracy that matches the design value. In addition, the longitudinal outer diameter variation of the glass pipe after processing was within ±15 mm. The time required for this processing was approximately 30 minutes, including the time for preparation work, which was less than half the time required to obtain such a glass pipe using the conventional method. .

実施例2 実施例1と同様に第1図の構成・方法にで石英ガラスパ
イプを加工し次。出発材ガラスパイプ1として弗素t−
t5重量パーセント添加した合成石英管を用いたが、該
石英管は外径、内径、断面積が各々25.01m、15
.0日、514.2m”であった。加工時に酸水素バー
ナ7に導入した水素ガス及び酸素ガスの流量は各々50
t/分。
Example 2 Similar to Example 1, a quartz glass pipe was processed using the configuration and method shown in Figure 1. Fluorine t- as the starting material glass pipe 1
A synthetic quartz tube containing t5 weight percent was used, and the outer diameter, inner diameter, and cross-sectional area of the quartz tube were 25.01 m and 15.0 m, respectively.
.. The flow rate of hydrogen gas and oxygen gas introduced into the oxyhydrogen burner 7 during processing was 514.2 m'' on day 0.
t/min.

20t/分であった。また、チャック6及び酸水素バー
ナ7の移速度V及びVは各々45.ロ瓢/分、26.8
日/分であった。
It was 20t/min. Further, the transfer speeds V and V of the chuck 6 and the oxyhydrogen burner 7 are each 45. gourd/min, 26.8
It was days/minutes.

この結果、加工後に得たガラスパイプの外径、内径、断
面積は各々5 IIOarm、  27.4 m、 1
)7.2■8で外径、内径は設計値と一致し、断面積は
−cL1 m”という非常に工い精度で所望の外径、内
径、断面積全実現した。また、加工後に得たガラスパイ
プの長手方向の外径変動は±0.2簡の範囲内であった
As a result, the outer diameter, inner diameter, and cross-sectional area of the glass pipe obtained after processing were 5 IIOarm, 27.4 m, and 1, respectively.
) With 7.2 and 8, the outer diameter and inner diameter matched the design values, and the cross-sectional area was -cL1 m'', achieving the desired outer diameter, inner diameter, and cross-sectional area with extremely high machining accuracy. The variation in the outer diameter of the glass pipe in the longitudinal direction was within a range of ±0.2.

実施例3 第2図に示したvI7K・方法に従い、ガラスパイプを
加工した。出発材ガラスパイプとして、外径、内径、断
面積がそれぞれ510 瓢、 21.0m、  50 
a 9s+”の合成石英管を用いた。加工時の電気抵抗
炉内の温度を熱電対を用いて測定し九ところ1850℃
であった。ま九チャック4及び6の移動速度V及びVは
各々22. Ovm 7分、及び6a5.7分であった
Example 3 A glass pipe was processed according to the vI7K method shown in FIG. As a starting material glass pipe, the outer diameter, inner diameter, and cross-sectional area are 510 m, 21.0 m, and 50 m, respectively.
A 9S+" synthetic quartz tube was used. The temperature inside the electric resistance furnace during processing was measured using a thermocouple and the temperature was 1850℃ at 9.
Met. The moving speeds V and V of the chucks 4 and 6 are 22. Ovm 7 minutes, and 6a 5.7 minutes.

この結果得られたガラスパイプの外径、内径、断面積は
各々、2aO■、240鱈、16五4−で設計値と一致
する非常によい精度で所望の外径及び断面積を実現した
。また得られたガラスパイプのOH基含有量を赤外分光
法で測定したところ検出限界(100ppm )以下で
非常に低OHを有量のガラスパイプであることが示され
友。
The outer diameter, inner diameter, and cross-sectional area of the resulting glass pipe were 2aO, 240, and 1654, respectively, and the desired outer diameter and cross-sectional area were achieved with very good accuracy, which matched the design values. Furthermore, when the OH group content of the obtained glass pipe was measured by infrared spectroscopy, it was found to be a glass pipe with a very low OH content, below the detection limit (100 ppm).

実施例4 本実施例4においては第2図の構成で架台が水平となる
ようにし、熱源として電気抵抗炉13Kかえて熱プラズ
マを使用する以外は、実施例3と同様の操作にて水平に
保持した合成石英パイプを加工した。該石英パイプの外
径、内径、断面積は各々2 &Osm、  1 aom
、  276.5s+”であった。又、両端のチャック
の移動速度V及びvVi各々34.0 mIl+/ 分
、  66.9 tm/分テ;hッた。この結果得られ
九ガラスパイプの外径、内径、断面積は各々2 & O
ws、  24.6 m、  14α5m”で設計値と
一致する非常に工い精度で所望の外径及び断面8Fを実
現した。また、得られ九ノくイブは実施例3と同様に非
常にOH含有量の少いものでめった。
Example 4 In this Example 4, the frame was made horizontal with the configuration shown in Fig. 2, and the structure was made horizontal by the same operation as in Example 3, except that thermal plasma was used instead of a 13K electric resistance furnace as the heat source. The retained synthetic quartz pipe was processed. The outer diameter, inner diameter, and cross-sectional area of the quartz pipe are 2 &Osm and 1 aom, respectively.
, 276.5 s+". Also, the moving speeds of the chucks at both ends, V and vVi, were each 34.0 mIl+/min and 66.9 tm/min. As a result, the outer diameter of the glass pipe was 9. , inner diameter and cross-sectional area are respectively 2 & O
ws, 24.6 m, 14α5 m", the desired outer diameter and cross section of 8F were achieved with very high machining accuracy that matched the design values. In addition, the obtained nine-kilogram tube had a very high OH as in Example 3. It was rare because the content was low.

以上述べた工うに、熱源として電気抵抗炉或は熱プラス
−r(i=用いることに工っで、OH含有量の極めて少
いガラスパイプが得られる。尚、実施例3及び4ではガ
ラスパイプの両端を保持するチャックを移動させている
が、これは実施例1の工うに片側のチャックを固定し、
他熾のチャックと熱源を移動させることにLっても同様
の効果が得られることはいうまでもない。
As described above, by using an electric resistance furnace or heat plus -r (i = i) as a heat source, a glass pipe with extremely low OH content can be obtained. The chuck that holds both ends of the is moved, but this is done by fixing the chuck on one side in the same manner as in Example 1.
It goes without saying that the same effect can be obtained by moving the other chuck and heat source.

なお上記の実施例1〜4において、ガラスパイプ内に導
入する加圧用窒素ガスの流量はいずれも、α6〜2.0
27分の範囲内にて制御されている。
In addition, in the above-mentioned Examples 1 to 4, the flow rate of the pressurizing nitrogen gas introduced into the glass pipe was α6 to 2.0.
It is controlled within a range of 27 minutes.

比較例1 本比較例1においては純粋な合成石英パイプを加工する
にあたり、延伸工程と拡径工程と分離して行った。使用
した機械装置は第1図に示すものと概略同様であるが、
どちらの工程においても、外径制御装置に、、cり酸水
素バーナ7及びチャック6の移動速度を制御し、拡径工
程において、ガラスパイプ1の内部に導入される窒素ガ
スの流量は一定とじ九。最初に石英ガラスパイプを延伸
法にエフ加工し所望の断面積を得た。この延伸法の操作
について詳述すると、第1図においてまず出発材である
ガラスパイプ1をチャック4及びチャック6で保持し、
該ガラスパイプ1の軸を中心に回転させながら酸水素バ
ーナ7に導入した水素ガス及び酸素ガスにエフ形成され
る酸水素火炎に工って、該ガラスパイプ1を部分的に加
熱溶融させる。そして該ガラスパイプ1の加熱溶融部分
付近の外径を外径測定装置8でモニターしながら、あら
かじめ設定された外径と測定されたガラスパイプ1の外
径との公差が最小になるように制御され比速度で、酸水
素バーナ7とチャック6を第1図に示す矢印の方向へ移
動させる。このようにして、ガラスパイプ1の外径を全
長にわたって制御することに工り断面積を調整し次。次
に拡径法にエフ、加工しガラスパイプ1の外径を調整し
た。
Comparative Example 1 In Comparative Example 1, when processing a pure synthetic quartz pipe, the stretching process and the diameter expanding process were carried out separately. The mechanical equipment used was roughly the same as that shown in Figure 1, but
In both processes, the outer diameter control device controls the moving speed of the hydrogen phosphate burner 7 and the chuck 6, and in the diameter expansion process, the flow rate of nitrogen gas introduced into the inside of the glass pipe 1 is kept constant. Nine. First, a quartz glass pipe was processed by a stretching method to obtain the desired cross-sectional area. To explain the operation of this stretching method in detail, in FIG.
The glass pipe 1 is partially heated and melted by the oxyhydrogen flame formed by the hydrogen gas and oxygen gas introduced into the oxyhydrogen burner 7 while rotating around the axis of the glass pipe 1. Then, while monitoring the outer diameter near the heated and melted portion of the glass pipe 1 with the outer diameter measuring device 8, control is performed so that the tolerance between the preset outer diameter and the measured outer diameter of the glass pipe 1 is minimized. The oxyhydrogen burner 7 and the chuck 6 are moved in the direction of the arrow shown in FIG. 1 at a specific speed. In this way, the outer diameter of the glass pipe 1 is controlled over its entire length, and the machined cross-sectional area is adjusted. Next, the outer diameter of the glass pipe 1 was adjusted using the diameter expansion method.

拡径法においては延伸法と概略同様の操作を行うが、チ
ャック6の位置と、ガラスパイプ1内に導入される窒素
ガスの流量は一定とし、酸水素バーナ7の移動速度のみ
を、モニターされたガラスパイプ1の外径と、6らかし
め設定された外径との公差を最小にするように制御した
In the diameter expansion method, operations are roughly the same as in the stretching method, but the position of the chuck 6 and the flow rate of nitrogen gas introduced into the glass pipe 1 are kept constant, and only the moving speed of the oxyhydrogen burner 7 is monitored. Control was carried out to minimize the tolerance between the outer diameter of the glass pipe 1 and the outer diameter set by the crimping process.

この工うな操作により、ガラスパイプ1の外径を全長に
わたってv!4整した。これら一連の加工を行うにあた
り使用した石英ガラスパイプの初期の外径、内径、断面
積は谷々2αOx。
By this simple operation, the outer diameter of the glass pipe 1 is adjusted to v! over the entire length. I made 4 adjustments. The initial outer diameter, inner diameter, and cross-sectional area of the quartz glass pipe used for this series of processing were 2αOx.

1(10m1),255..6−であツタ。延伸工s−
”ca水素バーナ7に導入した、水素ガス及び酸素ガス
の流量はそれぞれ、60t/分、184/分であった。
1 (10m1), 255. .. 6- Ivy. Extension work s-
The flow rates of hydrogen gas and oxygen gas introduced into the "ca" hydrogen burner 7 were 60 t/min and 184/min, respectively.

延伸加工後の石英ガラスパイプの外径、内径、断面積は
各々15.2m、7.6籠。
The outer diameter, inner diameter, and cross-sectional area of the quartz glass pipe after stretching are 15.2 m and 7.6 cages, respectively.

156.1−でめった。この際の石英ガラスパイプの長
手方向の外径変動は±12mの範囲内にあった。拡径工
程において、酸水素バーナ7に導入し九水素ガス及び酸
素ガスの流量は各々50t/分、18t/分でメク、加
工後のガラスパイプの外径、内径、断面積は各々27.
0m。
I failed at 156.1-. At this time, the variation in the outer diameter of the quartz glass pipe in the longitudinal direction was within a range of ±12 m. In the diameter expansion process, the flow rates of hydrogen gas and oxygen gas introduced into the oxyhydrogen burner 7 were 50 t/min and 18 t/min, respectively, and the outer diameter, inner diameter, and cross-sectional area of the glass pipe after processing were 27.
0m.

216m、  155.6wx”Cあツタ。まタコノ際
の石英ガラスパイプの長手方向の外径変動は±α7■で
変動幅が若干大きくなった。これら一連の加工に要した
時間は準備作業の時間も含めて、約1時15分でめつ九
216m, 155.6wx”C height.The outer diameter variation in the longitudinal direction of the quartz glass pipe near the top was ±α7■, which was a slightly large variation range.The time required for these series of processing was the preparation work time. Including that, it took about 1:15.

〔発明の効果〕 以上、述べ九工うに、ガラスパイプを加工する際に、該
ガラスパイプの内部の圧力を制御しながら、延伸加工と
拡径加工を同時進行的に行うことにLつて、従来エフ、
効率工く短時間で精度のよいガラスパイプを得ることが
可能になつ九。
[Effects of the Invention] As described above, when processing a glass pipe, the drawing process and the diameter expanding process are carried out simultaneously while controlling the pressure inside the glass pipe. F,
It becomes possible to obtain glass pipes with high precision in an efficient and short time.9.

【図面の簡単な説明】[Brief explanation of drawings]

熱源と固定式主軸台を用いる例、第2図は電気抵抗炉熱
源と可動式主軸台を用いる例を示す。
An example using a heat source and a fixed headstock, and FIG. 2 shows an example using an electric resistance furnace heat source and a movable headstock.

Claims (7)

【特許請求の範囲】[Claims] (1)ガラスパイプを回転させつつ加熱溶融し所定サイ
ズに加工する方法において、延伸法および拡径法を制御
しつつ同時に行う、ことを特徴とするガラスパイプの加
工方法。
(1) A method for processing a glass pipe, which involves heating and melting a glass pipe while rotating it and processing it into a predetermined size, which is characterized in that a stretching method and a diameter expanding method are carried out simultaneously while being controlled.
(2)ガラスパイプの外径をモニターしつつ加熱、熱源
及び該ガラスパイプの一端を一定速度で移動させ、それ
と同時に該ガラスパイプ内部の圧力を制御し、それによ
り該ガラスパイプの外径及び断面積を所定サイズとする
特許請求の範囲第(1)項に記載されるガラスパイプの
加工方法。
(2) Move the heating, heat source and one end of the glass pipe at a constant speed while monitoring the outer diameter of the glass pipe, and at the same time control the pressure inside the glass pipe, thereby adjusting the outer diameter and cutting edge of the glass pipe. A method for processing a glass pipe according to claim (1), wherein the area is a predetermined size.
(3)ガラスパイプの外径をモニターしつつ該ガラスパ
イプの両端を夫々一定速度で移動させ、それと同時に該
ガラスパイプ内部の圧力を制御し、それにより該ガラス
パイプの外径及び断面積を所定サイズとする特許請求の
範囲第(1)項に記載されるガラスパイプの加工方法。
(3) While monitoring the outside diameter of the glass pipe, both ends of the glass pipe are moved at a constant speed, and at the same time, the pressure inside the glass pipe is controlled, thereby adjusting the outside diameter and cross-sectional area of the glass pipe to a predetermined value. A method for processing a glass pipe according to claim (1), wherein the size of the glass pipe is determined.
(4)ガラスパイプが純粋石英ガラスである特許請求の
範囲第(1)項ないし第(3)項のいずれかに記載され
るガラスパイプの加工方法。
(4) A method for processing a glass pipe according to any one of claims (1) to (3), wherein the glass pipe is made of pure silica glass.
(5)ガラスパイプが石英ガラスに少くとも1種類以上
の金属酸化物を添加したガラスである特許請求の範囲第
(1)項ないし第(3)項のいずれかに記載されるガラ
スパイプの加工方法。
(5) Processing of the glass pipe according to any one of claims (1) to (3), wherein the glass pipe is made of quartz glass added with at least one metal oxide. Method.
(6)ガラスパイプが弗素を添加した石英ガラスである
特許請求の範囲第(1)項ないし第(3)項のいずれか
に記載されるガラスパイプの加工方法。
(6) The method for processing a glass pipe according to any one of claims (1) to (3), wherein the glass pipe is made of fluorine-doped quartz glass.
(7)加熱は酸水素炎・電気抵抗炉または熱プラズマに
より行う特許請求の範囲第(1)項ないし第(3)項の
いずれかに記載されるガラスパイプの加工方法。
(7) A method for processing a glass pipe according to any one of claims (1) to (3), in which heating is performed using an oxyhydrogen flame, an electric resistance furnace, or thermal plasma.
JP433186A 1986-01-14 1986-01-14 Working of glass pipe Granted JPS62162632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP433186A JPS62162632A (en) 1986-01-14 1986-01-14 Working of glass pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP433186A JPS62162632A (en) 1986-01-14 1986-01-14 Working of glass pipe

Publications (2)

Publication Number Publication Date
JPS62162632A true JPS62162632A (en) 1987-07-18
JPH0475853B2 JPH0475853B2 (en) 1992-12-02

Family

ID=11581462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP433186A Granted JPS62162632A (en) 1986-01-14 1986-01-14 Working of glass pipe

Country Status (1)

Country Link
JP (1) JPS62162632A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167684A (en) * 1989-12-01 1992-12-01 Thomson-Csf Process and device for producing a hollow optical fiber
JP2002226216A (en) * 2001-01-30 2002-08-14 Nikon Corp Burner for quartz glass synthesis and manufacturing method for synthetic quarts glass
WO2003059828A1 (en) * 2002-01-17 2003-07-24 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass tube
WO2003064338A1 (en) * 2002-01-30 2003-08-07 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass tube
JP2005154162A (en) * 2003-11-20 2005-06-16 Sumitomo Electric Ind Ltd Method and apparatus for processing glass pipe, and glass pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317609A (en) * 1976-07-31 1978-02-17 English Electric Valve Co Ltd Modification of process and apparatus for tube production
JPS5510438A (en) * 1978-07-07 1980-01-24 Furukawa Electric Co Ltd:The Working method for glass for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317609A (en) * 1976-07-31 1978-02-17 English Electric Valve Co Ltd Modification of process and apparatus for tube production
JPS5510438A (en) * 1978-07-07 1980-01-24 Furukawa Electric Co Ltd:The Working method for glass for optical fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167684A (en) * 1989-12-01 1992-12-01 Thomson-Csf Process and device for producing a hollow optical fiber
JP2002226216A (en) * 2001-01-30 2002-08-14 Nikon Corp Burner for quartz glass synthesis and manufacturing method for synthetic quarts glass
WO2003059828A1 (en) * 2002-01-17 2003-07-24 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass tube
WO2003064338A1 (en) * 2002-01-30 2003-08-07 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass tube
US6997016B2 (en) 2002-01-30 2006-02-14 Sumitomo Electric Industries, Ltd. Method and apparatus for manufacturing glass tube
JP2005154162A (en) * 2003-11-20 2005-06-16 Sumitomo Electric Ind Ltd Method and apparatus for processing glass pipe, and glass pipe
US7637125B2 (en) 2003-11-20 2009-12-29 Sumitomo Electric Industries, Ltd. Glass tube processing method, apparatus and glass tube
US8015845B2 (en) 2003-11-20 2011-09-13 Sumitomo Electric Industries, Ltd. Glass tube processing method
US8024945B2 (en) 2003-11-20 2011-09-27 Sumitomo Electric Industries, Ltd. Glass tube processing apparatus

Also Published As

Publication number Publication date
JPH0475853B2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
CN105358494B (en) The method for manufacturing large-sized rock quartz glass tube
US3907536A (en) Method for depositing silica on a fused silica tube
US4477273A (en) Method of and apparatus for straightening and configuring a preform tube from which lightguide fiber is drawn
JP6042563B2 (en) Optical fiber preform and method for manufacturing optical fiber
JPH04228439A (en) Manufacture of preform for optical fiber with regular properties
US3870497A (en) Method eliminating discontinuities in a quartz article
US4486214A (en) Methods of and apparatus for collapsing a preform tube into a preform from which lightguide fiber is drawn
JPS62162632A (en) Working of glass pipe
US2393979A (en) Glass manufacture
JP2810941B2 (en) Method for producing polygonal columnar silica glass rod
JP3430038B2 (en) End drawing method of preform for optical fiber and apparatus used for the method
EP3686165B1 (en) High-strength welding process for making heavy glass preforms with large cross sectional areas
WO2003057634A1 (en) Method for offline collapsing a preform
JPH0426522A (en) Production of synthetic quartz glass tube
JP3327364B2 (en) Method for producing silica glass processed product
US4601740A (en) Methods of and apparatus for at least partially closing an end portion of an optical preform tube
JP3187663B2 (en) Method for producing silica glass processed product
JP2599456B2 (en) Ampoule vacuum sealing
JPH0729798B2 (en) Method for manufacturing composite quartz glass tube for semiconductor heat treatment
EP0370001A1 (en) Glass drawing process and furnace.
JPH03252324A (en) Production of composite quartz glass tube
RU2099296C1 (en) Method for manufacture of welded articles from quartz glass
JP3066962B2 (en) Method and apparatus for stretching glass base material
JP2777855B2 (en) Composite quartz glass tube for semiconductor heat treatment
JP3418679B2 (en) Apparatus and method for processing optical fiber preform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees