JPS62162307A - Positive characteristic thermister - Google Patents

Positive characteristic thermister

Info

Publication number
JPS62162307A
JPS62162307A JP379186A JP379186A JPS62162307A JP S62162307 A JPS62162307 A JP S62162307A JP 379186 A JP379186 A JP 379186A JP 379186 A JP379186 A JP 379186A JP S62162307 A JPS62162307 A JP S62162307A
Authority
JP
Japan
Prior art keywords
solder
exterior resin
temperature coefficient
electrodes
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP379186A
Other languages
Japanese (ja)
Inventor
利和 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP379186A priority Critical patent/JPS62162307A/en
Publication of JPS62162307A publication Critical patent/JPS62162307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 皮呈上勿程里分立 本発明は、消磁電流の制御その他種々の用途に使用され
る正特性サーミスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive temperature coefficient thermistor used for controlling demagnetizing current and various other uses.

従来■及玉 従来の正特性サーミスタは、一般に第5図に示すような
構造を有する。即ち、両面に電極1. 1を形成した正
特性サーミスタ素子(以下、単に素子と記す)2の該電
極1.1に外部導出リード3.3を半田4,4で固着し
、全体を外装樹脂5でモールドした構造とされている。
Conventional technology (2) Conventional positive temperature coefficient thermistors generally have a structure as shown in FIG. That is, electrodes 1. An external lead 3.3 is fixed to the electrode 1.1 of a positive temperature coefficient thermistor element (hereinafter simply referred to as the element) 2 formed with the positive temperature coefficient thermistor element 1 with solder 4, 4, and the entire structure is molded with an exterior resin 5. ing.

しかしながら、かかる構造の正特性サーミスタは、以下
のような問題があった。
However, the positive temperature coefficient thermistor having such a structure has the following problems.

、明か解決しようする間 壱 即ち、上記サーミスタのように半田4と外装樹脂5とが
密着していると、電圧の印加により素子2が急激に発熱
した場合、熱伝導率の高い半田4は素子2に追随して速
やかに昇温するが、外装樹脂5は熱伝導率が小さく速や
かに昇温することができないため、半田4と外装樹脂5
との間におおきなストレスを生じ、これが原因して半田
4の剥離、或いは素子2や外装樹脂5のひび割れ等を生
しるといった問題がある。
However, if the solder 4 and the exterior resin 5 are in close contact with each other as in the thermistor described above, if the element 2 suddenly generates heat due to the application of voltage, the solder 4 with high thermal conductivity will However, the temperature of the exterior resin 5 is low and the temperature cannot be raised quickly following the solder 4 and the exterior resin 5.
This causes problems such as peeling of the solder 4 or cracking of the element 2 or the exterior resin 5.

このような問題は、周囲の温度が急激に変化するような
熱ショックを受けた場合にも同様に起こり得る。
Such a problem can also occur when the device receives a thermal shock such as a sudden change in the ambient temperature.

かかる問題を解決する一つの手段としては、外装樹脂5
として柔らかい材質の樹脂を使用することが考えられる
が、このような軟質樹脂は一般に高価で強度的にも弱く
剥れ易い等の問題があり、得策とは言いにくい。
One way to solve this problem is to use exterior resin 5.
Although it is conceivable to use a soft resin as a material, such soft resins are generally expensive, have low strength, and have problems such as being easily peeled off, so it is difficult to say that it is a good idea.

問題点を解決するだめの手段 本発明は、上記問題を解決するため、素子の両面の電極
に外部導出リードを半田で固着し、外装樹脂でモールド
してなる正特性サーミスタにおいて、上記素子や半田と
外装樹脂との間に空隙を形成したことを要旨とするもの
である。
Means for Solving the Problems In order to solve the above problems, the present invention provides a positive temperature coefficient thermistor in which external leads are fixed to electrodes on both sides of the element with solder and molded with exterior resin. The gist is that a void is formed between the outer resin and the outer resin.

発明の作用 このように素子や半田と外装樹脂との間に空隙を形成す
れば、電圧印加による発熱時、或いは外部から熱ショッ
クを受けた場合、半田4と外装樹脂5との間に相当の熱
膨張差を生じたとしても、熱膨張差に基づくストレスが
空隙によって大幅に吸収緩和されることになる。
Effect of the Invention If a gap is formed between the element or solder and the exterior resin in this way, when heat is generated due to voltage application or when a thermal shock is received from the outside, a considerable amount of air will be generated between the solder 4 and the exterior resin 5. Even if a difference in thermal expansion occurs, the stress based on the difference in thermal expansion is largely absorbed and alleviated by the voids.

友施血 以下、本発明の実施例を図面を参照しながら説明する。friend blood Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る正特性サーミスタの一実施例を示
す断面図である。図において、2は両面に電極1.1を
形成した素子であって、この素子2は例えばセラミック
や、導電性粒子を混入した合成樹脂等より成り、正の抵
抗温度特性を有している。この素子2の両面の電極1.
1には、それぞれ外部導出リード3.3の端部が半田4
.4によって固着されている。そして、これらは例えば
エポキシ樹脂等の熱硬化性の外装樹脂5によってモール
ドされ、半田4,4と外装樹脂5との間には空隙6が形
成されている。
FIG. 1 is a sectional view showing an embodiment of a positive temperature coefficient thermistor according to the present invention. In the figure, 2 is an element having electrodes 1.1 formed on both sides, and this element 2 is made of, for example, ceramic or synthetic resin mixed with conductive particles, and has a positive resistance-temperature characteristic. Electrodes 1 on both sides of this element 2.
1, the ends of the external leads 3 and 3 are soldered 4.
.. It is fixed by 4. These are molded with a thermosetting exterior resin 5 such as epoxy resin, and a gap 6 is formed between the solders 4, 4 and the exterior resin 5.

このような正特性サーミスタは、第4図に示すような方
法で空隙6を形成することによって製造される。即ち、
第4図(イ)に示すような両面に電極1,1を有する素
子2を炸裂し、次いで同図(ロ)に示すごとく、該電極
1,1に外部導出リード3,3の端部を半田4,4で固
着すると共に、該半田4,4をワックス7.7で被覆す
る。そして、これを外装樹脂液に浸漬することによって
同図(ハ)に示すように外装樹脂5でモールドし、これ
を加熱硬化させる。このように加熱硬化させると、外装
樹脂5中の溶剤の揮散によって外装樹脂5が多孔質とな
るため、内部のワックス7゜7は外装樹脂5の微細孔中
に吸収されて空洞6゜6が形成されるのである。
Such a positive temperature coefficient thermistor is manufactured by forming a void 6 in a manner as shown in FIG. That is,
The element 2 having electrodes 1, 1 on both sides as shown in FIG. It is fixed with solder 4, 4, and the solder 4, 4 is covered with wax 7.7. Then, by immersing this in an exterior resin liquid, it is molded with an exterior resin 5 as shown in FIG. When heat-cured in this manner, the exterior resin 5 becomes porous due to volatilization of the solvent in the exterior resin 5, so the internal wax 7゜7 is absorbed into the fine pores of the exterior resin 5, and the cavities 6゜6 are formed. It is formed.

空洞6.6の形成手段としては、上記のようなワックス
吸収による手段の他、種々の手段を採用することができ
る。第2図はそのような他の手段で空洞6.6を形成し
た一例を示すもので、これによれば、半田4,4を覆う
ようにキャンプ8゜8をかぶせ、その上から外装樹脂5
でモールドしである。
As the means for forming the cavity 6.6, various means can be employed in addition to the above-mentioned means by wax absorption. FIG. 2 shows an example in which the cavity 6.6 is formed by such other means. According to this, a camp 8.
It is molded.

上記のように、半田4.4と外装樹脂5との間に空隙6
,6を形成した正特性サーミスタにあっては、電圧を印
加すると、素子2が急激に発熱する。このように素子2
が発熱すると、熱伝導率の高い半田4,4は素子2に追
随して速やかに昇温する。ところが外装樹脂5は熱伝導
率が低いため、素子2や半田4,4に追随して速やかに
膨張することはできないが、この熱膨張差に基づくスト
レスは、半田4,4と外装樹脂5との間に形成された空
隙6.6によって大幅に吸収、緩和されることになる。
As mentioned above, there is a gap 6 between the solder 4.4 and the exterior resin 5.
, 6, when a voltage is applied, the element 2 suddenly generates heat. In this way element 2
When the element 2 generates heat, the solders 4, 4 having high thermal conductivity follow the element 2 and quickly rise in temperature. However, since the exterior resin 5 has a low thermal conductivity, it cannot quickly expand following the elements 2 and the solders 4, 4, but the stress due to this difference in thermal expansion is caused by the stress between the solders 4, 4 and the exterior resin 5. The air gap 6.6 formed between them absorbs and relaxes the air to a large extent.

従って、従来のサーミスタのように、大きいストレスに
よって半田4,4が剥れたり、素子2や外装樹脂5にひ
び割れを生じたりすることは防止される。また、外部が
ら熱ショックを受けた場合に生じるストレスも、この空
隙6.6によって充分に吸収緩和されるので、やはり半
田4.4の剥離や、素子2や外装樹脂5のひび割れ等を
生じることがない。更に、このような空隙6.6が存在
すると、断熱性がある程度向上するので、素子2が外気
温の影響を受けにくいという利点もある。
Therefore, unlike conventional thermistors, the solders 4, 4 are prevented from peeling off due to large stress, and the element 2 and the exterior resin 5 are prevented from being cracked. In addition, the stress generated when thermal shock is applied from the outside is sufficiently absorbed and alleviated by the void 6.6, so that peeling of the solder 4.4 and cracking of the element 2 and the exterior resin 5 will not occur. There is no. Furthermore, the presence of such voids 6.6 improves the heat insulation to some extent, so there is also the advantage that the element 2 is less susceptible to the effects of outside temperature.

ところで、半田4,4と外装樹脂5との間の空隙6,6
があまり大きいと、外装樹脂5の強度低下を来す膚があ
る°ので、空隙6.6は大きくない方が望ましい。また
、電極1′、1としては、例えばニッケル電極等のオー
ミック電極を無電解メッキ等の手段で形成するのが望ま
しく、その場合は半田付は性を良くするため電極1.1
表面に銀被膜を形成するのが望ましい。そこで、これら
の要望を満たすように措成したのが、第3図に示す実施
例の正特性サーミスタである。
By the way, the gaps 6, 6 between the solder 4, 4 and the exterior resin 5
If it is too large, the strength of the exterior resin 5 may be reduced, so it is preferable that the void 6.6 is not large. Further, as the electrodes 1' and 1, it is preferable to form ohmic electrodes such as nickel electrodes by means such as electroless plating.
It is desirable to form a silver coating on the surface. Therefore, a positive temperature coefficient thermistor according to an embodiment shown in FIG. 3 was constructed to meet these demands.

即ち、この第3図に示す正特性サーミスタは、素子2の
両面にニッケル電極等のオーミック電極1.1を形成し
、該電極1,1の一部に銀被膜9.9を形成してこの銀
被膜9,9に外部導出り−ド3.3の端部を半田4.4
で固着し、全体を外装樹脂5でモールドして半田4.4
と外装樹脂5との間に空隙6.6を形成した構造とされ
ている。このようにオーミック電極1,1の一部に銀被
膜9,9が形成されていると、半田の濡れ性が良いこの
銀被膜9.9の部分のみに半田4,4が付着し、半田4
,4の付着量がかなり少なくなるので、半田4.4の周
囲に形成される空隙6,6の8禎もかなり小さくなり、
外装樹脂5の力学的耐圧強度が向上することになる。
That is, the positive temperature coefficient thermistor shown in FIG. 3 has ohmic electrodes 1.1 such as nickel electrodes formed on both sides of the element 2, and a silver coating 9.9 formed on a part of the electrodes 1,1. Solder the ends of the external leads 3.3 to the silver coatings 9 and 9.
, mold the whole thing with exterior resin 5, and solder 4.4.
It has a structure in which a gap 6.6 is formed between the outer resin 5 and the outer resin 5. When the silver films 9, 9 are formed on a part of the ohmic electrodes 1, 1 in this way, the solder 4, 4 adheres only to the part of the silver film 9, 9, which has good solder wettability, and the solder 4
, 4 becomes considerably smaller, the voids 6, 6 formed around the solder 4.4 also become considerably smaller,
The mechanical pressure strength of the exterior resin 5 is improved.

光肌五訣果 以上の説明から明らかなように、本発明の正特性サーミ
スタは、半田と外装樹脂との間に形成された空隙によっ
て、素子の急激な発熱の際、或いは外部からの熱ショッ
クを受けた際に、半田や素子と外装樹脂との熱膨張差に
基づくストレスを充分に吸収緩和することができるので
、ストレスによる半田のaIt mや、素子及び外装樹
脂のひび割れ等を満足に防止することができ、信頼性が
大幅に向上するといった効果がある。
As is clear from the above explanation, the positive temperature coefficient thermistor of the present invention has a gap formed between the solder and the exterior resin, so that the PTC thermistor is able to withstand sudden heat generation of the element or thermal shock from the outside. It can sufficiently absorb and alleviate the stress caused by the difference in thermal expansion between the solder, the element, and the exterior resin when exposed to stress, thereby satisfactorily preventing solder aIt m and cracks in the element and exterior resin due to stress. This has the effect of significantly improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図はそれぞれ本発明の異なる実
施例の正特性サーミスタを示す断面図、第4図(イ)〜
(ニ)は本発明の正特性サーミスタの一盟法例を説明す
る断面図、第5図は従来の正特性サーミスタの断面図で
ある。 1・・・電極、2・・・正特性サーミスタ素子、3・・
・外部導出リード、4・・・半田、5・・・外装樹脂、
6・・・空隙、9・・・銀被膜。
1, 2 and 3 are cross-sectional views showing positive temperature coefficient thermistors according to different embodiments of the present invention, and FIGS.
(d) is a sectional view illustrating an example of a positive temperature coefficient thermistor according to the present invention, and FIG. 5 is a sectional view of a conventional positive temperature coefficient thermistor. 1... Electrode, 2... Positive temperature coefficient thermistor element, 3...
・External lead-out lead, 4...Solder, 5...Exterior resin,
6...Void, 9...Silver coating.

Claims (2)

【特許請求の範囲】[Claims] (1)正特性サーミスタ素子の両面の電極に外部導出リ
ードを半田で固着し、外装樹脂でモールドしてなる正特
性サーミスタにおいて、上記半田と外装樹脂との間に空
隙を形成したことを特徴とする正特性サーミスタ。
(1) A PTC thermistor in which external leads are fixed to electrodes on both sides of a PTC thermistor element with solder and molded with an exterior resin, characterized in that a gap is formed between the solder and the exterior resin. Positive characteristic thermistor.
(2)正特性サーミスタ素子の両面の電極がオーミック
電極であって、該オーミック電極の一部に銀被膜が形成
されており、この銀被膜に外部導出リードが半田で固着
されている特許請求の範囲第(1)項記載の正特性サー
ミスタ。
(2) The electrodes on both sides of the positive temperature coefficient thermistor element are ohmic electrodes, a silver coating is formed on a part of the ohmic electrode, and an external lead is fixed to this silver coating with solder. A positive temperature coefficient thermistor according to range (1).
JP379186A 1986-01-10 1986-01-10 Positive characteristic thermister Pending JPS62162307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP379186A JPS62162307A (en) 1986-01-10 1986-01-10 Positive characteristic thermister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP379186A JPS62162307A (en) 1986-01-10 1986-01-10 Positive characteristic thermister

Publications (1)

Publication Number Publication Date
JPS62162307A true JPS62162307A (en) 1987-07-18

Family

ID=11567008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP379186A Pending JPS62162307A (en) 1986-01-10 1986-01-10 Positive characteristic thermister

Country Status (1)

Country Link
JP (1) JPS62162307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295802A (en) * 1991-03-13 1994-10-21 Murata Mfg Co Ltd Terminal for telephone and telegram
JPH076902A (en) * 1991-03-13 1995-01-10 Murata Mfg Co Ltd Positive temperature characteristic thermistor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295802A (en) * 1991-03-13 1994-10-21 Murata Mfg Co Ltd Terminal for telephone and telegram
JPH076902A (en) * 1991-03-13 1995-01-10 Murata Mfg Co Ltd Positive temperature characteristic thermistor element

Similar Documents

Publication Publication Date Title
JP4033331B2 (en) Thermistor and manufacturing method thereof
US5351026A (en) Thermistor as electronic part
JP2770636B2 (en) Chip type solid electrolytic capacitor
JP5522533B2 (en) Surface-mount type electronic component and manufacturing method
US5304977A (en) Film-type power resistor combination with anchored exposed substrate/heatsink
US3795844A (en) Electronic component package
JP2001267181A (en) Chip type solid electrolytic capacitor
JPS62162307A (en) Positive characteristic thermister
JP2000294403A (en) Chip thermistor
US5695872A (en) Thermally conductive, electrically insulating glued connection, method for the production thereof and employment thereof
JPH08339942A (en) Electronic component
JPH0322885Y2 (en)
JPH0322886Y2 (en)
JP3420492B2 (en) Semiconductor device
JPS5913318A (en) Method of producing electronic part
JPH08181001A (en) Chip resistor for surface mounting and its surface-mounting method
JP2000021607A (en) Manufacture of chip thermistor
JPH0786001A (en) Variable resistor
JPH04180202A (en) Thermistor element
JPH0110881Y2 (en)
JPH0132723Y2 (en)
JP2000182804A (en) Thermistor and its manufacture
US2860222A (en) Miniature high power
JP2595187Y2 (en) Cylindrical ceramic capacitors
JPS60130801A (en) Positive temperature coefficient thermistor