JPS59224820A - Variable focal length lens - Google Patents
Variable focal length lensInfo
- Publication number
- JPS59224820A JPS59224820A JP8910684A JP8910684A JPS59224820A JP S59224820 A JPS59224820 A JP S59224820A JP 8910684 A JP8910684 A JP 8910684A JP 8910684 A JP8910684 A JP 8910684A JP S59224820 A JPS59224820 A JP S59224820A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- lens
- liquid crystal
- crystal
- crystal molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1313—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
老眼などのように、眼球における焦点距離の調節機能が
低下した場合には、近距離用と遠距離用の2種類の焦点
距離の異なる眼鏡を使用したり、眼鏡レンズ内で部分的
または連続的に焦点距離の異なる領域を持ち、近距離ま
たは遠距離でそれぞれ適当な焦点距離を持つ部分を通し
て物を見なければならないという不便さがある。[Detailed Description of the Invention] When the ability to adjust the focal length of the eyeballs deteriorates, such as with presbyopia, glasses with two different focal lengths for near and far distances may be used, or spectacle lenses may be used. It is inconvenient that the camera has regions with partially or continuously different focal lengths, and objects must be viewed through the regions each having an appropriate focal length at close or far distances.
また、「そこひ」などの疾病により水晶体を摘出した場
合に、従来の焦点距離固定のレンズを用いた眼鏡では、
日常生活において数種類のレンズを用意して、情況に応
じて使い分ける必要があった。そこで本発明では、これ
らの眼鏡レンズ使用時における不便さを解消するために
、低電圧、低消費電力で作動する液晶を用いた電圧制御
型の焦点距離可変レンズを構成することをその目的とし
ている。In addition, when the crystalline lens is removed due to a disease such as "Sokohi", conventional glasses with fixed focal length lenses can
In daily life, it was necessary to prepare several types of lenses and use them depending on the situation. Therefore, in order to eliminate the inconvenience when using these eyeglass lenses, the present invention aims to construct a voltage-controlled variable focal length lens using a liquid crystal that operates at low voltage and low power consumption. .
一軸性の屈折率異方性を有する物質では、光軸を含む面
内に振動方向を持つ異常光線に対する屈折率と常光線に
対する屈折率が異なるので、このような物質を凸レンズ
または凹レンズ状とし、第1図(異常光線)および第2
図(常光線)に示したように、偏光板1により異常光線
と常光線の切り換えを行なうと、レンズ3の形状は同じ
ても、屈折率がそれぞれ異なるので、レンズ3の焦点距
離を変えることができる。一方、2枚の透明電極基板に
対して液晶分子が平行になるように配向させ、これらの
基板が直交するようにして配置して、2枚の基板の間で
液晶分子が90°ねじれたようにしたT N (T w
istedNematiC>液晶セルは、入力光の偏光
方向を90°ねじるような効果を有するが、このTNN
液晶シル加える電圧4をあるしきい値以上にすると、液
晶分子は電界の方向に配列して光学活性を失ない、入力
光は偏光方向を回転することなく、この液晶セルを通過
する。そこで第3図に示したように、偏光板1の振動方
向とレンズ3を構成する物質の光軸方向を一致させ、偏
光板1とレンズ3の間に王N液晶セル2を配置するど、
印加電圧4がしぎい電圧より低ければ、入力光はTN液
晶セル2で振動方向に90°回転し、入力光に対して常
光線に対する屈折率を持つレンズとなるが、印加電圧4
がしきい電圧を越えると振動方向の回転が起らず、した
がって、TN液晶セルに印加する電圧により、レンズの
焦点距離を切り換えることができる。しかし、このよう
な方法ではレンズの焦点距離を連続的に可変させること
はできない。In a material with uniaxial refractive index anisotropy, the refractive index for extraordinary rays and the refractive index for ordinary rays, which have a vibration direction in a plane including the optical axis, are different, so such a material is shaped like a convex lens or a concave lens, Figure 1 (abnormal ray) and Figure 2
As shown in the figure (ordinary ray), when switching between the extraordinary ray and the ordinary ray using the polarizing plate 1, the focal length of the lens 3 can be changed even though the shape of the lens 3 is the same, since the refractive index is different. I can do it. On the other hand, the liquid crystal molecules are oriented parallel to two transparent electrode substrates, and these substrates are arranged perpendicularly so that the liquid crystal molecules are twisted 90 degrees between the two substrates. T N (T w
istedNematiC>Liquid crystal cells have the effect of twisting the polarization direction of input light by 90 degrees, but this TNN
When the voltage 4 applied to the liquid crystal cell exceeds a certain threshold, the liquid crystal molecules align in the direction of the electric field and lose their optical activity, and the input light passes through this liquid crystal cell without rotating its polarization direction. Therefore, as shown in FIG. 3, by aligning the vibration direction of the polarizing plate 1 with the optical axis direction of the material constituting the lens 3, and placing the O-N liquid crystal cell 2 between the polarizing plate 1 and the lens 3,
If the applied voltage 4 is lower than the threshold voltage, the input light is rotated by 90° in the vibration direction in the TN liquid crystal cell 2, and the input light becomes a lens with a refractive index relative to the ordinary ray.
When the voltage exceeds the threshold voltage, no rotation in the vibration direction occurs, and therefore the focal length of the lens can be switched by the voltage applied to the TN liquid crystal cell. However, with this method, the focal length of the lens cannot be continuously varied.
ところで、2枚の透明電極基板の間に誘電異方性が正の
電界効果形液晶を入れ、液晶分子が基板に平行になるよ
うに配向させた液晶セルに交流電圧を印加すると、しき
い値以上の印加電圧の大きさに対して液晶分子が基板に
対して垂直方向に連続的にその向きを変え、液晶分子の
配向方向に偏光した入射光に苅して液晶セルのみかけの
屈折率は異常光に対する値から常光に対する値まで連続
的に変化する。このいわゆる電界制御複屈折率効果は液
晶セルの厚さに依存せず、また印加電界ではなく印加電
圧に依存して変化することが知られている。つまり、液
晶セルがレンズのような形をしており、液晶ヒルの厚さ
が各々の場所によって異なっていても光学的には一様な
屈折率の変化が得られることになっている。しがって、
第4図に示した構成で、レンズ3を平行配向させた誘電
異方性が正の電界効果形液晶を用いて作成し、印加電圧
5により液晶分子を傾(Jて液晶セルのみかけの回折率
を変化させることにより、レンズ3の焦点距離を連続的
に変化させることができる。具体的な例として、シアノ
ビフェニル系液晶であるPCBを用い、レンズの曲率半
径を121mmとする液晶レンズを作成すると、10V
程度の電圧印加により液晶レンズ焦点距離を175mm
から230n+m程度まで変化させることができる。垂
直配向させた誘電異方性が負の液晶を用いると、印加電
圧に対して焦点距離が逆の変化、ずなわち常光に対する
伯から異常光に対する値まで変化することになる。電圧
を印加するのと同様に、[71界を加えても液晶分子の
配向状態を変えることができるので、磁界による焦点距
離可変のレンズとすることもできる。By the way, when a field-effect liquid crystal with positive dielectric anisotropy is placed between two transparent electrode substrates and an AC voltage is applied to the liquid crystal cell with the liquid crystal molecules oriented parallel to the substrates, the threshold value In response to the above applied voltage, the liquid crystal molecules continuously change their orientation perpendicular to the substrate, and the apparent refractive index of the liquid crystal cell changes as the incident light is polarized in the orientation direction of the liquid crystal molecules. It changes continuously from the value for extraordinary light to the value for ordinary light. It is known that this so-called field-controlled birefringence effect does not depend on the thickness of the liquid crystal cell and changes depending on the applied voltage rather than the applied electric field. In other words, the liquid crystal cell is shaped like a lens, and even if the thickness of the liquid crystal hill differs from place to place, optically uniform changes in refractive index can be obtained. Therefore,
The configuration shown in Fig. 4 is created using a field-effect liquid crystal with positive dielectric anisotropy with lenses 3 oriented in parallel, and an applied voltage 5 tilts the liquid crystal molecules (J causes apparent diffraction of the liquid crystal cell). By changing the ratio, the focal length of the lens 3 can be continuously changed.As a specific example, a liquid crystal lens with a radius of curvature of 121 mm was created using PCB, which is a cyanobiphenyl liquid crystal. Then, 10V
The focal length of the liquid crystal lens can be increased to 175mm by applying a voltage of
It can be changed from about 230n+m to about 230n+m. If a vertically aligned liquid crystal with negative dielectric anisotropy is used, the focal length will change inversely to the applied voltage, ie, from the value for ordinary light to the value for extraordinary light. Similar to applying a voltage, applying a [71 field can also change the alignment state of liquid crystal molecules, so a lens whose focal length can be varied by a magnetic field can also be obtained.
また、第5図に示した構成で、TN液晶セル2に印加す
る電圧4により常光線と異常光線の切り換えを行ない、
また、液晶によるレンズ3に印加する電圧5による焦点
距離の制御を行なえば、ざらに細かな焦点距離の変化を
得ることができる。Furthermore, in the configuration shown in FIG. 5, the ordinary ray and the extraordinary ray are switched by the voltage 4 applied to the TN liquid crystal cell 2,
Furthermore, if the focal length is controlled by the voltage 5 applied to the liquid crystal lens 3, it is possible to obtain rough and fine changes in the focal length.
本発明は数V程度の低電圧で動作し、消費電力が極めて
少ない液晶セルを用いて焦点距離可5−
変のレンズを構成しているので、集積回路素子と直結で
き、また、薄形軽量なることにより、通常の眼鏡レンズ
として装着することが可能である。さらに、伯の光学機
器の距離合わせ機構などを電子的に行なうことにも応用
できる。The present invention operates at a low voltage of about several volts and uses a liquid crystal cell with extremely low power consumption to construct a lens with a variable focal length of 5-variable, so it can be directly connected to an integrated circuit element, and is thin and lightweight. This allows it to be worn as a normal eyeglass lens. Furthermore, it can be applied to electronically adjusting the distance adjustment mechanism of optical equipment.
図面は本発明の実施例と、その作動礪構を説明するもの
で、第1図および第2図は本発明の焦点距離可変レンズ
の基本原理を示し、第1図は異常光線の場合を、第2町
常尤線の場合を示し、第3図はTN液晶セルを組み合わ
せ電圧印加により2神の焦点距離を選択できる構成例を
示し、第4図は本発明の主要な部分である液晶によるレ
ンズに電圧を印加して液晶分子の配向を制御し、誘起針
キされた複屈折の変化による焦点距離可変のレンズの構
成を示し、第5図は第4図の構成にTN液晶セルを加え
たものである
図中、1は偏光板、2はTN液晶セル、3は屈折率異方
性を有する物質(液晶)で作成した6一
Iノンズ、4はTNGN上品の駆動14fff、 5は
液晶によるレンズの駆動電圧。
7−
第1図 第2図The drawings are for explaining embodiments of the present invention and their operational structure. Figures 1 and 2 show the basic principle of the variable focal length lens of the present invention, and Figure 1 shows the case of extraordinary rays. Fig. 3 shows a configuration example in which two focal lengths can be selected by combining TN liquid crystal cells and applying voltage, and Fig. 4 shows the case of the second town ordinary likelihood line. A voltage is applied to the lens to control the orientation of liquid crystal molecules, and the focal length can be varied by changing the induced birefringence. Figure 5 shows the configuration of a lens in which a TN liquid crystal cell is added to the configuration of Figure 4. In the figure, 1 is a polarizing plate, 2 is a TN liquid crystal cell, 3 is a 61I nons made of a material with refractive index anisotropy (liquid crystal), 4 is a TNGN high quality drive 14fff, and 5 is a liquid crystal Lens drive voltage by. 7- Figure 1 Figure 2
Claims (1)
ビフェニル系液晶セルに外部より電界または磁界を印加
して液晶分子の配向状態を制御することにより、液晶レ
ンズの屈折率を連続的に変化させるようにした焦点距離
可変レンズ。The refractive index of the liquid crystal lens is continuously changed by applying an external electric or magnetic field to a cyanobiphenyl liquid crystal cell that is shaped like a lens and has liquid crystal molecules aligned in one direction to control the alignment state of the liquid crystal molecules. A variable focal length lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8910684A JPS59224820A (en) | 1984-05-03 | 1984-05-03 | Variable focal length lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8910684A JPS59224820A (en) | 1984-05-03 | 1984-05-03 | Variable focal length lens |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53060427A Division JPS5850339B2 (en) | 1978-05-20 | 1978-05-20 | variable focal length lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59224820A true JPS59224820A (en) | 1984-12-17 |
Family
ID=13961635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8910684A Pending JPS59224820A (en) | 1984-05-03 | 1984-05-03 | Variable focal length lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59224820A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5052791A (en) * | 1989-07-10 | 1991-10-01 | Olympus Optical Co., Ltd. | Variable magnification viewfinder optical system with variable magnification based on polarization |
US5124836A (en) * | 1989-12-25 | 1992-06-23 | Olympus Optical Co., Ltd. | Real image mode finder optical system |
-
1984
- 1984-05-03 JP JP8910684A patent/JPS59224820A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5052791A (en) * | 1989-07-10 | 1991-10-01 | Olympus Optical Co., Ltd. | Variable magnification viewfinder optical system with variable magnification based on polarization |
US5124836A (en) * | 1989-12-25 | 1992-06-23 | Olympus Optical Co., Ltd. | Real image mode finder optical system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4190330A (en) | Variable focus liquid crystal lens system | |
CN112955810B (en) | Adjustable glasses | |
US7019890B2 (en) | Hybrid electro-active lens | |
US20030210377A1 (en) | Hybrid electro-active lens | |
WO2010102295A1 (en) | Adaptive lens for vision correction | |
GB2183861A (en) | Stereoscopic optical instruments utilizing liquid crystals | |
JPS61156227A (en) | Fresnel liquid crystal spectacle | |
JPH0261014B2 (en) | ||
JPS5850339B2 (en) | variable focal length lens | |
JPH0534656A (en) | Focal length variable liquid crystal lens | |
US10613404B2 (en) | Liquid crystal optical element and optical apparatus | |
Ye et al. | Liquid crystal anamorphic lens | |
JPS59224820A (en) | Variable focal length lens | |
JPS61138922A (en) | Variable focus liquid crystal lens | |
JPS6050510A (en) | Liquid crystal lens of variable focal distance | |
JPH048769B2 (en) | ||
JPS59224821A (en) | Variable focal length lens | |
JPS61177428A (en) | Spectacles of liquid crystal | |
JPH04322214A (en) | Liquid crystal lens and using method therefor | |
JPS62129816A (en) | Liquid crystal lens with focal length | |
JPS6117120A (en) | Liquid crystal lens varying focal length | |
JPH02110511A (en) | Sunglass with degree | |
JPS61177429A (en) | Liquid crystal spectacles | |
JPS62129814A (en) | Liquid crystal lens with variable focal length | |
JPH0560907A (en) | Double focus lens |