JPS62161118A - Variable focus liquid crystal spectacles - Google Patents

Variable focus liquid crystal spectacles

Info

Publication number
JPS62161118A
JPS62161118A JP300086A JP300086A JPS62161118A JP S62161118 A JPS62161118 A JP S62161118A JP 300086 A JP300086 A JP 300086A JP 300086 A JP300086 A JP 300086A JP S62161118 A JPS62161118 A JP S62161118A
Authority
JP
Japan
Prior art keywords
liquid crystal
lenses
electrodes
lens
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP300086A
Other languages
Japanese (ja)
Inventor
Takao Okada
孝夫 岡田
Hisano Shimazu
島津 久乃
Akitoshi Toda
戸田 明敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP300086A priority Critical patent/JPS62161118A/en
Publication of JPS62161118A publication Critical patent/JPS62161118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

PURPOSE:To easily manufacture variable focus lenses meeting the characteristics of the human eyes by providing low-resistance electrodes having the notches provided to the circumferences of liquid crystal lenses. CONSTITUTION:The liquid crystal lenses 2, 3 are respectively constituted by forming the liquid crystal cells of a spheroconcave lens 4 and flat plate glass 5 formed with electrodes 6, 6 of transparent conductive films consisting of SnO2, In2O3, SnO2+In2O3, etc. at the insides thereof, and joining both plates via a spacer 8 consisting of an insulator. The low-resistance electrodes 9, 10 consisting of chromium, nickel, etc. are disposed to cover the peripheral edges of the lenses to the electrodes 6, 7 of such transparent conductive films and are connected from one end to an external driving power source 11 respectively by connecting wires 12, 13. The voltage distribution curve by the voltage impressed by the power source 11 to the right and left liquid crystal lenses 2, 3 is as shown by dotted lines on the lens faces of the liquid crystal lenses to act in such a manner that the apparent refractive indices of the liquid crystals increase in the regions gear the interrupted parts 15, 16 of the electrodes 9, 10 on the nose side of the spectacle lenses 2, 3.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、可変焦点液晶レンズを使用した眼鏡、詳し
くは眼鏡に使用する左右の可変焦点液晶レンズを遠近の
物体を見やすいように対称的にパリフォーカス機能をも
たせた眼鏡に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to eyeglasses using variable focus liquid crystal lenses, and more specifically, to symmetrically align left and right variable focus liquid crystal lenses used in eyeglasses to make it easier to see objects near and far. This invention relates to glasses with a pari-focus function.

[従来の技術] 液晶の1(屈折現象を利用して焦点距離の可変なレンズ
とする考えは、既に例えば特開昭52−32348号公
報、特開昭54−99654号公報および特公昭58−
50339号公報などに見られる。このような従来の液
晶を用いたレンズ(以下、液晶レンズという。)の−例
を第5図および第6図の断面図と平面図を用いて説明す
る。
[Prior Art] The idea of making a lens with a variable focal length by utilizing the refraction phenomenon of liquid crystals has already been proposed in, for example, Japanese Patent Application Laid-Open No. 52-32348, Japanese Patent Application Laid-Open No. 54-99654, and Japanese Patent Publication No. 1982-
This can be seen in Publication No. 50339, etc. An example of such a conventional lens using a liquid crystal (hereinafter referred to as a liquid crystal lens) will be described with reference to the cross-sectional view and plan view of FIGS. 5 and 6.

球面凹レンズ21と平板ガラス22にそれぞれ透明導電
層23および24を設け、これらを絶縁層25を介して
貼り合わせたときに形成される空間に液晶26を封入し
て液晶レンズ20は構成されている。上記透明導電層2
3と24間には交流電源27からの交流電圧が可変調整
自在に印加されるようになっている。また、この交流電
圧を印加していないときにおいても、ある特定方向に液
晶分子が揃うように配向処理か施されており、図面中で
はir1品分子はホモジニアス配向となっている。
The liquid crystal lens 20 is constructed by providing transparent conductive layers 23 and 24 on a spherical concave lens 21 and a flat glass 22, respectively, and filling a liquid crystal 26 in the space formed when these are bonded together via an insulating layer 25. . The transparent conductive layer 2
An alternating current voltage from an alternating current power source 27 is applied between 3 and 24 in a variably adjustable manner. Further, even when this AC voltage is not applied, alignment processing is performed so that the liquid crystal molecules are aligned in a certain specific direction, and in the drawing, the IR1 product molecules are homogeneously aligned.

この液晶レンズ20に電圧を印加すると、液晶レンズ2
0中の液晶26の分子は電界方向に分子の長軸方向を揃
えるように回転する(液晶の誘電異方性が正の液晶の場
合)。ここで、第6図中矢印nで示す液晶分子のディレ
クターを有する液晶レンズ20に第7図に示すように偏
光板28を組み合わせ、液晶レンズ20に対して異常光
のみを入射させることができるように構成すると、液晶
レンズ20内の液晶分子が上記印加電圧の可変により回
転していくにつれ、液晶26の屈折率が異常光線の屈折
率n から常光線の屈折率n の間e        
                Oで変化していく。
When a voltage is applied to this liquid crystal lens 20, the liquid crystal lens 20
The molecules of the liquid crystal 26 in 0 rotate so that the long axis direction of the molecules is aligned with the direction of the electric field (in the case of a liquid crystal with positive dielectric anisotropy). Here, a polarizing plate 28 is combined as shown in FIG. 7 with a liquid crystal lens 20 having a director of liquid crystal molecules shown by an arrow n in FIG. When the liquid crystal molecules in the liquid crystal lens 20 are rotated by changing the applied voltage, the refractive index of the liquid crystal 26 changes between the refractive index n of extraordinary rays and the refractive index n of ordinary rays.
It changes with O.

従って、焦点距離をf、屈折率をn、レンズ両面の曲率
!11径をrl、r2とすると、レンズの焦点距離は ることによって、レンズの焦点距離を変化させることが
できることになる。
Therefore, the focal length is f, the refractive index is n, and the curvature of both sides of the lens! 11 diameters as rl and r2, the focal length of the lens can be changed by increasing the focal length of the lens.

[発明が解決しようとする問題点] ところで、このような液晶レンズ20の可変焦点距離を
調整をするために外部駆動電源27からの交流電圧を可
変抵抗を介してその透明導電層の電極23.24の一端
に印加すると、この透明電極23,24はシート抵抗3
00Ω/口位あるので透明電極23.24の一端から他
端まで、一様に抵抗が全面に亘って分布しており電極取
り出し目部分からの距離に応じて電圧降下があり液晶2
6にかかる電圧分布が異なってしまう。すなわち、所望
の電圧を印加したとき電極取り出し目部分が最も電圧が
高(なり、取り出し口から遠ざかるにつれて電圧が低く
なる。したがって、液晶レンズ20のレンズ面で一様に
液晶の屈折率分布が変化しないものとなってしまう。
[Problems to be Solved by the Invention] Incidentally, in order to adjust the variable focal length of such a liquid crystal lens 20, an AC voltage from an external drive power source 27 is applied to the electrodes 23. of the transparent conductive layer via a variable resistor. When applied to one end of 24, these transparent electrodes 23, 24 have sheet resistance 3
Since the resistance is uniformly distributed over the entire surface from one end of the transparent electrode 23 to the other end of the transparent electrode 23, 24, there is a voltage drop depending on the distance from the electrode opening.
The voltage distribution applied to 6 will be different. That is, when a desired voltage is applied, the voltage is the highest at the electrode outlet, and the voltage decreases as it moves away from the outlet. Therefore, the refractive index distribution of the liquid crystal changes uniformly on the lens surface of the liquid crystal lens 20. It ends up being something you don't do.

[問題点を解決するための手段] このため、この発明では、なるべく液晶レンズ20の全
面に亘り目的とする印加電圧が一様に透明導電膜の電極
23.24に作用すべく、レンズの周縁に沿って低抵抗
の電極を配設することによって液晶にかかる電圧分布を
ほぼ一様にするとともに、眼鏡の左右のレンズで近距離
物体を見るときに左右のレンズの鼻寄りの部分乃至下側
の部分のうちの一部にそれぞれ低抵抗電極が途切れた部
分を形成することによって液晶レンズに眼の特性に合せ
た電界分布を与え、レンズの機能を近くを視るための部
分に液晶レンズの見かけの屈折率が高くなる部分を形成
し、パリフォーカス機能を有する可変焦点dk品レンズ
を使用した眼鏡とするものである。
[Means for Solving the Problems] Therefore, in the present invention, in order to uniformly apply the intended applied voltage to the electrodes 23 and 24 of the transparent conductive film over the entire surface of the liquid crystal lens 20, the periphery of the lens is By arranging low-resistance electrodes along the sides, the voltage distribution applied to the liquid crystal is made almost uniform, and when viewing close objects with the left and right lenses of the glasses, the parts near the nose or the bottom of the left and right lenses By forming discontinuous low-resistance electrodes in some of the parts, it gives the liquid crystal lens an electric field distribution that matches the characteristics of the eye. The eyeglasses are formed with a portion having a high apparent refractive index and use variable focus DK lenses having a parifocus function.

[実 施 例] 以下、この発明を図示の実施例に基づいて説明する。[Example] The present invention will be explained below based on illustrated embodiments.

第1図は、眼鏡の斜視図であり、左右のレンズ2.3は
液晶レンズで構成されている。第2図はこの液晶レンズ
2.3の上記第1図のA−A線に沿った断面図を示して
おり、液晶レンズ2.3はそれぞれ内面伸IにS。02
.■o203,5n02+Io203等の透明導電膜の
電極6,7の形成された球面凹レンズ4と平板ガラス5
とから液晶セルを形成し、両板の間を絶縁体のスペーサ
8を介して接合したものである。
FIG. 1 is a perspective view of the glasses, in which the left and right lenses 2.3 are composed of liquid crystal lenses. FIG. 2 shows a cross-sectional view of this liquid crystal lens 2.3 along line A-A in FIG. 02
.. ■ Spherical concave lens 4 and flat glass 5 on which transparent conductive film electrodes 6 and 7 such as o203, 5n02 + Io203 are formed
A liquid crystal cell is formed from the two plates, and the two plates are joined together with an insulating spacer 8 interposed therebetween.

そして、この透明導電膜の電極6.7には、第3図に示
されるようにレンズ周縁を覆うようにクロム、金、アル
ミニウム、ニッケル等の低抵抗電極9,10が蒸管等に
よって配設されていて、その一端からは外部駆動電源1
1にそれぞれ接続線12.13によって接続されている
As shown in FIG. 3, low resistance electrodes 9 and 10 made of chromium, gold, aluminum, nickel, etc. are arranged on the electrodes 6 and 7 of the transparent conductive film using steam tubes or the like so as to cover the periphery of the lens. The external drive power supply 1 is connected from one end of the
1 by connecting lines 12 and 13, respectively.

したがって、左右の液晶レンズ2,3に外部駆動電源1
1によって印加される電圧による電圧分布曲線は、液晶
セルのレンズ面において第3図に点線で示すようになり
、眼鏡レンズ2.3の鼻寄り側の低抵抗電極9.10の
途切れた部分15゜16寄りの領域では液晶の見かけの
屈折率が高くなるように作用することになる。したがっ
て、このように構成されている眼鏡をかけて遠くの物体
から近くの物体を視ようとして眼球の視線が中心部寄り
に移動すると、液晶レンズ2,3はあたかも眼の特性に
合せたパリフォーカスレンズのような作用を行ない、遠
近物体のより自然な透視ができる可変焦点液晶レンズの
眼鏡とすることができる。
Therefore, the external drive power supply 1 is connected to the left and right liquid crystal lenses 2 and 3.
1, the voltage distribution curve due to the voltage applied by the lens surface of the liquid crystal cell becomes as shown by the dotted line in FIG. In the region closer to 16°, the apparent refractive index of the liquid crystal becomes higher. Therefore, when the line of sight of the eyeball moves toward the center of the eye while trying to see from a distant object to a nearby object while wearing glasses configured in this way, the liquid crystal lenses 2 and 3 act as if they are in pari-focus mode that matches the characteristics of the eye. It is possible to create glasses with variable focus liquid crystal lenses that act like lenses and allow more natural viewing of objects near and far.

第4図は、上記第3図の液晶レンズの低抵抗電極9.1
0の途t71れた部分15.16を鼻寄り側に設けたの
に対し、液晶レンズの下側部分に低抵抗電極9’、10
’の途切れた部分15’、16’を形成したもので、そ
の作用は上記第3図に示すものと殆んど同じである。こ
の場合も液晶レンズ2.3の下側部分の見かけの液晶の
屈折率が高くなり、読書用等の遠近祝用パリフォーカス
レンズの眼鏡を簡1)1に製作することができる。
Figure 4 shows the low resistance electrode 9.1 of the liquid crystal lens in Figure 3 above.
The low resistance electrodes 9' and 10 are provided on the lower part of the liquid crystal lens, whereas the portions 15 and 16 where t71 ends at 0 are provided on the nose side.
15' and 16' are formed, and its function is almost the same as that shown in FIG. 3 above. In this case as well, the apparent refractive index of the liquid crystal in the lower portion of the liquid crystal lens 2.3 becomes high, and glasses with pari-focus lenses for reading and other viewing purposes can be easily manufactured.

なお、この例では、液晶レンズ2.3を球面凹レンズ4
と平板ガラス5とて液晶セルを形成したものについて説
明したが、このセルは一対の球面凹レンズ、凸面を利用
したもの、フレネルレンズ面を利用したもの等で構成し
たレンズ形状を有する液晶レンズであれば勿論作用・効
果は同じである。[発明の効果] 可変焦点距離の液晶レンズを使用した眼鏡において、液
晶レンズの周囲に設けた切欠き部を有する低抵抗電極を
設けることにより、人間の眼の特性に合わせたパリフォ
ーカスレンズを容易に作ることができる。
In this example, the liquid crystal lens 2.3 is replaced with a spherical concave lens 4.
Although the flat glass 5 has been described to form a liquid crystal cell, this cell may be a liquid crystal lens having a lens shape composed of a pair of spherical concave lenses, one using a convex surface, one using a Fresnel lens surface, etc. Of course, the action and effect are the same. [Effect of the invention] In eyeglasses using variable focal length liquid crystal lenses, by providing a low-resistance electrode with a notch around the liquid crystal lens, it is easy to create pari-focus lenses that match the characteristics of the human eye. can be made to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の可変焦点液晶眼鏡の斜視図、第2図
は、上記第1図のA−A線に沿った断面図、 第3図および第4図は、上記第1図に示す可変焦点液晶
眼鏡の左右液晶レンズのセルの正面図、第5図および第
6図は、液晶レンズの縦断面図および横断面図、 第7図は、液晶レンズと偏光板を組合せた斜視図である
。 2.3・・・・・・・・・液晶レンズ 6.7・・・・・・・・・透明導電膜の電極9.9’、
10.10’・・・低抵抗電極15.15’、16.1
6’ ・・・低抵抗電極の切欠き部 %1 図 馬2四 箒3四 方40
FIG. 1 is a perspective view of variable focus liquid crystal glasses of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIGS. 3 and 4 are similar to FIG. FIG. 5 and FIG. 6 are longitudinal and cross-sectional views of the liquid crystal lens, and FIG. 7 is a perspective view of the combination of the liquid crystal lens and polarizing plate. It is. 2.3...Liquid crystal lens 6.7...Transparent conductive film electrode 9.9',
10.10'...Low resistance electrode 15.15', 16.1
6'...Notch part of low resistance electrode %1 Figure horse 2 Shihoki 3 square 40

Claims (1)

【特許請求の範囲】 対向する透明導電膜により形成される中空部に液晶を封
入して成る液晶セルに電圧を印加することによって屈折
率を変える液晶レンズを使用した可変焦点液晶眼鏡にお
いて、 上記液晶セルの透明導電膜の周縁部に、鼻寄りの部分乃
至下側の部分のうちの一部に切欠き部を有する低抵抗電
極を設けたことを特徴とする可変焦点液晶眼鏡。
[Scope of Claims] Variable focus liquid crystal glasses using liquid crystal lenses whose refractive index is changed by applying a voltage to a liquid crystal cell in which a liquid crystal is sealed in a hollow space formed by opposing transparent conductive films, comprising: Variable focus liquid crystal glasses characterized in that a low-resistance electrode having a notch in a part of the nose or lower part is provided on the peripheral edge of the transparent conductive film of the cell.
JP300086A 1986-01-10 1986-01-10 Variable focus liquid crystal spectacles Pending JPS62161118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP300086A JPS62161118A (en) 1986-01-10 1986-01-10 Variable focus liquid crystal spectacles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP300086A JPS62161118A (en) 1986-01-10 1986-01-10 Variable focus liquid crystal spectacles

Publications (1)

Publication Number Publication Date
JPS62161118A true JPS62161118A (en) 1987-07-17

Family

ID=11545101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP300086A Pending JPS62161118A (en) 1986-01-10 1986-01-10 Variable focus liquid crystal spectacles

Country Status (1)

Country Link
JP (1) JPS62161118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592778A (en) * 2013-11-15 2014-02-19 合肥京东方光电科技有限公司 Liquid crystal lens and liquid crystal glasses
US10564511B2 (en) 2013-11-15 2020-02-18 Boe Technology Group Co., Ltd. Liquid crystal lens and liquid crystal glasses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592778A (en) * 2013-11-15 2014-02-19 合肥京东方光电科技有限公司 Liquid crystal lens and liquid crystal glasses
US10564511B2 (en) 2013-11-15 2020-02-18 Boe Technology Group Co., Ltd. Liquid crystal lens and liquid crystal glasses

Similar Documents

Publication Publication Date Title
US11221508B2 (en) Adaptive harmonic diffractive liquid crystal lens and method of making and use thereof
WO1993015432A1 (en) Variable focus visual power correction apparatus
CN109669277B (en) Active matrix focusing lens and focusing glasses with same
JPS62129813A (en) Optical apparatus having stereoscopic parallax utilizing liquid crystal
JPS61156227A (en) Fresnel liquid crystal spectacle
US11314119B2 (en) Lens, lens blank, and eyewear
Banerjee et al. Low-power, thin and flexible, stacked digital LC lens for adaptive contact lens system with enhanced tunability
KR101976640B1 (en) Flexible liquid crystal lens
JPS62161118A (en) Variable focus liquid crystal spectacles
JPH048769B2 (en)
JPS62170934A (en) Liquid crystal lens
JP7064256B1 (en) Liquid crystal lens
JPS5850339B2 (en) variable focal length lens
JPS61177428A (en) Spectacles of liquid crystal
TWI490595B (en) Optical system for rotating liquid crystal to adjust lens focal length
JPS623223A (en) Liquid crystal lens of variable focal length
JPH04322214A (en) Liquid crystal lens and using method therefor
JPH0560907A (en) Double focus lens
JP3845709B2 (en) Variable refraction control glasses
JP2665341B2 (en) Liquid crystal lens
CN219456656U (en) Adjustable-focus dimming device for relieving eye fatigue
JPS62129816A (en) Liquid crystal lens with focal length
JPH0513281B2 (en)
JPS61177429A (en) Liquid crystal spectacles
US11815746B1 (en) Method and apparatus for astigmatic correction in electronically tunable prescription glasses