JPH048769B2 - - Google Patents

Info

Publication number
JPH048769B2
JPH048769B2 JP60270124A JP27012485A JPH048769B2 JP H048769 B2 JPH048769 B2 JP H048769B2 JP 60270124 A JP60270124 A JP 60270124A JP 27012485 A JP27012485 A JP 27012485A JP H048769 B2 JPH048769 B2 JP H048769B2
Authority
JP
Japan
Prior art keywords
liquid crystal
focal length
lens
variable focal
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60270124A
Other languages
Japanese (ja)
Other versions
JPS62129815A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60270124A priority Critical patent/JPS62129815A/en
Publication of JPS62129815A publication Critical patent/JPS62129815A/en
Publication of JPH048769B2 publication Critical patent/JPH048769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Landscapes

  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は焦点距離可変液晶レンズに係わり、特
に、印加電圧等を変化させることにより凹レンズ
及び凸レンズのいずれにもなるように焦点距離が
変化される焦点距離可変液晶レンズを2以上重ね
合わせた焦点距離可変液晶レンズに関するもので
ある。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a variable focal length liquid crystal lens, and in particular, the focal length can be changed to become either a concave lens or a convex lens by changing the applied voltage, etc. This invention relates to a variable focal length liquid crystal lens in which two or more variable focal length liquid crystal lenses are stacked together.

「従来の技術」 白内症などの眼の疾病により眼球の水晶体が摘
出されてしまつた場合に、従来の焦点距離が固定
のレンズを用いた眼鏡では、使用する距離に応じ
て焦点距離の異なつた数種類の眼鏡を用意してそ
れぞれの状況に応じて使い分ける必要があり、実
生活において多大なる不便さを強いられている。
従つて、焦点距離を自由に変化させることのでき
る眼鏡レンズの出現が望まれていた。また、光学
レンズに用いられるズームレンズと呼ばれる可変
焦点レンズの焦点距離の制御は、その中の複数枚
数の単レンズから構成されるレンズ群同士の間隔
を変化させることによつて行つている。従つて、
レンズ群の移動のためレンズ可動機構が不可欠で
あり、小型化・低コストという要求を十分満足す
ることができず、レンズの移動なしに焦点距離が
自由に変化させることのできる焦点距離可変レン
ズの出現が望まれていた。
``Conventional technology'' When the crystalline lens of the eyeball is removed due to an eye disease such as cataractosis, conventional glasses that use lenses with a fixed focal length change the focal length depending on the distance at which they are used. It is necessary to prepare several types of glasses and use them depending on the situation, which is a great inconvenience in real life.
Therefore, there has been a desire for a spectacle lens whose focal length can be freely changed. Further, the focal length of a variable focus lens called a zoom lens used in an optical lens is controlled by changing the distance between lens groups each composed of a plurality of single lenses. Therefore,
A lens movable mechanism is essential to move the lens group, and the demands for miniaturization and low cost cannot be fully satisfied, so we developed a variable focal length lens that can freely change the focal length without moving the lens. It was hoped that it would appear.

液晶は、一般に長さ数10Å、幅が約数Åの細長
い棒状分子構造をもつており、また誘電異方性を
もち、液晶分子の軸方向に平行な誘電率と直角な
方向の誘電率とは一般に一致しない。前者が後者
よりも大きいものを正の液晶といい、逆のものは
負の液晶と言われている。
Liquid crystals generally have an elongated rod-like molecular structure with a length of several tens of angstroms and a width of about several angstroms, and they also have dielectric anisotropy, with a dielectric constant parallel to the axis of the liquid crystal molecules and a dielectric constant perpendicular to the axial direction of the liquid crystal molecules. generally do not match. A liquid crystal in which the former is larger than the latter is called a positive liquid crystal, and the opposite is called a negative liquid crystal.

2枚の透明電極基板の間に異方性が正の電界効
果形液晶を入れ、液晶分子が基板に平行になるよ
うに配向させた液晶分子にしきい値以上の交流電
圧を印加すると、液晶分子の双極子モーメントに
働く力により液晶分子は液晶分子軸を電圧印加方
向に向きを変える。従つて、印加電圧の大きさに
より基板に平行に配向していた液晶分子を基板に
対して垂直方向に連続的にその向きを変えること
ができる。よつて液晶分子の配向の方位に偏向し
た入射光に対して液晶セルのみかけの屈折率は異
常光に対する値から常光に対する値まで連続的に
変化する。
A field-effect liquid crystal with positive anisotropy is placed between two transparent electrode substrates, and when an AC voltage higher than a threshold is applied to the liquid crystal molecules aligned so that the liquid crystal molecules are parallel to the substrates, the liquid crystal molecules The force acting on the dipole moment causes the liquid crystal molecules to change the direction of the liquid crystal molecular axis in the direction of voltage application. Therefore, depending on the magnitude of the applied voltage, the orientation of the liquid crystal molecules, which were oriented parallel to the substrate, can be continuously changed to a direction perpendicular to the substrate. Therefore, the apparent refractive index of the liquid crystal cell for incident light polarized in the orientation direction of the liquid crystal molecules changes continuously from a value for extraordinary light to a value for ordinary light.

このいわゆる電界制御複屈折効果は電気エネル
ギと弾性的エネルギの相対的な関係によつて決ま
るため、液晶セルの厚みに依存せず、また印加電
界ではなく印加電圧に依存して変化することが知
られている。つまり、液晶セルがレンズのような
形をしており、液晶セルの厚みが各々の場所によ
つて異なつていても光学的には一様な屈折率の変
化が得られることになる。即ち、液晶分子を適宜
の方向に配向させたレンズの形状を有する基板の
間に誘電異方性が正の液晶を封入し、印加電圧に
より液晶分子の配向方向を制御して液晶セルのみ
かけの屈折率を変化させることにより、液晶レン
ズの焦点距離を異常光に対する値Feから常光に
対する値Fpまで連続的に変化させることができ
る。垂直配向させた誘電異方性が負の液晶を用い
ると印加電圧に対する焦点距離の変化が逆にな
る。電圧を印加する代わりに磁界を加えても液晶
分子の配向状態を変えることができるので、磁界
による焦点距離可変レンズとすることもできる。
This so-called electric field-controlled birefringence effect is determined by the relative relationship between electric energy and elastic energy, so it is known that it does not depend on the thickness of the liquid crystal cell and changes depending on the applied voltage rather than the applied electric field. It is being In other words, the liquid crystal cell has a lens-like shape, and even if the thickness of the liquid crystal cell differs from place to place, optically uniform changes in the refractive index can be obtained. In other words, a liquid crystal with positive dielectric anisotropy is sealed between lens-shaped substrates with liquid crystal molecules aligned in an appropriate direction, and the alignment direction of the liquid crystal molecules is controlled by an applied voltage to change the apparent shape of the liquid crystal cell. By changing the refractive index, the focal length of the liquid crystal lens can be continuously changed from the value F e for extraordinary light to the value F p for ordinary light. When a vertically aligned liquid crystal with negative dielectric anisotropy is used, the change in focal length with respect to the applied voltage is reversed. Since the alignment state of liquid crystal molecules can be changed by applying a magnetic field instead of applying a voltage, it is also possible to create a variable focal length lens using a magnetic field.

「発明が解決しようとする課題」 しかしながら、従来の液晶レンズでは、焦点距
離を変化させることができるが、印加電圧を変化
させるだけで凹レンズと凸レンズを切り替えた
り、凹レンズ及び凸レンズのいずれにも焦点距離
を変化させながら連続的に切り替えることができ
なかつた。特に液晶レンズをメガネに応用した場
合において、例えば老視用メガネでは遠方を見る
時には凹レンズにより視力を矯正し、遠方を見る
時には凸レンズにより視力を矯正する必要があ
る。しかし、従来の液晶レンズでは1個のレンズ
で凹レンズと凸レンズとを共用することができ
ず、遠用メガネと近用メガネの2種類のメガネを
携帯しなければならず極めて不便であつた。な
お、一般に使用されるガラス等の眼鏡レンズに
は、遠用と近用の屈折率を有する2重焦点レンズ
や、レンズ面を非球面に研磨して焦点距離を連続
的に変化させた多重焦点レンズ(オムニフオカル
レンズ)がある。しかしながら、二重焦点レンズ
は遠用部と近用部の境界が目だつ上、像のジヤン
プが避けられないという問題点があり、オムニフ
オカルレンズは非球面の研磨に手間がかかりコス
ト高となる問題点があつた。
``Problems to be Solved by the Invention'' However, with conventional liquid crystal lenses, the focal length can be changed, but it is difficult to switch between concave and convex lenses simply by changing the applied voltage, or change the focal length of both concave and convex lenses. It was not possible to switch continuously while changing the value. Particularly when liquid crystal lenses are applied to eyeglasses, for example, in presbyopic glasses, it is necessary to correct visual acuity with a concave lens when looking at a distance, and with a convex lens when viewing a far distance. However, with conventional liquid crystal lenses, one lens cannot be used as both a concave lens and a convex lens, and it is extremely inconvenient to have to carry two types of glasses: distance glasses and near glasses. Commonly used eyeglass lenses such as glass include bifocal lenses that have refractive indices for distance and near vision, and multifocal lenses whose focal lengths are continuously changed by polishing the lens surface to an aspherical surface. There is a lens (omnifocal lens). However, bifocal lenses have the problem that the boundary between the distance and near vision areas is conspicuous and image jumps are unavoidable, while omnifocal lenses require a lot of effort to polish the aspherical surface, making them expensive. There was a problem.

「課題を解決するための手段」 本発明は上記課題に鑑み案出されたもので、対
向する一対の基板と、この基板間に封入された液
晶素材とからなり、この液晶分子を適宜の方向に
配向させると共に、前記基板の少なくとも一方に
曲率を設けた液晶セルに対して、外部より電界又
は磁界を印加して該液晶分子の配向状態を制御
し、液晶の屈折率を段階的又は連続的に変化させ
る様にした液晶レンズいおいて、前記基板の屈折
率が、前記液晶素材の常光線に対する屈折率より
も大きく、かつ、前記液晶素材の異常光線に対す
る屈折率よりも小さい値となる様な材料で前記基
板が形成されており、前記電界又は磁界を変化さ
せることにより、前記液晶レンズが凹レンズ及び
凸レンズのいずれにもなるように焦点距離が変化
される焦点距離可変液晶レンズを2以上重ね合わ
せ、あらゆる方向の偏光に対して、共通の焦点を
有し、該焦点の位置が可変となる様にしたことを
特徴としている。
"Means for Solving the Problems" The present invention was devised in view of the above problems, and consists of a pair of opposing substrates and a liquid crystal material sealed between the substrates, and the present invention is composed of a pair of substrates facing each other and a liquid crystal material sealed between the substrates, and the liquid crystal molecules are directed in an appropriate direction. At the same time, an electric field or a magnetic field is externally applied to a liquid crystal cell having a curvature on at least one of the substrates to control the alignment state of the liquid crystal molecules, and the refractive index of the liquid crystal is changed stepwise or continuously. In the liquid crystal lens, the refractive index of the substrate is larger than the refractive index of the liquid crystal material for ordinary rays and smaller than the refractive index of the liquid crystal material for extraordinary rays. The substrate is formed of a material, and two or more variable focal length liquid crystal lenses are stacked, the focal length of which can be changed so that the liquid crystal lens becomes either a concave lens or a convex lens by changing the electric field or magnetic field. It is characterized in that it has a common focal point for polarized light in all directions, and that the position of the focal point is variable.

「作用」 以上の様に構成された本発明は、液晶セルを構
成する基板の屈折率が、液晶素材の常光線に対す
る屈折率よりも大きく、かつ、該液晶素材の異常
光線に対する屈折率よりも小さい値となる様な材
料で基板が構成されているので、この液晶セルに
印加される印加電圧又は磁界を変化させることに
より、液晶レンズが凹レンズ及び凸レンズの何れ
にもなる様に焦点距離が変化されるものである。
そして本発明は、この焦点距離可変液晶レンズを
2以上重ねることにより、光学特性の優れた焦点
距離可変液晶レンズを提供することができる。
"Function" The present invention configured as described above is such that the refractive index of the substrate constituting the liquid crystal cell is greater than the refractive index of the liquid crystal material for ordinary rays, and is greater than the refractive index of the liquid crystal material for extraordinary rays. Since the substrate is made of a material that gives a small value, by changing the applied voltage or magnetic field applied to this liquid crystal cell, the focal length can be changed so that the liquid crystal lens becomes either a concave lens or a convex lens. It is something that will be done.
The present invention can provide a variable focal length liquid crystal lens with excellent optical characteristics by stacking two or more of these variable focal length liquid crystal lenses.

「実施例」 本発明の実施例を図面に基づいて説明すると、
第1図は本実施例の構成を示すものであり、液晶
セル本体1は、液晶素材2と、この液晶素材2を
挟んで対向する透明電極を備えた基板(以下、基
板という)3a,3bと、この基板3a,3bの
間隔を電気的に絶縁すると共に、前記液晶素材2
が外部に漏洩するのを防止するための絶縁スペー
サ4とからなつている。そして、前記基板3a,
3bに形成された透明電極には、液晶素材2に電
界を印加するための印加手段5が接続されてい
る。本実施例においては、一対の基板の内、一方
の基板3aが凹レンズの形状をなしており、液晶
セル1に封入された液晶2は、それ自体凹レンズ
の形状に充填されている。なお、一対の基板の両
方をレンズ形状に形成してもよい。
"Example" An example of the present invention will be described based on the drawings.
FIG. 1 shows the configuration of this embodiment. A liquid crystal cell main body 1 includes a liquid crystal material 2 and substrates (hereinafter referred to as substrates) 3a and 3b having transparent electrodes facing each other with the liquid crystal material 2 in between. In addition to electrically insulating the distance between the substrates 3a and 3b, the liquid crystal material 2
and an insulating spacer 4 to prevent leakage to the outside. And the substrate 3a,
An applying means 5 for applying an electric field to the liquid crystal material 2 is connected to the transparent electrode formed on the transparent electrode 3b. In this embodiment, one of the pair of substrates 3a has the shape of a concave lens, and the liquid crystal 2 sealed in the liquid crystal cell 1 is itself filled in the shape of a concave lens. Note that both of the pair of substrates may be formed into a lens shape.

次に第2図に基づいて、本液晶セル1の焦点距
離を計算することにする。ここで、基板3aの凹
レンズの屈折率をn1とし、その曲率半径をR1
する。また液晶2で形成された凸レンズの屈折率
は、印加電圧の関数であるからn(V)とし、そ
の曲率半径をR2とする。
Next, based on FIG. 2, the focal length of the liquid crystal cell 1 will be calculated. Here, the refractive index of the concave lens of the substrate 3a is set to n1 , and its radius of curvature is set to R1 . Further, since the refractive index of the convex lens formed of the liquid crystal 2 is a function of the applied voltage, it is assumed to be n (V), and its radius of curvature is assumed to be R 2 .

ところで、平凸レンズ又は平凹レンズの焦点距
離は屈折率と曲率半径により次式で表せる。
By the way, the focal length of a plano-convex lens or a plano-concave lens can be expressed by the following equation using a refractive index and a radius of curvature.

f=R/n−1 …(1) 但し、凹レンズではfが正となり、凸レンズで
はfが負となる。
f=R/n-1 (1) However, f is positive for a concave lens, and f is negative for a convex lens.

そこで、基板3の凹レンズ(焦点距離f1)と液
晶素材2で形成された凸レンズ(焦点距離f2)の
合成焦点距離を計算すると、下記の様になる。
Therefore, the combined focal length of the concave lens (focal length f 1 ) of the substrate 3 and the convex lens (focal length f 2 ) formed of the liquid crystal material 2 is calculated as follows.

合成焦点距離fは f=(1/f1+1/f2-1 …(2) で表され、第2図よりR=R1+R2であり、基板
3aのレンズは凹レンズであるからf1は負となる
ので、第1式を第2式に代入すると合成焦点距離
fは、 f=(1/f1+1/f2-1=(n(V)−1/R−n1
1/R)-1 =R/n(V)−n1 …(3) となる。つまり、n(V)はは、印加電圧より異
常光に対応する屈折率neと常光に対応する屈折率
npの間で変化することができるので、[np≦n
(V)≦ne]液晶素材2の屈折率と合成焦点距離と
の関係は第3図の様になる。即ち、液晶素材2の
屈折率がnpとなる様な電圧から、基板3aの屈折
率であるn1と等しくなる様な電圧(○
The composite focal length f is expressed as f = (1/f 1 + 1/f 2 ) -1 ...(2), and from Figure 2, R = R 1 + R 2 , and since the lens on the substrate 3a is a concave lens, f 1 is negative, so by substituting the first equation into the second equation, the composite focal length f is: f=(1/f 1 +1/f 2 ) -1 = (n(V)-1/R-n 1
1/R) -1 =R/n(V) -n1 ...(3). In other words, n(V) is the refractive index n e corresponding to extraordinary light and the refractive index corresponding to ordinary light from the applied voltage.
Since it can vary between n p , [n p ≦n
(V)≦ ne ] The relationship between the refractive index of the liquid crystal material 2 and the composite focal length is as shown in FIG. That is, from a voltage that makes the refractive index of the liquid crystal material 2 n p to a voltage that makes the refractive index of the substrate 3a equal to n 1 (○

Claims (1)

【特許請求の範囲】 1 対向する一対の基板と、この基板間に封入さ
れた液晶素材とからなり、この液晶分子を適宜の
方向に配向させると共に、前記基板の少なくとも
一方に曲率を設けた液晶セルに対して、外部より
電界又は磁界を印加して該液晶分子の配向状態を
制御し、液晶の屈折率を段階的又は連続的に変化
させる様にした液晶レンズにおいて、前記基板の
屈折率が、前記液晶素材の常光線に対する屈折率
よりも大きく、かつ、前記液晶素材の異常光線に
対する屈折率よりも小さい値となる様な材料で前
記基板が形成されており、前記電界又は磁界を変
化させることにより、前記液晶レンズが凹レンズ
及び凸レンズのいずれにもなるように焦点距離が
変化される焦点距離可変液晶レンズを2以上重ね
合わせ、あらゆる方向の偏光に対して、共通の焦
点を有し、該焦点の位置が可変となる様にしたこ
とを特徴とする焦点距離可変液晶レンズ。 2 2個の焦点距離可変液晶レンズが、これらの
液晶分子の配向方向が互いに直交する様に重ね合
わされている特許請求の範囲第1項記載の焦点距
離可変液晶レンズ。 3 2個の焦点距離可変液晶レンズが、液晶分子
を同心円状又は放射状に配向されたほぼ同一特性
を有するものであり、この重ね合わされた2個の
焦点距離可変液晶レンズの間に、TN液晶セルを
挟んだ特許請求の範囲第1項記載の焦点距離可変
液晶レンズ。 4 2個の焦点距離可変液晶レンズが、液晶分子
を同心円状に配向された液晶レンズと、液晶分子
を放射状に配向させた液晶レンズとからなる特許
請求の範囲第1項記載の焦点距離可変液晶レン
ズ。 5 2個の焦点距離可変液晶レンズが、液晶セル
を構成する一方の基板上では液晶分子を同心円状
に配向させ、他方の基板上では放射状に配向させ
たほぼ同一特性を有するものであり、配向面が同
心円状、放射状、同心円状、放射状の順に、又は
これと逆の順になるように重ね合わせた特許請求
の範囲第1項記載の焦点距離可変液晶レンズ。
[Claims] 1. A liquid crystal comprising a pair of opposing substrates and a liquid crystal material sealed between the substrates, the liquid crystal molecules being oriented in an appropriate direction, and at least one of the substrates having a curvature. In a liquid crystal lens in which the refractive index of the liquid crystal is changed stepwise or continuously by applying an external electric or magnetic field to the cell to control the alignment state of the liquid crystal molecules, the refractive index of the substrate is , the substrate is formed of a material having a refractive index greater than the refractive index of the liquid crystal material for ordinary rays and smaller than the refractive index of the liquid crystal material for extraordinary rays, and the electric field or magnetic field is changed. By overlapping two or more variable focal length liquid crystal lenses whose focal lengths can be changed so that the liquid crystal lens becomes either a concave lens or a convex lens, the liquid crystal lens has a common focal point for polarized light in all directions, and A variable focal length liquid crystal lens characterized in that the focal point position is variable. 2. The variable focal length liquid crystal lens according to claim 1, wherein the two variable focal length liquid crystal lenses are stacked on top of each other such that the alignment directions of these liquid crystal molecules are orthogonal to each other. 3 Two variable focal length liquid crystal lenses have almost the same characteristics, with liquid crystal molecules oriented concentrically or radially, and a TN liquid crystal cell is placed between the two stacked variable focal length liquid crystal lenses. A variable focal length liquid crystal lens according to claim 1, which includes: 4. The variable focal length liquid crystal according to claim 1, wherein the two variable focal length liquid crystal lenses include a liquid crystal lens in which liquid crystal molecules are aligned concentrically and a liquid crystal lens in which liquid crystal molecules are aligned radially. lens. 5 Two variable focal length liquid crystal lenses have almost the same characteristics, with liquid crystal molecules oriented concentrically on one substrate constituting a liquid crystal cell, and radially oriented on the other substrate. The variable focal length liquid crystal lens according to claim 1, wherein the surfaces are stacked in the order of concentric circles, radials, concentric circles, radials, or in the reverse order.
JP60270124A 1985-11-30 1985-11-30 Liquid crystal lens with variable focal length Granted JPS62129815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270124A JPS62129815A (en) 1985-11-30 1985-11-30 Liquid crystal lens with variable focal length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270124A JPS62129815A (en) 1985-11-30 1985-11-30 Liquid crystal lens with variable focal length

Publications (2)

Publication Number Publication Date
JPS62129815A JPS62129815A (en) 1987-06-12
JPH048769B2 true JPH048769B2 (en) 1992-02-18

Family

ID=17481883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270124A Granted JPS62129815A (en) 1985-11-30 1985-11-30 Liquid crystal lens with variable focal length

Country Status (1)

Country Link
JP (1) JPS62129815A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130839A (en) * 1989-03-10 1992-07-14 Ricoh Company Ltd. Scanning optical apparatus
JP3442845B2 (en) * 1994-02-15 2003-09-02 富士写真フイルム株式会社 Variable focus position optical system and light beam scanning device
JP4752763B2 (en) * 2004-04-30 2011-08-17 旭硝子株式会社 Liquid crystal lens element and optical head device
US8885139B2 (en) * 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
KR101419542B1 (en) 2005-07-28 2014-07-14 시티즌 덴시 가부시키가이샤 Liquid crystal lens apparatus
GB2585188B (en) * 2019-06-26 2023-02-01 Flexenable Ltd Stacked liquid crystal cell device electrically operable to generate refractive index pattern
JP2021051187A (en) * 2019-09-25 2021-04-01 株式会社ジャパンディスプレイ Optical control device
WO2024029309A1 (en) * 2022-08-02 2024-02-08 富士フイルム株式会社 Lens device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151854A (en) * 1978-05-20 1979-11-29 Sato Susumu Variable focal length lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151854A (en) * 1978-05-20 1979-11-29 Sato Susumu Variable focal length lens

Also Published As

Publication number Publication date
JPS62129815A (en) 1987-06-12

Similar Documents

Publication Publication Date Title
US7019890B2 (en) Hybrid electro-active lens
US8587734B2 (en) Adaptive lens for vision correction
US4190330A (en) Variable focus liquid crystal lens system
US20030210377A1 (en) Hybrid electro-active lens
US9001282B2 (en) Variable power optical element
GB2183861A (en) Stereoscopic optical instruments utilizing liquid crystals
JPH0261014B2 (en)
JPS61156227A (en) Fresnel liquid crystal spectacle
JPH048769B2 (en)
JP2007212623A (en) Multifocal spectacles
Banerjee et al. Low-power, thin and flexible, stacked digital LC lens for adaptive contact lens system with enhanced tunability
CN108388025B (en) Lens, manufacturing method thereof, glasses and optical system
WO2005040909A1 (en) Improved hybrid electro-active lens
JPH048768B2 (en)
JPS5850339B2 (en) variable focal length lens
JPS62129816A (en) Liquid crystal lens with focal length
JPH0513281B2 (en)
JP2665341B2 (en) Liquid crystal lens
JPH04322214A (en) Liquid crystal lens and using method therefor
JPS6117120A (en) Liquid crystal lens varying focal length
JPH0560907A (en) Double focus lens
US20230130327A1 (en) Optical element and optical device having the same
CN114690442A (en) Focus self-adaptation glasses based on liquid crystal medium
JPS59224821A (en) Variable focal length lens
JPS59224820A (en) Variable focal length lens